1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 92 93 #define get_pageblock_migratetype(page) \ 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 static inline struct page *get_page_from_free_area(struct free_area *area, 102 int migratetype) 103 { 104 return list_first_entry_or_null(&area->free_list[migratetype], 105 struct page, lru); 106 } 107 108 static inline bool free_area_empty(struct free_area *area, int migratetype) 109 { 110 return list_empty(&area->free_list[migratetype]); 111 } 112 113 struct pglist_data; 114 115 /* 116 * Add a wild amount of padding here to ensure datas fall into separate 117 * cachelines. There are very few zone structures in the machine, so space 118 * consumption is not a concern here. 119 */ 120 #if defined(CONFIG_SMP) 121 struct zone_padding { 122 char x[0]; 123 } ____cacheline_internodealigned_in_smp; 124 #define ZONE_PADDING(name) struct zone_padding name; 125 #else 126 #define ZONE_PADDING(name) 127 #endif 128 129 #ifdef CONFIG_NUMA 130 enum numa_stat_item { 131 NUMA_HIT, /* allocated in intended node */ 132 NUMA_MISS, /* allocated in non intended node */ 133 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 135 NUMA_LOCAL, /* allocation from local node */ 136 NUMA_OTHER, /* allocation from other node */ 137 NR_VM_NUMA_STAT_ITEMS 138 }; 139 #else 140 #define NR_VM_NUMA_STAT_ITEMS 0 141 #endif 142 143 enum zone_stat_item { 144 /* First 128 byte cacheline (assuming 64 bit words) */ 145 NR_FREE_PAGES, 146 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 147 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 148 NR_ZONE_ACTIVE_ANON, 149 NR_ZONE_INACTIVE_FILE, 150 NR_ZONE_ACTIVE_FILE, 151 NR_ZONE_UNEVICTABLE, 152 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 153 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 154 /* Second 128 byte cacheline */ 155 NR_BOUNCE, 156 #if IS_ENABLED(CONFIG_ZSMALLOC) 157 NR_ZSPAGES, /* allocated in zsmalloc */ 158 #endif 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162 enum node_stat_item { 163 NR_LRU_BASE, 164 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 165 NR_ACTIVE_ANON, /* " " " " " */ 166 NR_INACTIVE_FILE, /* " " " " " */ 167 NR_ACTIVE_FILE, /* " " " " " */ 168 NR_UNEVICTABLE, /* " " " " " */ 169 NR_SLAB_RECLAIMABLE_B, 170 NR_SLAB_UNRECLAIMABLE_B, 171 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 172 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 173 WORKINGSET_NODES, 174 WORKINGSET_REFAULT_BASE, 175 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 176 WORKINGSET_REFAULT_FILE, 177 WORKINGSET_ACTIVATE_BASE, 178 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 179 WORKINGSET_ACTIVATE_FILE, 180 WORKINGSET_RESTORE_BASE, 181 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 182 WORKINGSET_RESTORE_FILE, 183 WORKINGSET_NODERECLAIM, 184 NR_ANON_MAPPED, /* Mapped anonymous pages */ 185 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 186 only modified from process context */ 187 NR_FILE_PAGES, 188 NR_FILE_DIRTY, 189 NR_WRITEBACK, 190 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 191 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 192 NR_SHMEM_THPS, 193 NR_SHMEM_PMDMAPPED, 194 NR_FILE_THPS, 195 NR_FILE_PMDMAPPED, 196 NR_ANON_THPS, 197 NR_VMSCAN_WRITE, 198 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 199 NR_DIRTIED, /* page dirtyings since bootup */ 200 NR_WRITTEN, /* page writings since bootup */ 201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 204 NR_KERNEL_STACK_KB, /* measured in KiB */ 205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 206 NR_KERNEL_SCS_KB, /* measured in KiB */ 207 #endif 208 NR_PAGETABLE, /* used for pagetables */ 209 NR_VM_NODE_STAT_ITEMS 210 }; 211 212 /* 213 * Returns true if the value is measured in bytes (most vmstat values are 214 * measured in pages). This defines the API part, the internal representation 215 * might be different. 216 */ 217 static __always_inline bool vmstat_item_in_bytes(int idx) 218 { 219 /* 220 * Global and per-node slab counters track slab pages. 221 * It's expected that changes are multiples of PAGE_SIZE. 222 * Internally values are stored in pages. 223 * 224 * Per-memcg and per-lruvec counters track memory, consumed 225 * by individual slab objects. These counters are actually 226 * byte-precise. 227 */ 228 return (idx == NR_SLAB_RECLAIMABLE_B || 229 idx == NR_SLAB_UNRECLAIMABLE_B); 230 } 231 232 /* 233 * We do arithmetic on the LRU lists in various places in the code, 234 * so it is important to keep the active lists LRU_ACTIVE higher in 235 * the array than the corresponding inactive lists, and to keep 236 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 237 * 238 * This has to be kept in sync with the statistics in zone_stat_item 239 * above and the descriptions in vmstat_text in mm/vmstat.c 240 */ 241 #define LRU_BASE 0 242 #define LRU_ACTIVE 1 243 #define LRU_FILE 2 244 245 enum lru_list { 246 LRU_INACTIVE_ANON = LRU_BASE, 247 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 248 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 249 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 250 LRU_UNEVICTABLE, 251 NR_LRU_LISTS 252 }; 253 254 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 255 256 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 257 258 static inline bool is_file_lru(enum lru_list lru) 259 { 260 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 261 } 262 263 static inline bool is_active_lru(enum lru_list lru) 264 { 265 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 266 } 267 268 #define ANON_AND_FILE 2 269 270 enum lruvec_flags { 271 LRUVEC_CONGESTED, /* lruvec has many dirty pages 272 * backed by a congested BDI 273 */ 274 }; 275 276 struct lruvec { 277 struct list_head lists[NR_LRU_LISTS]; 278 /* per lruvec lru_lock for memcg */ 279 spinlock_t lru_lock; 280 /* 281 * These track the cost of reclaiming one LRU - file or anon - 282 * over the other. As the observed cost of reclaiming one LRU 283 * increases, the reclaim scan balance tips toward the other. 