1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 #ifdef CONFIG_CMA 67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68 #else 69 # define is_migrate_cma(migratetype) false 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81 #define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86 { 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90 } 91 92 struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95 }; 96 97 struct pglist_data; 98 99 /* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105 #if defined(CONFIG_SMP) 106 struct zone_padding { 107 char x[0]; 108 } ____cacheline_internodealigned_in_smp; 109 #define ZONE_PADDING(name) struct zone_padding name; 110 #else 111 #define ZONE_PADDING(name) 112 #endif 113 114 enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147 #ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154 #endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162 /* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171 #define LRU_BASE 0 172 #define LRU_ACTIVE 1 173 #define LRU_FILE 2 174 175 enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182 }; 183 184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188 static inline int is_file_lru(enum lru_list lru) 189 { 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191 } 192 193 static inline int is_active_lru(enum lru_list lru) 194 { 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196 } 197 198 struct zone_reclaim_stat { 199 /* 200 * The pageout code in vmscan.c keeps track of how many of the 201 * mem/swap backed and file backed pages are referenced. 202 * The higher the rotated/scanned ratio, the more valuable 203 * that cache is. 204 * 205 * The anon LRU stats live in [0], file LRU stats in [1] 206 */ 207 unsigned long recent_rotated[2]; 208 unsigned long recent_scanned[2]; 209 }; 210 211 struct lruvec { 212 struct list_head lists[NR_LRU_LISTS]; 213 struct zone_reclaim_stat reclaim_stat; 214 #ifdef CONFIG_MEMCG 215 struct zone *zone; 216 #endif 217 }; 218 219 /* Mask used at gathering information at once (see memcontrol.c) */ 220 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 221 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 222 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 223 224 /* Isolate clean file */ 225 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 226 /* Isolate unmapped file */ 227 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 228 /* Isolate for asynchronous migration */ 229 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 230 /* Isolate unevictable pages */ 231 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 232 233 /* LRU Isolation modes. */ 234 typedef unsigned __bitwise__ isolate_mode_t; 235 236 enum zone_watermarks { 237 WMARK_MIN, 238 WMARK_LOW, 239 WMARK_HIGH, 240 NR_WMARK 241 }; 242 243 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 244 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 245 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 246 247 struct per_cpu_pages { 248 int count; /* number of pages in the list */ 249 int high; /* high watermark, emptying needed */ 250 int batch; /* chunk size for buddy add/remove */ 251 252 /* Lists of pages, one per migrate type stored on the pcp-lists */ 253 struct list_head lists[MIGRATE_PCPTYPES]; 254 }; 255 256 struct per_cpu_pageset { 257 struct per_cpu_pages pcp; 258 #ifdef CONFIG_NUMA 259 s8 expire; 260 #endif 261 #ifdef CONFIG_SMP 262 s8 stat_threshold; 263 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 264 #endif 265 }; 266 267 #endif /* !__GENERATING_BOUNDS.H */ 268 269 enum zone_type { 270 #ifdef CONFIG_ZONE_DMA 271 /* 272 * ZONE_DMA is used when there are devices that are not able 273 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 274 * carve out the portion of memory that is needed for these devices. 275 * The range is arch specific. 276 * 277 * Some examples 278 * 279 * Architecture Limit 280 * --------------------------- 281 * parisc, ia64, sparc <4G 282 * s390 <2G 283 * arm Various 284 * alpha Unlimited or 0-16MB. 285 * 286 * i386, x86_64 and multiple other arches 287 * <16M. 288 */ 289 ZONE_DMA, 290 #endif 291 #ifdef CONFIG_ZONE_DMA32 292 /* 293 * x86_64 needs two ZONE_DMAs because it supports devices that are 294 * only able to do DMA to the lower 16M but also 32 bit devices that 295 * can only do DMA areas below 4G. 296 */ 297 ZONE_DMA32, 298 #endif 299 /* 300 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 301 * performed on pages in ZONE_NORMAL if the DMA devices support 302 * transfers to all addressable memory. 