xref: /linux-6.15/include/linux/mmzone.h (revision 01eadc8d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * Add a wild amount of padding here to ensure datas fall into separate
117  * cachelines.  There are very few zone structures in the machine, so space
118  * consumption is not a concern here.
119  */
120 #if defined(CONFIG_SMP)
121 struct zone_padding {
122 	char x[0];
123 } ____cacheline_internodealigned_in_smp;
124 #define ZONE_PADDING(name)	struct zone_padding name;
125 #else
126 #define ZONE_PADDING(name)
127 #endif
128 
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 	NUMA_HIT,		/* allocated in intended node */
132 	NUMA_MISS,		/* allocated in non intended node */
133 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
134 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
135 	NUMA_LOCAL,		/* allocation from local node */
136 	NUMA_OTHER,		/* allocation from other node */
137 	NR_VM_NUMA_STAT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_STAT_ITEMS 0
141 #endif
142 
143 enum zone_stat_item {
144 	/* First 128 byte cacheline (assuming 64 bit words) */
145 	NR_FREE_PAGES,
146 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 	NR_ZONE_ACTIVE_ANON,
149 	NR_ZONE_INACTIVE_FILE,
150 	NR_ZONE_ACTIVE_FILE,
151 	NR_ZONE_UNEVICTABLE,
152 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
153 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
154 	/* Second 128 byte cacheline */
155 	NR_BOUNCE,
156 #if IS_ENABLED(CONFIG_ZSMALLOC)
157 	NR_ZSPAGES,		/* allocated in zsmalloc */
158 #endif
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 enum node_stat_item {
163 	NR_LRU_BASE,
164 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
166 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
167 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
168 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
169 	NR_SLAB_RECLAIMABLE_B,
170 	NR_SLAB_UNRECLAIMABLE_B,
171 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
172 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
173 	WORKINGSET_NODES,
174 	WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_FILE,
177 	WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_FILE,
180 	WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_FILE,
183 	WORKINGSET_NODERECLAIM,
184 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
185 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
186 			   only modified from process context */
187 	NR_FILE_PAGES,
188 	NR_FILE_DIRTY,
189 	NR_WRITEBACK,
190 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
191 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
192 	NR_SHMEM_THPS,
193 	NR_SHMEM_PMDMAPPED,
194 	NR_FILE_THPS,
195 	NR_FILE_PMDMAPPED,
196 	NR_ANON_THPS,
197 	NR_VMSCAN_WRITE,
198 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
199 	NR_DIRTIED,		/* page dirtyings since bootup */
200 	NR_WRITTEN,		/* page writings since bootup */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 	NR_VM_NODE_STAT_ITEMS
210 };
211 
212 /*
213  * Returns true if the value is measured in bytes (most vmstat values are
214  * measured in pages). This defines the API part, the internal representation
215  * might be different.
216  */
217 static __always_inline bool vmstat_item_in_bytes(int idx)
218 {
219 	/*
220 	 * Global and per-node slab counters track slab pages.
221 	 * It's expected that changes are multiples of PAGE_SIZE.
222 	 * Internally values are stored in pages.
223 	 *
224 	 * Per-memcg and per-lruvec counters track memory, consumed
225 	 * by individual slab objects. These counters are actually
226 	 * byte-precise.
227 	 */
228 	return (idx == NR_SLAB_RECLAIMABLE_B ||
229 		idx == NR_SLAB_UNRECLAIMABLE_B);
230 }
231 
232 /*
233  * We do arithmetic on the LRU lists in various places in the code,
234  * so it is important to keep the active lists LRU_ACTIVE higher in
235  * the array than the corresponding inactive lists, and to keep
236  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
237  *
238  * This has to be kept in sync with the statistics in zone_stat_item
239  * above and the descriptions in vmstat_text in mm/vmstat.c
240  */
241 #define LRU_BASE 0
242 #define LRU_ACTIVE 1
243 #define LRU_FILE 2
244 
245 enum lru_list {
246 	LRU_INACTIVE_ANON = LRU_BASE,
247 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
248 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
249 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
250 	LRU_UNEVICTABLE,
251 	NR_LRU_LISTS
252 };
253 
254 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
255 
256 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
257 
258 static inline bool is_file_lru(enum lru_list lru)
259 {
260 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
261 }
262 
263 static inline bool is_active_lru(enum lru_list lru)
264 {
265 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
266 }
267 
268 #define ANON_AND_FILE 2
269 
270 enum lruvec_flags {
271 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
272 					 * backed by a congested BDI
273 					 */
274 };
275 
276 struct lruvec {
277 	struct list_head		lists[NR_LRU_LISTS];
278 	/* per lruvec lru_lock for memcg */
279 	spinlock_t			lru_lock;
280 	/*
281 	 * These track the cost of reclaiming one LRU - file or anon -
282 	 * over the other. As the observed cost of reclaiming one LRU
283 	 * increases, the reclaim scan balance tips toward the other.