284 */ 285 unsigned long anon_cost; 286 unsigned long file_cost; 287 /* Non-resident age, driven by LRU movement */ 288 atomic_long_t nonresident_age; 289 /* Refaults at the time of last reclaim cycle */ 290 unsigned long refaults[ANON_AND_FILE]; 291 /* Various lruvec state flags (enum lruvec_flags) */ 292 unsigned long flags; 293 #ifdef CONFIG_MEMCG 294 struct pglist_data *pgdat; 295 #endif 296 }; 297 298 /* Isolate unmapped pages */ 299 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 300 /* Isolate for asynchronous migration */ 301 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 302 /* Isolate unevictable pages */ 303 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 304 305 /* LRU Isolation modes. */ 306 typedef unsigned __bitwise isolate_mode_t; 307 308 enum zone_watermarks { 309 WMARK_MIN, 310 WMARK_LOW, 311 WMARK_HIGH, 312 NR_WMARK 313 }; 314 315 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 316 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 317 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 318 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 319 320 struct per_cpu_pages { 321 int count; /* number of pages in the list */ 322 int high; /* high watermark, emptying needed */ 323 int batch; /* chunk size for buddy add/remove */ 324 325 /* Lists of pages, one per migrate type stored on the pcp-lists */ 326 struct list_head lists[MIGRATE_PCPTYPES]; 327 }; 328 329 struct per_cpu_pageset { 330 struct per_cpu_pages pcp; 331 #ifdef CONFIG_NUMA 332 s8 expire; 333 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 334 #endif 335 #ifdef CONFIG_SMP 336 s8 stat_threshold; 337 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 338 #endif 339 }; 340 341 struct per_cpu_nodestat { 342 s8 stat_threshold; 343 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 344 }; 345 346 #endif /* !__GENERATING_BOUNDS.H */ 347 348 enum zone_type { 349 /* 350 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 351 * to DMA to all of the addressable memory (ZONE_NORMAL). 352 * On architectures where this area covers the whole 32 bit address 353 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 354 * DMA addressing constraints. This distinction is important as a 32bit 355 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 356 * platforms may need both zones as they support peripherals with 357 * different DMA addressing limitations. 358 */ 359 #ifdef CONFIG_ZONE_DMA 360 ZONE_DMA, 361 #endif 362 #ifdef CONFIG_ZONE_DMA32 363 ZONE_DMA32, 364 #endif 365 /* 366 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 367 * performed on pages in ZONE_NORMAL if the DMA devices support 368 * transfers to all addressable memory. 369 */ 370 ZONE_NORMAL, 371 #ifdef CONFIG_HIGHMEM 372 /* 373 * A memory area that is only addressable by the kernel through 374 * mapping portions into its own address space. This is for example 375 * used by i386 to allow the kernel to address the memory beyond 376 * 900MB. The kernel will set up special mappings (page 377 * table entries on i386) for each page that the kernel needs to 378 * access. 379 */ 380 ZONE_HIGHMEM, 381 #endif 382 /* 383 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 384 * movable pages with few exceptional cases described below. Main use 385 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 386 * likely to succeed, and to locally limit unmovable allocations - e.g., 387 * to increase the number of THP/huge pages. Notable special cases are: 388 * 389 * 1. Pinned pages: (long-term) pinning of movable pages might 390 * essentially turn such pages unmovable. Memory offlining might 391 * retry a long time. 392 * 2. memblock allocations: kernelcore/movablecore setups might create 393 * situations where ZONE_MOVABLE contains unmovable allocations 394 * after boot. Memory offlining and allocations fail early. 395 * 3. Memory holes: kernelcore/movablecore setups might create very rare 396 * situations where ZONE_MOVABLE contains memory holes after boot, 397 * for example, if we have sections that are only partially 398 * populated. Memory offlining and allocations fail early. 399 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 400 * memory offlining, such pages cannot be allocated. 401 * 5. Unmovable PG_offline pages: in paravirtualized environments, 402 * hotplugged memory blocks might only partially be managed by the 403 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 404 * parts not manged by the buddy are unmovable PG_offline pages. In 405 * some cases (virtio-mem), such pages can be skipped during 406 * memory offlining, however, cannot be moved/allocated. These 407 * techniques might use alloc_contig_range() to hide previously 408 * exposed pages from the buddy again (e.g., to implement some sort 409 * of memory unplug in virtio-mem). 