303 */ 304 ZONE_NORMAL, 305 #ifdef CONFIG_HIGHMEM 306 /* 307 * A memory area that is only addressable by the kernel through 308 * mapping portions into its own address space. This is for example 309 * used by i386 to allow the kernel to address the memory beyond 310 * 900MB. The kernel will set up special mappings (page 311 * table entries on i386) for each page that the kernel needs to 312 * access. 313 */ 314 ZONE_HIGHMEM, 315 #endif 316 ZONE_MOVABLE, 317 #ifdef CONFIG_ZONE_DEVICE 318 ZONE_DEVICE, 319 #endif 320 __MAX_NR_ZONES 321 322 }; 323 324 #ifndef __GENERATING_BOUNDS_H 325 326 struct zone { 327 /* Read-mostly fields */ 328 329 /* zone watermarks, access with *_wmark_pages(zone) macros */ 330 unsigned long watermark[NR_WMARK]; 331 332 unsigned long nr_reserved_highatomic; 333 334 /* 335 * We don't know if the memory that we're going to allocate will be 336 * freeable or/and it will be released eventually, so to avoid totally 337 * wasting several GB of ram we must reserve some of the lower zone 338 * memory (otherwise we risk to run OOM on the lower zones despite 339 * there being tons of freeable ram on the higher zones). This array is 340 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 341 * changes. 342 */ 343 long lowmem_reserve[MAX_NR_ZONES]; 344 345 #ifdef CONFIG_NUMA 346 int node; 347 #endif 348 349 /* 350 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 351 * this zone's LRU. Maintained by the pageout code. 352 */ 353 unsigned int inactive_ratio; 354 355 struct pglist_data *zone_pgdat; 356 struct per_cpu_pageset __percpu *pageset; 357 358 /* 359 * This is a per-zone reserve of pages that are not available 360 * to userspace allocations. 361 */ 362 unsigned long totalreserve_pages; 363 364 #ifndef CONFIG_SPARSEMEM 365 /* 366 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 367 * In SPARSEMEM, this map is stored in struct mem_section 368 */ 369 unsigned long *pageblock_flags; 370 #endif /* CONFIG_SPARSEMEM */ 371 372 #ifdef CONFIG_NUMA 373 /* 374 * zone reclaim becomes active if more unmapped pages exist. 375 */ 376 unsigned long min_unmapped_pages; 377 unsigned long min_slab_pages; 378 #endif /* CONFIG_NUMA */ 379 380 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 381 unsigned long zone_start_pfn; 382 383 /* 384 * spanned_pages is the total pages spanned by the zone, including 385 * holes, which is calculated as: 386 * spanned_pages = zone_end_pfn - zone_start_pfn; 387 * 388 * present_pages is physical pages existing within the zone, which 389 * is calculated as: 390 * present_pages = spanned_pages - absent_pages(pages in holes); 391 * 392 * managed_pages is present pages managed by the buddy system, which 393 * is calculated as (reserved_pages includes pages allocated by the 394 * bootmem allocator): 395 * managed_pages = present_pages - reserved_pages; 396 * 397 * So present_pages may be used by memory hotplug or memory power 398 * management logic to figure out unmanaged pages by checking 399 * (present_pages - managed_pages). And managed_pages should be used 400 * by page allocator and vm scanner to calculate all kinds of watermarks 401 * and thresholds. 402 * 403 * Locking rules: 404 * 405 * zone_start_pfn and spanned_pages are protected by span_seqlock. 406 * It is a seqlock because it has to be read outside of zone->lock, 407 * and it is done in the main allocator path. But, it is written 408 * quite infrequently. 409 * 410 * The span_seq lock is declared along with zone->lock because it is 411 * frequently read in proximity to zone->lock. It's good to 412 * give them a chance of being in the same cacheline. 413 * 414 * Write access to present_pages at runtime should be protected by 415 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 416 * present_pages should get_online_mems() to get a stable value. 417 * 418 * Read access to managed_pages should be safe because it's unsigned 419 * long. Write access to zone->managed_pages and totalram_pages are 420 * protected by managed_page_count_lock at runtime. Idealy only 421 * adjust_managed_page_count() should be used instead of directly 422 * touching zone->managed_pages and totalram_pages. 