284 	 */
285 	unsigned long			anon_cost;
286 	unsigned long			file_cost;
287 	/* Non-resident age, driven by LRU movement */
288 	atomic_long_t			nonresident_age;
289 	/* Refaults at the time of last reclaim cycle */
290 	unsigned long			refaults[ANON_AND_FILE];
291 	/* Various lruvec state flags (enum lruvec_flags) */
292 	unsigned long			flags;
293 #ifdef CONFIG_MEMCG
294 	struct pglist_data *pgdat;
295 #endif
296 };
297 
298 /* Isolate unmapped pages */
299 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
300 /* Isolate for asynchronous migration */
301 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
302 /* Isolate unevictable pages */
303 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
304 
305 /* LRU Isolation modes. */
306 typedef unsigned __bitwise isolate_mode_t;
307 
308 enum zone_watermarks {
309 	WMARK_MIN,
310 	WMARK_LOW,
311 	WMARK_HIGH,
312 	NR_WMARK
313 };
314 
315 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
316 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
317 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
318 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
319 
320 struct per_cpu_pages {
321 	int count;		/* number of pages in the list */
322 	int high;		/* high watermark, emptying needed */
323 	int batch;		/* chunk size for buddy add/remove */
324 
325 	/* Lists of pages, one per migrate type stored on the pcp-lists */
326 	struct list_head lists[MIGRATE_PCPTYPES];
327 };
328 
329 struct per_cpu_pageset {
330 	struct per_cpu_pages pcp;
331 #ifdef CONFIG_NUMA
332 	s8 expire;
333 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
334 #endif
335 #ifdef CONFIG_SMP
336 	s8 stat_threshold;
337 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
338 #endif
339 };
340 
341 struct per_cpu_nodestat {
342 	s8 stat_threshold;
343 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
344 };
345 
346 #endif /* !__GENERATING_BOUNDS.H */
347 
348 enum zone_type {
349 	/*
350 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
351 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
352 	 * On architectures where this area covers the whole 32 bit address
353 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
354 	 * DMA addressing constraints. This distinction is important as a 32bit
355 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
356 	 * platforms may need both zones as they support peripherals with
357 	 * different DMA addressing limitations.
358 	 */
359 #ifdef CONFIG_ZONE_DMA
360 	ZONE_DMA,
361 #endif
362 #ifdef CONFIG_ZONE_DMA32
363 	ZONE_DMA32,
364 #endif
365 	/*
366 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
367 	 * performed on pages in ZONE_NORMAL if the DMA devices support
368 	 * transfers to all addressable memory.
369 	 */
370 	ZONE_NORMAL,
371 #ifdef CONFIG_HIGHMEM
372 	/*
373 	 * A memory area that is only addressable by the kernel through
374 	 * mapping portions into its own address space. This is for example
375 	 * used by i386 to allow the kernel to address the memory beyond
376 	 * 900MB. The kernel will set up special mappings (page
377 	 * table entries on i386) for each page that the kernel needs to
378 	 * access.
379 	 */
380 	ZONE_HIGHMEM,
381 #endif
382 	/*
383 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
384 	 * movable pages with few exceptional cases described below. Main use
385 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
386 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
387 	 * to increase the number of THP/huge pages. Notable special cases are:
388 	 *
389 	 * 1. Pinned pages: (long-term) pinning of movable pages might
390 	 *    essentially turn such pages unmovable. Memory offlining might
391 	 *    retry a long time.
392 	 * 2. memblock allocations: kernelcore/movablecore setups might create
393 	 *    situations where ZONE_MOVABLE contains unmovable allocations
394 	 *    after boot. Memory offlining and allocations fail early.
395 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
396 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
397 	 *    for example, if we have sections that are only partially
398 	 *    populated. Memory offlining and allocations fail early.
399 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
400 	 *    memory offlining, such pages cannot be allocated.
401 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
402 	 *    hotplugged memory blocks might only partially be managed by the
403 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
404 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
405 	 *    some cases (virtio-mem), such pages can be skipped during
406 	 *    memory offlining, however, cannot be moved/allocated. These
407 	 *    techniques might use alloc_contig_range() to hide previously
408 	 *    exposed pages from the buddy again (e.g., to implement some sort
409 	 *    of memory unplug in virtio-mem).
410 	 *
411 	 * In general, no unmovable allocations that degrade memory offlining
412 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
413 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
414 	 * if has_unmovable_pages() states that there are no unmovable pages,
415 	 * there can be false negatives).