410 * 411 * In general, no unmovable allocations that degrade memory offlining 412 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 413 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 414 * if has_unmovable_pages() states that there are no unmovable pages, 415 * there can be false negatives). 416 */ 417 ZONE_MOVABLE, 418 #ifdef CONFIG_ZONE_DEVICE 419 ZONE_DEVICE, 420 #endif 421 __MAX_NR_ZONES 422 423 }; 424 425 #ifndef __GENERATING_BOUNDS_H 426 427 #define ASYNC_AND_SYNC 2 428 429 struct zone { 430 /* Read-mostly fields */ 431 432 /* zone watermarks, access with *_wmark_pages(zone) macros */ 433 unsigned long _watermark[NR_WMARK]; 434 unsigned long watermark_boost; 435 436 unsigned long nr_reserved_highatomic; 437 438 /* 439 * We don't know if the memory that we're going to allocate will be 440 * freeable or/and it will be released eventually, so to avoid totally 441 * wasting several GB of ram we must reserve some of the lower zone 442 * memory (otherwise we risk to run OOM on the lower zones despite 443 * there being tons of freeable ram on the higher zones). This array is 444 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 445 * changes. 446 */ 447 long lowmem_reserve[MAX_NR_ZONES]; 448 449 #ifdef CONFIG_NUMA 450 int node; 451 #endif 452 struct pglist_data *zone_pgdat; 453 struct per_cpu_pageset __percpu *pageset; 454 /* 455 * the high and batch values are copied to individual pagesets for 456 * faster access 457 */ 458 int pageset_high; 459 int pageset_batch; 460 461 #ifndef CONFIG_SPARSEMEM 462 /* 463 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 464 * In SPARSEMEM, this map is stored in struct mem_section 465 */ 466 unsigned long *pageblock_flags; 467 #endif /* CONFIG_SPARSEMEM */ 468 469 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 470 unsigned long zone_start_pfn; 471 472 /* 473 * spanned_pages is the total pages spanned by the zone, including 474 * holes, which is calculated as: 475 * spanned_pages = zone_end_pfn - zone_start_pfn; 476 * 477 * present_pages is physical pages existing within the zone, which 478 * is calculated as: 479 * present_pages = spanned_pages - absent_pages(pages in holes); 480 * 481 * managed_pages is present pages managed by the buddy system, which 482 * is calculated as (reserved_pages includes pages allocated by the 483 * bootmem allocator): 484 * managed_pages = present_pages - reserved_pages; 485 * 486 * So present_pages may be used by memory hotplug or memory power 487 * management logic to figure out unmanaged pages by checking 488 * (present_pages - managed_pages). And managed_pages should be used 489 * by page allocator and vm scanner to calculate all kinds of watermarks 490 * and thresholds. 491 * 492 * Locking rules: 493 * 494 * zone_start_pfn and spanned_pages are protected by span_seqlock. 495 * It is a seqlock because it has to be read outside of zone->lock, 496 * and it is done in the main allocator path. But, it is written 497 * quite infrequently. 498 * 499 * The span_seq lock is declared along with zone->lock because it is 500 * frequently read in proximity to zone->lock. It's good to 501 * give them a chance of being in the same cacheline. 502 * 503 * Write access to present_pages at runtime should be protected by 504 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 505 * present_pages should get_online_mems() to get a stable value. 506 */ 507 atomic_long_t managed_pages; 508 unsigned long spanned_pages; 509 unsigned long present_pages; 510 511 const char *name; 512 513 #ifdef CONFIG_MEMORY_ISOLATION 514 /* 515 * Number of isolated pageblock. It is used to solve incorrect 516 * freepage counting problem due to racy retrieving migratetype 517 * of pageblock. Protected by zone->lock. 518 */ 519 unsigned long nr_isolate_pageblock; 520 #endif 521 522 #ifdef CONFIG_MEMORY_HOTPLUG 523 /* see spanned/present_pages for more description */ 524 seqlock_t span_seqlock; 525 #endif 526 527 int initialized; 528 529 /* Write-intensive fields used from the page allocator */ 530 ZONE_PADDING(_pad1_) 531 532 /* free areas of different sizes */ 533 struct free_area free_area[MAX_ORDER]; 534 535 /* zone flags, see below */ 536 unsigned long flags; 537 538 /* Primarily protects free_area */ 539 spinlock_t lock; 540 541 /* Write-intensive fields used by compaction and vmstats. */ 542 ZONE_PADDING(_pad2_) 543 544 /* 545 * When free pages are below this point, additional steps are taken 546 * when reading the number of free pages to avoid per-cpu counter 547 * drift allowing watermarks to be breached 548 */ 549 unsigned long percpu_drift_mark; 550 551 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 552 /* pfn where compaction free scanner should start */ 553 unsigned long compact_cached_free_pfn; 554 /* pfn where compaction migration scanner should start */ 555 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 556 unsigned long compact_init_migrate_pfn; 557 unsigned long compact_init_free_pfn; 558 #endif 559 560 #ifdef CONFIG_COMPACTION 561 /* 562 * On compaction failure, 1<<compact_defer_shift compactions 563 * are skipped before trying again. The number attempted since 564 * last failure is tracked with compact_considered. 565 * compact_order_failed is the minimum compaction failed order. 