423 */ 424 unsigned long managed_pages; 425 unsigned long spanned_pages; 426 unsigned long present_pages; 427 428 const char *name; 429 430 #ifdef CONFIG_MEMORY_ISOLATION 431 /* 432 * Number of isolated pageblock. It is used to solve incorrect 433 * freepage counting problem due to racy retrieving migratetype 434 * of pageblock. Protected by zone->lock. 435 */ 436 unsigned long nr_isolate_pageblock; 437 #endif 438 439 #ifdef CONFIG_MEMORY_HOTPLUG 440 /* see spanned/present_pages for more description */ 441 seqlock_t span_seqlock; 442 #endif 443 444 /* 445 * wait_table -- the array holding the hash table 446 * wait_table_hash_nr_entries -- the size of the hash table array 447 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 448 * 449 * The purpose of all these is to keep track of the people 450 * waiting for a page to become available and make them 451 * runnable again when possible. The trouble is that this 452 * consumes a lot of space, especially when so few things 453 * wait on pages at a given time. So instead of using 454 * per-page waitqueues, we use a waitqueue hash table. 455 * 456 * The bucket discipline is to sleep on the same queue when 457 * colliding and wake all in that wait queue when removing. 458 * When something wakes, it must check to be sure its page is 459 * truly available, a la thundering herd. The cost of a 460 * collision is great, but given the expected load of the 461 * table, they should be so rare as to be outweighed by the 462 * benefits from the saved space. 463 * 464 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 465 * primary users of these fields, and in mm/page_alloc.c 466 * free_area_init_core() performs the initialization of them. 467 */ 468 wait_queue_head_t *wait_table; 469 unsigned long wait_table_hash_nr_entries; 470 unsigned long wait_table_bits; 471 472 ZONE_PADDING(_pad1_) 473 /* free areas of different sizes */ 474 struct free_area free_area[MAX_ORDER]; 475 476 /* zone flags, see below */ 477 unsigned long flags; 478 479 /* Write-intensive fields used from the page allocator */ 480 spinlock_t lock; 481 482 ZONE_PADDING(_pad2_) 483 484 /* Write-intensive fields used by page reclaim */ 485 486 /* Fields commonly accessed by the page reclaim scanner */ 487 spinlock_t lru_lock; 488 struct lruvec lruvec; 489 490 /* Evictions & activations on the inactive file list */ 491 atomic_long_t inactive_age; 492 493 /* 494 * When free pages are below this point, additional steps are taken 495 * when reading the number of free pages to avoid per-cpu counter 496 * drift allowing watermarks to be breached 497 */ 498 unsigned long percpu_drift_mark; 499 500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 501 /* pfn where compaction free scanner should start */ 502 unsigned long compact_cached_free_pfn; 503 /* pfn where async and sync compaction migration scanner should start */ 504 unsigned long compact_cached_migrate_pfn[2]; 505 #endif 506 507 #ifdef CONFIG_COMPACTION 508 /* 509 * On compaction failure, 1<<compact_defer_shift compactions 510 * are skipped before trying again. The number attempted since 511 * last failure is tracked with compact_considered. 512 */ 513 unsigned int compact_considered; 514 unsigned int compact_defer_shift; 515 int compact_order_failed; 516 #endif 517 518 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 519 /* Set to true when the PG_migrate_skip bits should be cleared */ 520 bool compact_blockskip_flush; 521 #endif 522 523 ZONE_PADDING(_pad3_) 524 /* Zone statistics */ 525 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 526 } ____cacheline_internodealigned_in_smp; 527 528 enum zone_flags { 529 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 530 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 531 ZONE_CONGESTED, /* zone has many dirty pages backed by 532 * a congested BDI 533 */ 534 ZONE_DIRTY, /* reclaim scanning has recently found 535 * many dirty file pages at the tail 536 * of the LRU. 537 */ 538 ZONE_WRITEBACK, /* reclaim scanning has recently found 539 * many pages under writeback 540 */ 541 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 542 }; 543 544 static inline unsigned long zone_end_pfn(const struct zone *zone) 545 { 546 return zone->zone_start_pfn + zone->spanned_pages; 547 } 548 549 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 550 { 551 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 552 } 553 554 static inline bool zone_is_initialized(struct zone *zone) 555 { 556 return !!zone->wait_table; 557 } 558 559 static inline bool zone_is_empty(struct zone *zone) 560 { 561 return zone->spanned_pages == 0; 562 } 563 564 /* 565 * The "priority" of VM scanning is how much of the queues we will scan in one 566 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 567 * queues ("queue_length >> 12") during an aging round. 568 */ 569 #define DEF_PRIORITY 12 570 571 /* Maximum number of zones on a zonelist */ 572 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 573 574 enum { 575 ZONELIST_FALLBACK, /* zonelist with fallback */ 576 #ifdef CONFIG_NUMA 577 /* 578 * The NUMA zonelists are doubled because we need zonelists that 579 * restrict the allocations to a single node for __GFP_THISNODE. 