416 	 */
417 	ZONE_MOVABLE,
418 #ifdef CONFIG_ZONE_DEVICE
419 	ZONE_DEVICE,
420 #endif
421 	__MAX_NR_ZONES
422 
423 };
424 
425 #ifndef __GENERATING_BOUNDS_H
426 
427 #define ASYNC_AND_SYNC 2
428 
429 struct zone {
430 	/* Read-mostly fields */
431 
432 	/* zone watermarks, access with *_wmark_pages(zone) macros */
433 	unsigned long _watermark[NR_WMARK];
434 	unsigned long watermark_boost;
435 
436 	unsigned long nr_reserved_highatomic;
437 
438 	/*
439 	 * We don't know if the memory that we're going to allocate will be
440 	 * freeable or/and it will be released eventually, so to avoid totally
441 	 * wasting several GB of ram we must reserve some of the lower zone
442 	 * memory (otherwise we risk to run OOM on the lower zones despite
443 	 * there being tons of freeable ram on the higher zones).  This array is
444 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
445 	 * changes.
446 	 */
447 	long lowmem_reserve[MAX_NR_ZONES];
448 
449 #ifdef CONFIG_NUMA
450 	int node;
451 #endif
452 	struct pglist_data	*zone_pgdat;
453 	struct per_cpu_pageset __percpu *pageset;
454 	/*
455 	 * the high and batch values are copied to individual pagesets for
456 	 * faster access
457 	 */
458 	int pageset_high;
459 	int pageset_batch;
460 
461 #ifndef CONFIG_SPARSEMEM
462 	/*
463 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
464 	 * In SPARSEMEM, this map is stored in struct mem_section
465 	 */
466 	unsigned long		*pageblock_flags;
467 #endif /* CONFIG_SPARSEMEM */
468 
469 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
470 	unsigned long		zone_start_pfn;
471 
472 	/*
473 	 * spanned_pages is the total pages spanned by the zone, including
474 	 * holes, which is calculated as:
475 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
476 	 *
477 	 * present_pages is physical pages existing within the zone, which
478 	 * is calculated as:
479 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
480 	 *
481 	 * managed_pages is present pages managed by the buddy system, which
482 	 * is calculated as (reserved_pages includes pages allocated by the
483 	 * bootmem allocator):
484 	 *	managed_pages = present_pages - reserved_pages;
485 	 *
486 	 * So present_pages may be used by memory hotplug or memory power
487 	 * management logic to figure out unmanaged pages by checking
488 	 * (present_pages - managed_pages). And managed_pages should be used
489 	 * by page allocator and vm scanner to calculate all kinds of watermarks
490 	 * and thresholds.
491 	 *
492 	 * Locking rules:
493 	 *
494 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
495 	 * It is a seqlock because it has to be read outside of zone->lock,
496 	 * and it is done in the main allocator path.  But, it is written
497 	 * quite infrequently.
498 	 *
499 	 * The span_seq lock is declared along with zone->lock because it is
500 	 * frequently read in proximity to zone->lock.  It's good to
501 	 * give them a chance of being in the same cacheline.
502 	 *
503 	 * Write access to present_pages at runtime should be protected by
504 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
505 	 * present_pages should get_online_mems() to get a stable value.
506 	 */
507 	atomic_long_t		managed_pages;
508 	unsigned long		spanned_pages;
509 	unsigned long		present_pages;
510 
511 	const char		*name;
512 
513 #ifdef CONFIG_MEMORY_ISOLATION
514 	/*
515 	 * Number of isolated pageblock. It is used to solve incorrect
516 	 * freepage counting problem due to racy retrieving migratetype
517 	 * of pageblock. Protected by zone->lock.
518 	 */
519 	unsigned long		nr_isolate_pageblock;
520 #endif
521 
522 #ifdef CONFIG_MEMORY_HOTPLUG
523 	/* see spanned/present_pages for more description */
524 	seqlock_t		span_seqlock;
525 #endif
526 
527 	int initialized;
528 
529 	/* Write-intensive fields used from the page allocator */
530 	ZONE_PADDING(_pad1_)
531 
532 	/* free areas of different sizes */
533 	struct free_area	free_area[MAX_ORDER];
534 
535 	/* zone flags, see below */
536 	unsigned long		flags;
537 
538 	/* Primarily protects free_area */
539 	spinlock_t		lock;
540 
541 	/* Write-intensive fields used by compaction and vmstats. */
542 	ZONE_PADDING(_pad2_)
543 
544 	/*
545 	 * When free pages are below this point, additional steps are taken
546 	 * when reading the number of free pages to avoid per-cpu counter
547 	 * drift allowing watermarks to be breached
548 	 */
549 	unsigned long percpu_drift_mark;
550 
551 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
552 	/* pfn where compaction free scanner should start */
553 	unsigned long		compact_cached_free_pfn;
554 	/* pfn where compaction migration scanner should start */
555 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
556 	unsigned long		compact_init_migrate_pfn;
557 	unsigned long		compact_init_free_pfn;
558 #endif
559 
560 #ifdef CONFIG_COMPACTION
561 	/*
562 	 * On compaction failure, 1<<compact_defer_shift compactions
563 	 * are skipped before trying again. The number attempted since
564 	 * last failure is tracked with compact_considered.
565 	 * compact_order_failed is the minimum compaction failed order.