566 */ 567 unsigned int compact_considered; 568 unsigned int compact_defer_shift; 569 int compact_order_failed; 570 #endif 571 572 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 573 /* Set to true when the PG_migrate_skip bits should be cleared */ 574 bool compact_blockskip_flush; 575 #endif 576 577 bool contiguous; 578 579 ZONE_PADDING(_pad3_) 580 /* Zone statistics */ 581 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 582 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 583 } ____cacheline_internodealigned_in_smp; 584 585 enum pgdat_flags { 586 PGDAT_DIRTY, /* reclaim scanning has recently found 587 * many dirty file pages at the tail 588 * of the LRU. 589 */ 590 PGDAT_WRITEBACK, /* reclaim scanning has recently found 591 * many pages under writeback 592 */ 593 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 594 }; 595 596 enum zone_flags { 597 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 598 * Cleared when kswapd is woken. 599 */ 600 }; 601 602 static inline unsigned long zone_managed_pages(struct zone *zone) 603 { 604 return (unsigned long)atomic_long_read(&zone->managed_pages); 605 } 606 607 static inline unsigned long zone_end_pfn(const struct zone *zone) 608 { 609 return zone->zone_start_pfn + zone->spanned_pages; 610 } 611 612 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 613 { 614 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 615 } 616 617 static inline bool zone_is_initialized(struct zone *zone) 618 { 619 return zone->initialized; 620 } 621 622 static inline bool zone_is_empty(struct zone *zone) 623 { 624 return zone->spanned_pages == 0; 625 } 626 627 /* 628 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 629 * intersection with the given zone 630 */ 631 static inline bool zone_intersects(struct zone *zone, 632 unsigned long start_pfn, unsigned long nr_pages) 633 { 634 if (zone_is_empty(zone)) 635 return false; 636 if (start_pfn >= zone_end_pfn(zone) || 637 start_pfn + nr_pages <= zone->zone_start_pfn) 638 return false; 639 640 return true; 641 } 642 643 /* 644 * The "priority" of VM scanning is how much of the queues we will scan in one 645 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 646 * queues ("queue_length >> 12") during an aging round. 647 */ 648 #define DEF_PRIORITY 12 649 650 /* Maximum number of zones on a zonelist */ 651 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 652 653 enum { 654 ZONELIST_FALLBACK, /* zonelist with fallback */ 655 #ifdef CONFIG_NUMA 656 /* 657 * The NUMA zonelists are doubled because we need zonelists that 658 * restrict the allocations to a single node for __GFP_THISNODE. 659 */ 660 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 661 #endif 662 MAX_ZONELISTS 663 }; 664 665 /* 666 * This struct contains information about a zone in a zonelist. It is stored 667 * here to avoid dereferences into large structures and lookups of tables 668 */ 669 struct zoneref { 670 struct zone *zone; /* Pointer to actual zone */ 671 int zone_idx; /* zone_idx(zoneref->zone) */ 672 }; 673 674 /* 675 * One allocation request operates on a zonelist. A zonelist 676 * is a list of zones, the first one is the 'goal' of the 677 * allocation, the other zones are fallback zones, in decreasing 678 * priority. 679 * 680 * To speed the reading of the zonelist, the zonerefs contain the zone index 681 * of the entry being read. Helper functions to access information given 682 * a struct zoneref are 683 * 684 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 685 * zonelist_zone_idx() - Return the index of the zone for an entry 686 * zonelist_node_idx() - Return the index of the node for an entry 687 */ 688 struct zonelist { 689 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 690 }; 691 692 #ifndef CONFIG_DISCONTIGMEM 693 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 694 extern struct page *mem_map; 695 #endif 696 697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 698 struct deferred_split { 699 spinlock_t split_queue_lock; 700 struct list_head split_queue; 701 unsigned long split_queue_len; 702 }; 703 #endif 704 705 /* 706 * On NUMA machines, each NUMA node would have a pg_data_t to describe 707 * it's memory layout. On UMA machines there is a single pglist_data which 708 * describes the whole memory. 709 * 710 * Memory statistics and page replacement data structures are maintained on a 711 * per-zone basis. 712 */ 713 typedef struct pglist_data { 714 /* 715 * node_zones contains just the zones for THIS node. Not all of the 716 * zones may be populated, but it is the full list. It is referenced by 717 * this node's node_zonelists as well as other node's node_zonelists. 718 */ 719 struct zone node_zones[MAX_NR_ZONES]; 720 721 /* 722 * node_zonelists contains references to all zones in all nodes. 723 * Generally the first zones will be references to this node's 724 * node_zones. 