580 */ 581 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 582 #endif 583 MAX_ZONELISTS 584 }; 585 586 /* 587 * This struct contains information about a zone in a zonelist. It is stored 588 * here to avoid dereferences into large structures and lookups of tables 589 */ 590 struct zoneref { 591 struct zone *zone; /* Pointer to actual zone */ 592 int zone_idx; /* zone_idx(zoneref->zone) */ 593 }; 594 595 /* 596 * One allocation request operates on a zonelist. A zonelist 597 * is a list of zones, the first one is the 'goal' of the 598 * allocation, the other zones are fallback zones, in decreasing 599 * priority. 600 * 601 * To speed the reading of the zonelist, the zonerefs contain the zone index 602 * of the entry being read. Helper functions to access information given 603 * a struct zoneref are 604 * 605 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 606 * zonelist_zone_idx() - Return the index of the zone for an entry 607 * zonelist_node_idx() - Return the index of the node for an entry 608 */ 609 struct zonelist { 610 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 611 }; 612 613 #ifndef CONFIG_DISCONTIGMEM 614 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 615 extern struct page *mem_map; 616 #endif 617 618 /* 619 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 620 * (mostly NUMA machines?) to denote a higher-level memory zone than the 621 * zone denotes. 622 * 623 * On NUMA machines, each NUMA node would have a pg_data_t to describe 624 * it's memory layout. 625 * 626 * Memory statistics and page replacement data structures are maintained on a 627 * per-zone basis. 628 */ 629 struct bootmem_data; 630 typedef struct pglist_data { 631 struct zone node_zones[MAX_NR_ZONES]; 632 struct zonelist node_zonelists[MAX_ZONELISTS]; 633 int nr_zones; 634 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 635 struct page *node_mem_map; 636 #ifdef CONFIG_PAGE_EXTENSION 637 struct page_ext *node_page_ext; 638 #endif 639 #endif 640 #ifndef CONFIG_NO_BOOTMEM 641 struct bootmem_data *bdata; 642 #endif 643 #ifdef CONFIG_MEMORY_HOTPLUG 644 /* 645 * Must be held any time you expect node_start_pfn, node_present_pages 646 * or node_spanned_pages stay constant. Holding this will also 647 * guarantee that any pfn_valid() stays that way. 648 * 649 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 650 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 651 * 652 * Nests above zone->lock and zone->span_seqlock 653 */ 654 spinlock_t node_size_lock; 655 #endif 656 unsigned long node_start_pfn; 657 unsigned long node_present_pages; /* total number of physical pages */ 658 unsigned long node_spanned_pages; /* total size of physical page 659 range, including holes */ 660 int node_id; 661 wait_queue_head_t kswapd_wait; 662 wait_queue_head_t pfmemalloc_wait; 663 struct task_struct *kswapd; /* Protected by 664 mem_hotplug_begin/end() */ 665 int kswapd_max_order; 666 enum zone_type classzone_idx; 667 #ifdef CONFIG_NUMA_BALANCING 668 /* Lock serializing the migrate rate limiting window */ 669 spinlock_t numabalancing_migrate_lock; 670 671 /* Rate limiting time interval */ 672 unsigned long numabalancing_migrate_next_window; 673 674 /* Number of pages migrated during the rate limiting time interval */ 675 unsigned long numabalancing_migrate_nr_pages; 676 #endif 677 678 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 679 /* 680 * If memory initialisation on large machines is deferred then this 681 * is the first PFN that needs to be initialised. 682 */ 683 unsigned long first_deferred_pfn; 684 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 685 686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 687 spinlock_t split_queue_lock; 688 struct list_head split_queue; 689 unsigned long split_queue_len; 690 #endif 691 } pg_data_t; 692 693 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 694 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 695 #ifdef CONFIG_FLAT_NODE_MEM_MAP 696 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 697 #else 698 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 699 #endif 700 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 701 702 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 703 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 704 705 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 706 { 707 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 708 } 709 710 static inline bool pgdat_is_empty(pg_data_t *pgdat) 711 { 712 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 