566 	 */
567 	unsigned int		compact_considered;
568 	unsigned int		compact_defer_shift;
569 	int			compact_order_failed;
570 #endif
571 
572 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
573 	/* Set to true when the PG_migrate_skip bits should be cleared */
574 	bool			compact_blockskip_flush;
575 #endif
576 
577 	bool			contiguous;
578 
579 	ZONE_PADDING(_pad3_)
580 	/* Zone statistics */
581 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
582 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
583 } ____cacheline_internodealigned_in_smp;
584 
585 enum pgdat_flags {
586 	PGDAT_DIRTY,			/* reclaim scanning has recently found
587 					 * many dirty file pages at the tail
588 					 * of the LRU.
589 					 */
590 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
591 					 * many pages under writeback
592 					 */
593 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
594 };
595 
596 enum zone_flags {
597 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
598 					 * Cleared when kswapd is woken.
599 					 */
600 };
601 
602 static inline unsigned long zone_managed_pages(struct zone *zone)
603 {
604 	return (unsigned long)atomic_long_read(&zone->managed_pages);
605 }
606 
607 static inline unsigned long zone_end_pfn(const struct zone *zone)
608 {
609 	return zone->zone_start_pfn + zone->spanned_pages;
610 }
611 
612 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
613 {
614 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
615 }
616 
617 static inline bool zone_is_initialized(struct zone *zone)
618 {
619 	return zone->initialized;
620 }
621 
622 static inline bool zone_is_empty(struct zone *zone)
623 {
624 	return zone->spanned_pages == 0;
625 }
626 
627 /*
628  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
629  * intersection with the given zone
630  */
631 static inline bool zone_intersects(struct zone *zone,
632 		unsigned long start_pfn, unsigned long nr_pages)
633 {
634 	if (zone_is_empty(zone))
635 		return false;
636 	if (start_pfn >= zone_end_pfn(zone) ||
637 	    start_pfn + nr_pages <= zone->zone_start_pfn)
638 		return false;
639 
640 	return true;
641 }
642 
643 /*
644  * The "priority" of VM scanning is how much of the queues we will scan in one
645  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
646  * queues ("queue_length >> 12") during an aging round.
647  */
648 #define DEF_PRIORITY 12
649 
650 /* Maximum number of zones on a zonelist */
651 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
652 
653 enum {
654 	ZONELIST_FALLBACK,	/* zonelist with fallback */
655 #ifdef CONFIG_NUMA
656 	/*
657 	 * The NUMA zonelists are doubled because we need zonelists that
658 	 * restrict the allocations to a single node for __GFP_THISNODE.
659 	 */
660 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
661 #endif
662 	MAX_ZONELISTS
663 };
664 
665 /*
666  * This struct contains information about a zone in a zonelist. It is stored
667  * here to avoid dereferences into large structures and lookups of tables
668  */
669 struct zoneref {
670 	struct zone *zone;	/* Pointer to actual zone */
671 	int zone_idx;		/* zone_idx(zoneref->zone) */
672 };
673 
674 /*
675  * One allocation request operates on a zonelist. A zonelist
676  * is a list of zones, the first one is the 'goal' of the
677  * allocation, the other zones are fallback zones, in decreasing
678  * priority.
679  *
680  * To speed the reading of the zonelist, the zonerefs contain the zone index
681  * of the entry being read. Helper functions to access information given
682  * a struct zoneref are
683  *
684  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
685  * zonelist_zone_idx()	- Return the index of the zone for an entry
686  * zonelist_node_idx()	- Return the index of the node for an entry
687  */
688 struct zonelist {
689 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
690 };
691 
692 #ifndef CONFIG_DISCONTIGMEM
693 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
694 extern struct page *mem_map;
695 #endif
696 
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 struct deferred_split {
699 	spinlock_t split_queue_lock;
700 	struct list_head split_queue;
701 	unsigned long split_queue_len;
702 };
703 #endif
704 
705 /*
706  * On NUMA machines, each NUMA node would have a pg_data_t to describe
707  * it's memory layout. On UMA machines there is a single pglist_data which
708  * describes the whole memory.
709  *
710  * Memory statistics and page replacement data structures are maintained on a
711  * per-zone basis.
712  */
713 typedef struct pglist_data {
714 	/*
715 	 * node_zones contains just the zones for THIS node. Not all of the
716 	 * zones may be populated, but it is the full list. It is referenced by
717 	 * this node's node_zonelists as well as other node's node_zonelists.
718 	 */
719 	struct zone node_zones[MAX_NR_ZONES];
720 
721 	/*
722 	 * node_zonelists contains references to all zones in all nodes.
723 	 * Generally the first zones will be references to this node's
724 	 * node_zones.
725 	 */
726 	struct zonelist node_zonelists[MAX_ZONELISTS];
727 
728 	int nr_zones; /* number of populated zones in this node */
729 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
730 	struct page *node_mem_map;
731 #ifdef CONFIG_PAGE_EXTENSION
732 	struct page_ext *node_page_ext;
733 #endif
734 #endif
735 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
736 	/*
737 	 * Must be held any time you expect node_start_pfn,
738 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
739 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
740 	 * init.