725 */ 726 struct zonelist node_zonelists[MAX_ZONELISTS]; 727 728 int nr_zones; /* number of populated zones in this node */ 729 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 730 struct page *node_mem_map; 731 #ifdef CONFIG_PAGE_EXTENSION 732 struct page_ext *node_page_ext; 733 #endif 734 #endif 735 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 736 /* 737 * Must be held any time you expect node_start_pfn, 738 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 739 * Also synchronizes pgdat->first_deferred_pfn during deferred page 740 * init. 741 * 742 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 743 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 744 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 745 * 746 * Nests above zone->lock and zone->span_seqlock 747 */ 748 spinlock_t node_size_lock; 749 #endif 750 unsigned long node_start_pfn; 751 unsigned long node_present_pages; /* total number of physical pages */ 752 unsigned long node_spanned_pages; /* total size of physical page 753 range, including holes */ 754 int node_id; 755 wait_queue_head_t kswapd_wait; 756 wait_queue_head_t pfmemalloc_wait; 757 struct task_struct *kswapd; /* Protected by 758 mem_hotplug_begin/end() */ 759 int kswapd_order; 760 enum zone_type kswapd_highest_zoneidx; 761 762 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 763 764 #ifdef CONFIG_COMPACTION 765 int kcompactd_max_order; 766 enum zone_type kcompactd_highest_zoneidx; 767 wait_queue_head_t kcompactd_wait; 768 struct task_struct *kcompactd; 769 #endif 770 /* 771 * This is a per-node reserve of pages that are not available 772 * to userspace allocations. 773 */ 774 unsigned long totalreserve_pages; 775 776 #ifdef CONFIG_NUMA 777 /* 778 * node reclaim becomes active if more unmapped pages exist. 779 */ 780 unsigned long min_unmapped_pages; 781 unsigned long min_slab_pages; 782 #endif /* CONFIG_NUMA */ 783 784 /* Write-intensive fields used by page reclaim */ 785 ZONE_PADDING(_pad1_) 786 787 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 788 /* 789 * If memory initialisation on large machines is deferred then this 790 * is the first PFN that needs to be initialised. 791 */ 792 unsigned long first_deferred_pfn; 793 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 794 795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 796 struct deferred_split deferred_split_queue; 797 #endif 798 799 /* Fields commonly accessed by the page reclaim scanner */ 800 801 /* 802 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 803 * 804 * Use mem_cgroup_lruvec() to look up lruvecs. 805 */ 806 struct lruvec __lruvec; 807 808 unsigned long flags; 809 810 ZONE_PADDING(_pad2_) 811 812 /* Per-node vmstats */ 813 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 814 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 815 } pg_data_t; 816 817 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 818 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 819 #ifdef CONFIG_FLAT_NODE_MEM_MAP 820 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 821 #else 822 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 823 #endif 824 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 825 826 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 827 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 828 829 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 830 { 831 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 832 } 833 834 static inline bool pgdat_is_empty(pg_data_t *pgdat) 835 { 836 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 837 } 838 839 #include <linux/memory_hotplug.h> 840 841 void build_all_zonelists(pg_data_t *pgdat); 842 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 843 enum zone_type highest_zoneidx); 844 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 845 int highest_zoneidx, unsigned int alloc_flags, 846 long free_pages); 847 bool zone_watermark_ok(struct zone *z, unsigned int order, 848 unsigned long mark, int highest_zoneidx, 849 unsigned int alloc_flags); 850 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 851 unsigned long mark, int highest_zoneidx); 852 /* 853 * Memory initialization context, use to differentiate memory added by 854 * the platform statically or via memory hotplug interface. 855 */ 856 enum meminit_context { 857 MEMINIT_EARLY, 858 MEMINIT_HOTPLUG, 859 }; 860 861 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 862 unsigned long size); 863 864 extern void lruvec_init(struct lruvec *lruvec); 865 866 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 867 { 868 #ifdef CONFIG_MEMCG 869 return lruvec->pgdat; 870 #else 871 return container_of(lruvec, struct pglist_data, __lruvec); 872 #endif 873 } 874 875 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 876 877 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 878 int local_memory_node(int node_id); 879 #else 880 static inline int local_memory_node(int node_id) { return node_id; }; 881 #endif 882 883 /* 884 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 885 */ 886 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 887 888 /* 889 * Returns true if a zone has pages managed by the buddy allocator. 890 * All the reclaim decisions have to use this function rather than 891 * populated_zone(). If the whole zone is reserved then we can easily 892 * end up with populated_zone() && !managed_zone(). 