713 } 714 715 static inline int zone_id(const struct zone *zone) 716 { 717 struct pglist_data *pgdat = zone->zone_pgdat; 718 719 return zone - pgdat->node_zones; 720 } 721 722 #ifdef CONFIG_ZONE_DEVICE 723 static inline bool is_dev_zone(const struct zone *zone) 724 { 725 return zone_id(zone) == ZONE_DEVICE; 726 } 727 #else 728 static inline bool is_dev_zone(const struct zone *zone) 729 { 730 return false; 731 } 732 #endif 733 734 #include <linux/memory_hotplug.h> 735 736 extern struct mutex zonelists_mutex; 737 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 738 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 739 bool zone_watermark_ok(struct zone *z, unsigned int order, 740 unsigned long mark, int classzone_idx, int alloc_flags); 741 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 742 unsigned long mark, int classzone_idx); 743 enum memmap_context { 744 MEMMAP_EARLY, 745 MEMMAP_HOTPLUG, 746 }; 747 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 748 unsigned long size); 749 750 extern void lruvec_init(struct lruvec *lruvec); 751 752 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 753 { 754 #ifdef CONFIG_MEMCG 755 return lruvec->zone; 756 #else 757 return container_of(lruvec, struct zone, lruvec); 758 #endif 759 } 760 761 #ifdef CONFIG_HAVE_MEMORY_PRESENT 762 void memory_present(int nid, unsigned long start, unsigned long end); 763 #else 764 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 765 #endif 766 767 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 768 int local_memory_node(int node_id); 769 #else 770 static inline int local_memory_node(int node_id) { return node_id; }; 771 #endif 772 773 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 774 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 775 #endif 776 777 /* 778 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 779 */ 780 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 781 782 static inline int populated_zone(struct zone *zone) 783 { 784 return (!!zone->present_pages); 785 } 786 787 extern int movable_zone; 788 789 #ifdef CONFIG_HIGHMEM 790 static inline int zone_movable_is_highmem(void) 791 { 792 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 793 return movable_zone == ZONE_HIGHMEM; 794 #else 795 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 796 #endif 797 } 798 #endif 799 800 static inline int is_highmem_idx(enum zone_type idx) 801 { 802 #ifdef CONFIG_HIGHMEM 803 return (idx == ZONE_HIGHMEM || 804 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 805 #else 806 return 0; 807 #endif 808 } 809 810 /** 811 * is_highmem - helper function to quickly check if a struct zone is a 812 * highmem zone or not. This is an attempt to keep references 813 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 814 * @zone - pointer to struct zone variable 815 */ 816 static inline int is_highmem(struct zone *zone) 817 { 818 #ifdef CONFIG_HIGHMEM 819 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 820 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 821 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 822 zone_movable_is_highmem()); 823 #else 824 return 0; 825 #endif 826 } 827 828 /* These two functions are used to setup the per zone pages min values */ 829 struct ctl_table; 830 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 831 void __user *, size_t *, loff_t *); 832 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 833 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 834 void __user *, size_t *, loff_t *); 835 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 836 void __user *, size_t *, loff_t *); 837 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 838 void __user *, size_t *, loff_t *); 839 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 840 void __user *, size_t *, loff_t *); 841 842 extern int numa_zonelist_order_handler(struct ctl_table *, int, 843 void __user *, size_t *, loff_t *); 844 extern char numa_zonelist_order[]; 845 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 846 847 #ifndef CONFIG_NEED_MULTIPLE_NODES 848 849 extern struct pglist_data contig_page_data; 850 #define NODE_DATA(nid) (&contig_page_data) 851 #define NODE_MEM_MAP(nid) mem_map 852 853 #else /* CONFIG_NEED_MULTIPLE_NODES */ 854 855 #include <asm/mmzone.h> 856 857 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 858 859 extern struct pglist_data *first_online_pgdat(void); 860 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 861 extern struct zone *next_zone(struct zone *zone); 862 863 /** 864 * for_each_online_pgdat - helper macro to iterate over all