741 	 *
742 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
743 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
744 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
745 	 *
746 	 * Nests above zone->lock and zone->span_seqlock
747 	 */
748 	spinlock_t node_size_lock;
749 #endif
750 	unsigned long node_start_pfn;
751 	unsigned long node_present_pages; /* total number of physical pages */
752 	unsigned long node_spanned_pages; /* total size of physical page
753 					     range, including holes */
754 	int node_id;
755 	wait_queue_head_t kswapd_wait;
756 	wait_queue_head_t pfmemalloc_wait;
757 	struct task_struct *kswapd;	/* Protected by
758 					   mem_hotplug_begin/end() */
759 	int kswapd_order;
760 	enum zone_type kswapd_highest_zoneidx;
761 
762 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
763 
764 #ifdef CONFIG_COMPACTION
765 	int kcompactd_max_order;
766 	enum zone_type kcompactd_highest_zoneidx;
767 	wait_queue_head_t kcompactd_wait;
768 	struct task_struct *kcompactd;
769 #endif
770 	/*
771 	 * This is a per-node reserve of pages that are not available
772 	 * to userspace allocations.
773 	 */
774 	unsigned long		totalreserve_pages;
775 
776 #ifdef CONFIG_NUMA
777 	/*
778 	 * node reclaim becomes active if more unmapped pages exist.
779 	 */
780 	unsigned long		min_unmapped_pages;
781 	unsigned long		min_slab_pages;
782 #endif /* CONFIG_NUMA */
783 
784 	/* Write-intensive fields used by page reclaim */
785 	ZONE_PADDING(_pad1_)
786 
787 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
788 	/*
789 	 * If memory initialisation on large machines is deferred then this
790 	 * is the first PFN that needs to be initialised.
791 	 */
792 	unsigned long first_deferred_pfn;
793 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
794 
795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
796 	struct deferred_split deferred_split_queue;
797 #endif
798 
799 	/* Fields commonly accessed by the page reclaim scanner */
800 
801 	/*
802 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
803 	 *
804 	 * Use mem_cgroup_lruvec() to look up lruvecs.
805 	 */
806 	struct lruvec		__lruvec;
807 
808 	unsigned long		flags;
809 
810 	ZONE_PADDING(_pad2_)
811 
812 	/* Per-node vmstats */
813 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
814 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
815 } pg_data_t;
816 
817 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
818 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
819 #ifdef CONFIG_FLAT_NODE_MEM_MAP
820 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
821 #else
822 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
823 #endif
824 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
825 
826 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
827 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
828 
829 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
830 {
831 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
832 }
833 
834 static inline bool pgdat_is_empty(pg_data_t *pgdat)
835 {
836 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
837 }
838 
839 #include <linux/memory_hotplug.h>
840 
841 void build_all_zonelists(pg_data_t *pgdat);
842 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
843 		   enum zone_type highest_zoneidx);
844 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
845 			 int highest_zoneidx, unsigned int alloc_flags,
846 			 long free_pages);
847 bool zone_watermark_ok(struct zone *z, unsigned int order,
848 		unsigned long mark, int highest_zoneidx,
849 		unsigned int alloc_flags);
850 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
851 		unsigned long mark, int highest_zoneidx);
852 /*
853  * Memory initialization context, use to differentiate memory added by
854  * the platform statically or via memory hotplug interface.
855  */
856 enum meminit_context {
857 	MEMINIT_EARLY,
858 	MEMINIT_HOTPLUG,
859 };
860 
861 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
862 				     unsigned long size);
863 
864 extern void lruvec_init(struct lruvec *lruvec);
865 
866 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
867 {
868 #ifdef CONFIG_MEMCG
869 	return lruvec->pgdat;
870 #else
871 	return container_of(lruvec, struct pglist_data, __lruvec);
872 #endif
873 }
874 
875 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
876 
877 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
878 int local_memory_node(int node_id);
879 #else
880 static inline int local_memory_node(int node_id) { return node_id; };
881 #endif
882 
883 /*
884  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
885  */
886 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
887 
888 /*
889  * Returns true if a zone has pages managed by the buddy allocator.
890  * All the reclaim decisions have to use this function rather than
891  * populated_zone(). If the whole zone is reserved then we can easily
892  * end up with populated_zone() && !managed_zone().