893 */ 894 static inline bool managed_zone(struct zone *zone) 895 { 896 return zone_managed_pages(zone); 897 } 898 899 /* Returns true if a zone has memory */ 900 static inline bool populated_zone(struct zone *zone) 901 { 902 return zone->present_pages; 903 } 904 905 #ifdef CONFIG_NUMA 906 static inline int zone_to_nid(struct zone *zone) 907 { 908 return zone->node; 909 } 910 911 static inline void zone_set_nid(struct zone *zone, int nid) 912 { 913 zone->node = nid; 914 } 915 #else 916 static inline int zone_to_nid(struct zone *zone) 917 { 918 return 0; 919 } 920 921 static inline void zone_set_nid(struct zone *zone, int nid) {} 922 #endif 923 924 extern int movable_zone; 925 926 #ifdef CONFIG_HIGHMEM 927 static inline int zone_movable_is_highmem(void) 928 { 929 #ifdef CONFIG_NEED_MULTIPLE_NODES 930 return movable_zone == ZONE_HIGHMEM; 931 #else 932 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 933 #endif 934 } 935 #endif 936 937 static inline int is_highmem_idx(enum zone_type idx) 938 { 939 #ifdef CONFIG_HIGHMEM 940 return (idx == ZONE_HIGHMEM || 941 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 942 #else 943 return 0; 944 #endif 945 } 946 947 /** 948 * is_highmem - helper function to quickly check if a struct zone is a 949 * highmem zone or not. This is an attempt to keep references 950 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 951 * @zone - pointer to struct zone variable 952 */ 953 static inline int is_highmem(struct zone *zone) 954 { 955 #ifdef CONFIG_HIGHMEM 956 return is_highmem_idx(zone_idx(zone)); 957 #else 958 return 0; 959 #endif 960 } 961 962 /* These two functions are used to setup the per zone pages min values */ 963 struct ctl_table; 964 965 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 966 loff_t *); 967 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 968 size_t *, loff_t *); 969 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 970 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 971 size_t *, loff_t *); 972 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 973 void *, size_t *, loff_t *); 974 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 975 void *, size_t *, loff_t *); 976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 977 void *, size_t *, loff_t *); 978 int numa_zonelist_order_handler(struct ctl_table *, int, 979 void *, size_t *, loff_t *); 980 extern int percpu_pagelist_fraction; 981 extern char numa_zonelist_order[]; 982 #define NUMA_ZONELIST_ORDER_LEN 16 983 984 #ifndef CONFIG_NEED_MULTIPLE_NODES 985 986 extern struct pglist_data contig_page_data; 987 #define NODE_DATA(nid) (&contig_page_data) 988 #define NODE_MEM_MAP(nid) mem_map 989 990 #else /* CONFIG_NEED_MULTIPLE_NODES */ 991 992 #include <asm/mmzone.h> 993 994 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 995 996 extern struct pglist_data *first_online_pgdat(void); 997 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 998 extern struct zone *next_zone(struct zone *zone); 999 1000 /** 1001 * for_each_online_pgdat - helper macro to iterate over all online nodes 1002 * @pgdat - pointer to a pg_data_t variable 1003 */ 1004 #define for_each_online_pgdat(pgdat) \ 1005 for (pgdat = first_online_pgdat(); \ 1006 pgdat; \ 1007 pgdat = next_online_pgdat(pgdat)) 1008 /** 1009 * for_each_zone - helper macro to iterate over all memory zones 1010 * @zone - pointer to struct zone variable 1011 * 1012 * The user only needs to declare the zone variable, for_each_zone 1013 * fills it in. 1014 */ 1015 #define for_each_zone(zone) \ 1016 for (zone = (first_online_pgdat())->node_zones; \ 1017 zone; \ 1018 zone = next_zone(zone)) 1019 1020 #define for_each_populated_zone(zone) \ 1021 for (zone = (first_online_pgdat())->node_zones; \ 1022 zone; \ 1023 zone = next_zone(zone)) \ 1024 if (!populated_zone(zone)) \ 1025 ; /* do nothing */ \ 1026 else 1027 1028 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1029 { 1030 return zoneref->zone; 1031 } 1032 1033 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1034 { 1035 return zoneref->zone_idx; 1036 } 1037 1038 static inline int zonelist_node_idx(struct zoneref *zoneref) 1039 { 1040 return zone_to_nid(zoneref->zone); 1041 } 1042 1043 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1044 enum zone_type highest_zoneidx, 1045 nodemask_t *nodes); 1046 1047 /** 1048 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1049 * @z - The cursor used as a starting point for the search 1050 * @highest_zoneidx - The zone index of the highest zone to return 1051 * @nodes - An optional nodemask to filter the zonelist with 1052 * 1053 * This function returns the next zone at or below a given zone index that is 1054 * within the allowed nodemask using a cursor as the starting point for the 1055 * search. The zoneref returned is a cursor that represents the current zone 1056 * being examined. It should be advanced by one before calling 1057 * next_zones_zonelist again. 1058 */ 1059 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1060 enum zone_type highest_zoneidx, 1061 nodemask_t *nodes) 1062 { 1063 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1064 return z; 1065 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1066 } 1067 1068 /** 1069 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1070 * @zonelist - The zonelist to search for a suitable zone 1071 * @highest_zoneidx - The zone index of the highest zone to return 1072 * @nodes - An optional nodemask to filter the zonelist with 1073 * @return - Zoneref pointer for the first suitable zone found (see below) 1074 * 1075 * This function returns the first zone at or below a given zone index that is 1076 * within the allowed nodemask. The zoneref returned is a cursor that can be 1077 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1078 * one before calling. 1079 * 1080 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1081 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1082 * update due to cpuset modification. 1083 */ 1084 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1085 enum zone_type highest_zoneidx, 1086 nodemask_t *nodes) 1087 { 1088 return next_zones_zonelist(zonelist->_zonerefs, 1089 highest_zoneidx, nodes); 1090 } 1091 1092 /** 1093 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1094 * @zone - The current zone in the iterator 1095 * @z - The current pointer within zonelist->_zonerefs being iterated 1096 * @zlist - The zonelist being iterated 1097 * @highidx - The zone index of the highest zone to return 1098 * @nodemask - Nodemask allowed by the allocator 1099 * 1100 * This iterator iterates though all zones at or below a given zone index and 1101 * within a given nodemask 1102 */ 1103 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1104 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1105 zone; \ 1106 z = next_zones_zonelist(++z, highidx, nodemask), \ 1107 zone = zonelist_zone(z)) 1108 1109 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1110 for (zone = z->zone; \ 1111 zone; \ 1112 z = next_zones_zonelist(++z, highidx, nodemask), \ 1113 zone = zonelist_zone(z)) 1114 1115 1116 /** 1117 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1118 * @zone - The current zone in the iterator 1119 * @z - The current pointer within zonelist->zones being iterated 1120 * @zlist - The zonelist being iterated 1121 * @highidx - The zone index of the highest zone to return 1122 * 1123 * This iterator iterates though all zones at or below a given zone index. 1124 */ 1125 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1126 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1127 1128 #ifdef CONFIG_SPARSEMEM 1129 #include <asm/sparsemem.h> 1130 #endif 1131 1132 #ifdef CONFIG_FLATMEM 1133 #define pfn_to_nid(pfn) (0) 1134 #endif 1135 1136 #ifdef CONFIG_SPARSEMEM 1137 1138 /* 1139 * SECTION_SHIFT #bits space required to store a section # 1140 * 1141 * PA_SECTION_SHIFT physical address to/from section number 1142 * PFN_SECTION_SHIFT pfn to/from section number 1143 */ 1144 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1145 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1146 1147 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1148 1149 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1150 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1151 1152 #define SECTION_BLOCKFLAGS_BITS \ 1153 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1154 1155 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1156 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1157 #endif 1158 1159 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1160 { 1161 return pfn >> PFN_SECTION_SHIFT; 1162 } 1163 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1164 { 1165 return sec << PFN_SECTION_SHIFT; 1166 } 1167 1168 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1169 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1170 1171 #define SUBSECTION_SHIFT 21 1172 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1173 1174 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1175 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1176 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1177 1178 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1179 #error Subsection size exceeds section size 1180 #else 1181 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1182 #endif 1183 1184 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1185 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1186 1187 struct mem_section_usage { 1188 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1189 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1190 #endif 1191 /* See declaration of similar field in struct zone */ 1192 unsigned long pageblock_flags[0]; 1193 }; 1194 1195 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1196 1197 struct page; 1198 struct page_ext; 1199 struct mem_section { 1200 /* 1201 * This is, logically, a pointer to an array of struct 1202 * pages. However, it is stored with some other magic. 1203 * (see sparse.c::sparse_init_one_section()) 1204 * 1205 * Additionally during early boot we encode node id of 1206 * the location of the section here to guide allocation. 1207 * (see sparse.c::memory_present()) 1208 * 1209 * Making it a UL at least makes someone do a cast 1210 * before using it wrong. 1211 */ 1212 unsigned long section_mem_map; 1213 1214 struct mem_section_usage *usage; 1215 #ifdef CONFIG_PAGE_EXTENSION 1216 /* 1217 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1218 * section. (see page_ext.h about this.) 1219 */ 1220 struct page_ext *page_ext; 1221 unsigned long pad; 1222 #endif 1223 /* 1224 * WARNING: mem_section must be a power-of-2 in size for the 1225 * calculation and use of SECTION_ROOT_MASK to make sense. 1226 */ 1227 }; 1228 1229 #ifdef CONFIG_SPARSEMEM_EXTREME 1230 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1231 #else 1232 #define SECTIONS_PER_ROOT 1 1233 #endif 1234 1235 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1236 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1237 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1238 1239 #ifdef CONFIG_SPARSEMEM_EXTREME 1240 extern struct mem_section **mem_section; 1241 #else 1242 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1243 #endif 1244 1245 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1246 { 1247 return ms->usage->pageblock_flags; 1248 } 1249 1250 static inline struct mem_section *__nr_to_section(unsigned long nr) 1251 { 1252 #ifdef CONFIG_SPARSEMEM_EXTREME 1253 if (!mem_section) 1254 return NULL; 1255 #endif 1256 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1257 return NULL; 1258 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1259 } 1260 extern unsigned long __section_nr(struct mem_section *ms); 1261 extern size_t mem_section_usage_size(void); 1262 1263 /* 1264 * We use the lower bits of the mem_map pointer to store 1265 * a little bit of information. The pointer is calculated 1266 * as mem_map - section_nr_to_pfn(pnum). The result is 1267 * aligned to the minimum alignment of the two values: 1268 * 1. All mem_map arrays are page-aligned. 