893  */
894 static inline bool managed_zone(struct zone *zone)
895 {
896 	return zone_managed_pages(zone);
897 }
898 
899 /* Returns true if a zone has memory */
900 static inline bool populated_zone(struct zone *zone)
901 {
902 	return zone->present_pages;
903 }
904 
905 #ifdef CONFIG_NUMA
906 static inline int zone_to_nid(struct zone *zone)
907 {
908 	return zone->node;
909 }
910 
911 static inline void zone_set_nid(struct zone *zone, int nid)
912 {
913 	zone->node = nid;
914 }
915 #else
916 static inline int zone_to_nid(struct zone *zone)
917 {
918 	return 0;
919 }
920 
921 static inline void zone_set_nid(struct zone *zone, int nid) {}
922 #endif
923 
924 extern int movable_zone;
925 
926 #ifdef CONFIG_HIGHMEM
927 static inline int zone_movable_is_highmem(void)
928 {
929 #ifdef CONFIG_NEED_MULTIPLE_NODES
930 	return movable_zone == ZONE_HIGHMEM;
931 #else
932 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
933 #endif
934 }
935 #endif
936 
937 static inline int is_highmem_idx(enum zone_type idx)
938 {
939 #ifdef CONFIG_HIGHMEM
940 	return (idx == ZONE_HIGHMEM ||
941 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
942 #else
943 	return 0;
944 #endif
945 }
946 
947 /**
948  * is_highmem - helper function to quickly check if a struct zone is a
949  *              highmem zone or not.  This is an attempt to keep references
950  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
951  * @zone - pointer to struct zone variable
952  */
953 static inline int is_highmem(struct zone *zone)
954 {
955 #ifdef CONFIG_HIGHMEM
956 	return is_highmem_idx(zone_idx(zone));
957 #else
958 	return 0;
959 #endif
960 }
961 
962 /* These two functions are used to setup the per zone pages min values */
963 struct ctl_table;
964 
965 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
966 		loff_t *);
967 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
968 		size_t *, loff_t *);
969 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
970 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
971 		size_t *, loff_t *);
972 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
973 		void *, size_t *, loff_t *);
974 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
975 		void *, size_t *, loff_t *);
976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
977 		void *, size_t *, loff_t *);
978 int numa_zonelist_order_handler(struct ctl_table *, int,
979 		void *, size_t *, loff_t *);
980 extern int percpu_pagelist_fraction;
981 extern char numa_zonelist_order[];
982 #define NUMA_ZONELIST_ORDER_LEN	16
983 
984 #ifndef CONFIG_NEED_MULTIPLE_NODES
985 
986 extern struct pglist_data contig_page_data;
987 #define NODE_DATA(nid)		(&contig_page_data)
988 #define NODE_MEM_MAP(nid)	mem_map
989 
990 #else /* CONFIG_NEED_MULTIPLE_NODES */
991 
992 #include <asm/mmzone.h>
993 
994 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
995 
996 extern struct pglist_data *first_online_pgdat(void);
997 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
998 extern struct zone *next_zone(struct zone *zone);
999 
1000 /**
1001  * for_each_online_pgdat - helper macro to iterate over all online nodes
1002  * @pgdat - pointer to a pg_data_t variable
1003  */
1004 #define for_each_online_pgdat(pgdat)			\
1005 	for (pgdat = first_online_pgdat();		\
1006 	     pgdat;					\
1007 	     pgdat = next_online_pgdat(pgdat))
1008 /**
1009  * for_each_zone - helper macro to iterate over all memory zones
1010  * @zone - pointer to struct zone variable
1011  *
1012  * The user only needs to declare the zone variable, for_each_zone
1013  * fills it in.
1014  */
1015 #define for_each_zone(zone)			        \
1016 	for (zone = (first_online_pgdat())->node_zones; \
1017 	     zone;					\
1018 	     zone = next_zone(zone))
1019 
1020 #define for_each_populated_zone(zone)		        \
1021 	for (zone = (first_online_pgdat())->node_zones; \
1022 	     zone;					\
1023 	     zone = next_zone(zone))			\
1024 		if (!populated_zone(zone))		\
1025 			; /* do nothing */		\
1026 		else
1027 
1028 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1029 {
1030 	return zoneref->zone;
1031 }
1032 
1033 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1034 {
1035 	return zoneref->zone_idx;
1036 }
1037 
1038 static inline int zonelist_node_idx(struct zoneref *zoneref)
1039 {
1040 	return zone_to_nid(zoneref->zone);
1041 }
1042 
1043 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1044 					enum zone_type highest_zoneidx,
1045 					nodemask_t *nodes);
1046 
1047 /**
1048  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1049  * @z - The cursor used as a starting point for the search
1050  * @highest_zoneidx - The zone index of the highest zone to return
1051  * @nodes - An optional nodemask to filter the zonelist with
1052  *
1053  * This function returns the next zone at or below a given zone index that is
1054  * within the allowed nodemask using a cursor as the starting point for the
1055  * search. The zoneref returned is a cursor that represents the current zone
1056  * being examined. It should be advanced by one before calling
1057  * next_zones_zonelist again.
1058  */
1059 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1060 					enum zone_type highest_zoneidx,
1061 					nodemask_t *nodes)
1062 {
1063 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1064 		return z;
1065 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1066 }
1067 
1068 /**
1069  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1070  * @zonelist - The zonelist to search for a suitable zone
1071  * @highest_zoneidx - The zone index of the highest zone to return
1072  * @nodes - An optional nodemask to filter the zonelist with
1073  * @return - Zoneref pointer for the first suitable zone found (see below)
1074  *
1075  * This function returns the first zone at or below a given zone index that is
1076  * within the allowed nodemask. The zoneref returned is a cursor that can be
1077  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1078  * one before calling.