1269 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1270 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1271 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1272 * worst combination is powerpc with 256k pages, 1273 * which results in PFN_SECTION_SHIFT equal 6. 1274 * To sum it up, at least 6 bits are available. 1275 */ 1276 #define SECTION_MARKED_PRESENT (1UL<<0) 1277 #define SECTION_HAS_MEM_MAP (1UL<<1) 1278 #define SECTION_IS_ONLINE (1UL<<2) 1279 #define SECTION_IS_EARLY (1UL<<3) 1280 #define SECTION_MAP_LAST_BIT (1UL<<4) 1281 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1282 #define SECTION_NID_SHIFT 3 1283 1284 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1285 { 1286 unsigned long map = section->section_mem_map; 1287 map &= SECTION_MAP_MASK; 1288 return (struct page *)map; 1289 } 1290 1291 static inline int present_section(struct mem_section *section) 1292 { 1293 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1294 } 1295 1296 static inline int present_section_nr(unsigned long nr) 1297 { 1298 return present_section(__nr_to_section(nr)); 1299 } 1300 1301 static inline int valid_section(struct mem_section *section) 1302 { 1303 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1304 } 1305 1306 static inline int early_section(struct mem_section *section) 1307 { 1308 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1309 } 1310 1311 static inline int valid_section_nr(unsigned long nr) 1312 { 1313 return valid_section(__nr_to_section(nr)); 1314 } 1315 1316 static inline int online_section(struct mem_section *section) 1317 { 1318 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1319 } 1320 1321 static inline int online_section_nr(unsigned long nr) 1322 { 1323 return online_section(__nr_to_section(nr)); 1324 } 1325 1326 #ifdef CONFIG_MEMORY_HOTPLUG 1327 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1328 #ifdef CONFIG_MEMORY_HOTREMOVE 1329 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1330 #endif 1331 #endif 1332 1333 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1334 { 1335 return __nr_to_section(pfn_to_section_nr(pfn)); 1336 } 1337 1338 extern unsigned long __highest_present_section_nr; 1339 1340 static inline int subsection_map_index(unsigned long pfn) 1341 { 1342 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1343 } 1344 1345 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1346 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1347 { 1348 int idx = subsection_map_index(pfn); 1349 1350 return test_bit(idx, ms->usage->subsection_map); 1351 } 1352 #else 1353 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1354 { 1355 return 1; 1356 } 1357 #endif 1358 1359 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1360 static inline int pfn_valid(unsigned long pfn) 1361 { 1362 struct mem_section *ms; 1363 1364 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1365 return 0; 1366 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1367 if (!valid_section(ms)) 1368 return 0; 1369 /* 1370 * Traditionally early sections always returned pfn_valid() for 1371 * the entire section-sized span. 1372 */ 1373 return early_section(ms) || pfn_section_valid(ms, pfn); 1374 } 1375 #endif 1376 1377 static inline int pfn_in_present_section(unsigned long pfn) 1378 { 1379 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1380 return 0; 1381 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1382 } 1383 1384 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1385 { 1386 while (++section_nr <= __highest_present_section_nr) { 1387 if (present_section_nr(section_nr)) 1388 return section_nr; 1389 } 1390 1391 return -1; 1392 } 1393 1394 /* 1395 * These are _only_ used during initialisation, therefore they 1396 * can use __initdata ... They could have names to indicate 1397 * this restriction. 1398 */ 1399 #ifdef CONFIG_NUMA 1400 #define pfn_to_nid(pfn) \ 1401 ({ \ 1402 unsigned long __pfn_to_nid_pfn = (pfn); \ 1403 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1404 }) 1405 #else 1406 #define pfn_to_nid(pfn) (0) 1407 #endif 1408 1409 void sparse_init(void); 1410 #else 1411 #define sparse_init() do {} while (0) 1412 #define sparse_index_init(_sec, _nid) do {} while (0) 1413 #define pfn_in_present_section pfn_valid 1414 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1415 #endif /* CONFIG_SPARSEMEM */ 1416 1417 /* 1418 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1419 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1420 * pfn_valid_within() should be used in this case; we optimise this away 1421 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1422 */ 1423 #ifdef CONFIG_HOLES_IN_ZONE 1424 #define pfn_valid_within(pfn) pfn_valid(pfn) 1425 #else 1426 #define pfn_valid_within(pfn) (1) 1427 #endif 1428 1429 #endif /* !__GENERATING_BOUNDS.H */ 1430 #endif /* !__ASSEMBLY__ */ 1431 #endif /* _LINUX_MMZONE_H */ 1432