1079  *
1080  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1081  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1082  * update due to cpuset modification.
1083  */
1084 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1085 					enum zone_type highest_zoneidx,
1086 					nodemask_t *nodes)
1087 {
1088 	return next_zones_zonelist(zonelist->_zonerefs,
1089 							highest_zoneidx, nodes);
1090 }
1091 
1092 /**
1093  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1094  * @zone - The current zone in the iterator
1095  * @z - The current pointer within zonelist->_zonerefs being iterated
1096  * @zlist - The zonelist being iterated
1097  * @highidx - The zone index of the highest zone to return
1098  * @nodemask - Nodemask allowed by the allocator
1099  *
1100  * This iterator iterates though all zones at or below a given zone index and
1101  * within a given nodemask
1102  */
1103 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1104 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1105 		zone;							\
1106 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1107 			zone = zonelist_zone(z))
1108 
1109 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1110 	for (zone = z->zone;	\
1111 		zone;							\
1112 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1113 			zone = zonelist_zone(z))
1114 
1115 
1116 /**
1117  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1118  * @zone - The current zone in the iterator
1119  * @z - The current pointer within zonelist->zones being iterated
1120  * @zlist - The zonelist being iterated
1121  * @highidx - The zone index of the highest zone to return
1122  *
1123  * This iterator iterates though all zones at or below a given zone index.
1124  */
1125 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1126 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1127 
1128 #ifdef CONFIG_SPARSEMEM
1129 #include <asm/sparsemem.h>
1130 #endif
1131 
1132 #ifdef CONFIG_FLATMEM
1133 #define pfn_to_nid(pfn)		(0)
1134 #endif
1135 
1136 #ifdef CONFIG_SPARSEMEM
1137 
1138 /*
1139  * SECTION_SHIFT    		#bits space required to store a section #
1140  *
1141  * PA_SECTION_SHIFT		physical address to/from section number
1142  * PFN_SECTION_SHIFT		pfn to/from section number
1143  */
1144 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1145 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1146 
1147 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1148 
1149 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1150 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1151 
1152 #define SECTION_BLOCKFLAGS_BITS \
1153 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1154 
1155 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1156 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1157 #endif
1158 
1159 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1160 {
1161 	return pfn >> PFN_SECTION_SHIFT;
1162 }
1163 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1164 {
1165 	return sec << PFN_SECTION_SHIFT;
1166 }
1167 
1168 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1169 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1170 
1171 #define SUBSECTION_SHIFT 21
1172 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1173 
1174 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1175 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1176 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1177 
1178 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1179 #error Subsection size exceeds section size
1180 #else
1181 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1182 #endif
1183 
1184 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1185 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1186 
1187 struct mem_section_usage {
1188 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1189 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1190 #endif
1191 	/* See declaration of similar field in struct zone */
1192 	unsigned long pageblock_flags[0];
1193 };
1194 
1195 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1196 
1197 struct page;
1198 struct page_ext;
1199 struct mem_section {
1200 	/*
1201 	 * This is, logically, a pointer to an array of struct
1202 	 * pages.  However, it is stored with some other magic.
1203 	 * (see sparse.c::sparse_init_one_section())
1204 	 *
1205 	 * Additionally during early boot we encode node id of
1206 	 * the location of the section here to guide allocation.
1207 	 * (see sparse.c::memory_present())
1208 	 *
1209 	 * Making it a UL at least makes someone do a cast
1210 	 * before using it wrong.
1211 	 */
1212 	unsigned long section_mem_map;
1213 
1214 	struct mem_section_usage *usage;
1215 #ifdef CONFIG_PAGE_EXTENSION
1216 	/*
1217 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1218 	 * section. (see page_ext.h about this.)
1219 	 */
1220 	struct page_ext *page_ext;
1221 	unsigned long pad;
1222 #endif
1223 	/*
1224 	 * WARNING: mem_section must be a power-of-2 in size for the
1225 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1226 	 */
1227 };
1228 
1229 #ifdef CONFIG_SPARSEMEM_EXTREME
1230 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1231 #else
1232 #define SECTIONS_PER_ROOT	1
1233 #endif
1234 
1235 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1236 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1237 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1238 
1239 #ifdef CONFIG_SPARSEMEM_EXTREME
1240 extern struct mem_section **mem_section;
1241 #else
1242 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1243 #endif
1244 
1245 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1246 {
1247 	return ms->usage->pageblock_flags;
1248 }
1249 
1250 static inline struct mem_section *__nr_to_section(unsigned long nr)
1251 {
1252 #ifdef CONFIG_SPARSEMEM_EXTREME
1253 	if (!mem_section)
1254 		return NULL;
1255 #endif
1256 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1257 		return NULL;
1258 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1259 }
1260 extern unsigned long __section_nr(struct mem_section *ms);
1261 extern size_t mem_section_usage_size(void);
1262 
1263 /*
1264  * We use the lower bits of the mem_map pointer to store
1265  * a little bit of information.  The pointer is calculated
1266  * as mem_map - section_nr_to_pfn(pnum).  The result is
1267  * aligned to the minimum alignment of the two values:
1268  *   1. All mem_map arrays are page-aligned.
1269  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1270  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1271  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1272  *      worst combination is powerpc with 256k pages,
1273  *      which results in PFN_SECTION_SHIFT equal 6.
1274  * To sum it up, at least 6 bits are available.
1275  */
1276 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1277 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1278 #define SECTION_IS_ONLINE	(1UL<<2)
1279 #define SECTION_IS_EARLY	(1UL<<3)
1280 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1281 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1282 #define SECTION_NID_SHIFT	3
1283 
1284 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1285 {
1286 	unsigned long map = section->section_mem_map;
1287 	map &= SECTION_MAP_MASK;
1288 	return (struct page *)map;
1289 }
1290 
1291 static inline int present_section(struct mem_section *section)
1292 {
1293 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1294 }
1295 
1296 static inline int present_section_nr(unsigned long nr)
1297 {
1298 	return present_section(__nr_to_section(nr));
1299 }
1300 
1301 static inline int valid_section(struct mem_section *section)
1302 {
1303 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1304 }
1305 
1306 static inline int early_section(struct mem_section *section)
1307 {
1308 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1309 }
1310 
1311 static inline int valid_section_nr(unsigned long nr)
1312 {
1313 	return valid_section(__nr_to_section(nr));
1314 }
1315 
1316 static inline int online_section(struct mem_section *section)
1317 {
1318 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1319 }
1320 
1321 static inline int online_section_nr(unsigned long nr)
1322 {
1323 	return online_section(__nr_to_section(nr));
1324 }
1325 
1326 #ifdef CONFIG_MEMORY_HOTPLUG
1327 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1328 #ifdef CONFIG_MEMORY_HOTREMOVE
1329 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1330 #endif
1331 #endif
1332 
1333 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1334 {
1335 	return __nr_to_section(pfn_to_section_nr(pfn));
1336 }
1337 
1338 extern unsigned long __highest_present_section_nr;
1339 
1340 static inline int subsection_map_index(unsigned long pfn)
1341 {
1342 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1343 }
1344 
1345 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1346 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1347 {
1348 	int idx = subsection_map_index(pfn);
1349 
1350 	return test_bit(idx, ms->usage->subsection_map);
1351 }
1352 #else
1353 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1354 {
1355 	return 1;
1356 }
1357 #endif
1358 
1359 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1360 static inline int pfn_valid(unsigned long pfn)
1361 {
1362 	struct mem_section *ms;
1363 
1364 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1365 		return 0;
1366 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1367 	if (!valid_section(ms))
1368 		return 0;
1369 	/*
1370 	 * Traditionally early sections always returned pfn_valid() for
1371 	 * the entire section-sized span.
1372 	 */
1373 	return early_section(ms) || pfn_section_valid(ms, pfn);
1374 }
1375 #endif
1376 
1377 static inline int pfn_in_present_section(unsigned long pfn)
1378 {
1379 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1380 		return 0;
1381 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1382 }
1383 
1384 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1385 {
1386 	while (++section_nr <= __highest_present_section_nr) {
1387 		if (present_section_nr(section_nr))
1388 			return section_nr;
1389 	}
1390 
1391 	return -1;
1392 }
1393 
1394 /*
1395  * These are _only_ used during initialisation, therefore they
1396  * can use __initdata ...  They could have names to indicate
1397  * this restriction.
1398  */
1399 #ifdef CONFIG_NUMA
1400 #define pfn_to_nid(pfn)							\
1401 ({									\
1402 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1403 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1404 })
1405 #else
1406 #define pfn_to_nid(pfn)		(0)
1407 #endif
1408 
1409 void sparse_init(void);
1410 #else
1411 #define sparse_init()	do {} while (0)
1412 #define sparse_index_init(_sec, _nid)  do {} while (0)
1413 #define pfn_in_present_section pfn_valid
1414 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1415 #endif /* CONFIG_SPARSEMEM */
1416 
1417 /*
1418  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1419  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1420  * pfn_valid_within() should be used in this case; we optimise this away
1421  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1422  */
1423 #ifdef CONFIG_HOLES_IN_ZONE
1424 #define pfn_valid_within(pfn) pfn_valid(pfn)
1425 #else
1426 #define pfn_valid_within(pfn) (1)
1427 #endif
1428 
1429 #endif /* !__GENERATING_BOUNDS.H */
1430 #endif /* !__ASSEMBLY__ */
1431 #endif /* _LINUX_MMZONE_H */
1432