online nodes 865 * @pgdat - pointer to a pg_data_t variable 866 */ 867 #define for_each_online_pgdat(pgdat) \ 868 for (pgdat = first_online_pgdat(); \ 869 pgdat; \ 870 pgdat = next_online_pgdat(pgdat)) 871 /** 872 * for_each_zone - helper macro to iterate over all memory zones 873 * @zone - pointer to struct zone variable 874 * 875 * The user only needs to declare the zone variable, for_each_zone 876 * fills it in. 877 */ 878 #define for_each_zone(zone) \ 879 for (zone = (first_online_pgdat())->node_zones; \ 880 zone; \ 881 zone = next_zone(zone)) 882 883 #define for_each_populated_zone(zone) \ 884 for (zone = (first_online_pgdat())->node_zones; \ 885 zone; \ 886 zone = next_zone(zone)) \ 887 if (!populated_zone(zone)) \ 888 ; /* do nothing */ \ 889 else 890 891 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 892 { 893 return zoneref->zone; 894 } 895 896 static inline int zonelist_zone_idx(struct zoneref *zoneref) 897 { 898 return zoneref->zone_idx; 899 } 900 901 static inline int zonelist_node_idx(struct zoneref *zoneref) 902 { 903 #ifdef CONFIG_NUMA 904 /* zone_to_nid not available in this context */ 905 return zoneref->zone->node; 906 #else 907 return 0; 908 #endif /* CONFIG_NUMA */ 909 } 910 911 /** 912 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 913 * @z - The cursor used as a starting point for the search 914 * @highest_zoneidx - The zone index of the highest zone to return 915 * @nodes - An optional nodemask to filter the zonelist with 916 * 917 * This function returns the next zone at or below a given zone index that is 918 * within the allowed nodemask using a cursor as the starting point for the 919 * search. The zoneref returned is a cursor that represents the current zone 920 * being examined. It should be advanced by one before calling 921 * next_zones_zonelist again. 922 */ 923 struct zoneref *next_zones_zonelist(struct zoneref *z, 924 enum zone_type highest_zoneidx, 925 nodemask_t *nodes); 926 927 /** 928 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 929 * @zonelist - The zonelist to search for a suitable zone 930 * @highest_zoneidx - The zone index of the highest zone to return 931 * @nodes - An optional nodemask to filter the zonelist with 932 * @zone - The first suitable zone found is returned via this parameter 933 * 934 * This function returns the first zone at or below a given zone index that is 935 * within the allowed nodemask. The zoneref returned is a cursor that can be 936 * used to iterate the zonelist with next_zones_zonelist by advancing it by 937 * one before calling. 938 */ 939 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 940 enum zone_type highest_zoneidx, 941 nodemask_t *nodes, 942 struct zone **zone) 943 { 944 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs, 945 highest_zoneidx, nodes); 946 *zone = zonelist_zone(z); 947 return z; 948 } 949 950 /** 951 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 952 * @zone - The current zone in the iterator 953 * @z - The current pointer within zonelist->zones being iterated 954 * @zlist - The zonelist being iterated 955 * @highidx - The zone index of the highest zone to return 956 * @nodemask - Nodemask allowed by the allocator 957 * 958 * This iterator iterates though all zones at or below a given zone index and 959 * within a given nodemask 960 */ 961 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 962 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 963 zone; \ 964 z = next_zones_zonelist(++z, highidx, nodemask), \ 965 zone = zonelist_zone(z)) \ 966 967 /** 968 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 969 * @zone - The current zone in the iterator 970 * @z - The current pointer within zonelist->zones being iterated 971 * @zlist - The zonelist being iterated 972 * @highidx - The zone index of the highest zone to return 973 * 974 * This iterator iterates though all zones at or below a given zone index. 975 */ 976 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 977 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 978 979 #ifdef CONFIG_SPARSEMEM 980 #include <asm/sparsemem.h> 981 #endif 982 983 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 984 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 985 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 986 { 987 return 0; 988 } 989 #endif 990 991 #ifdef CONFIG_FLATMEM 992 #define pfn_to_nid(pfn) (0) 993 #endif 994 995 #ifdef CONFIG_SPARSEMEM 996 997 /* 998 * SECTION_SHIFT #bits space required to store a section # 999 * 1000 * PA_SECTION_SHIFT physical address to/from section number 1001 * PFN_SECTION_SHIFT pfn to/from section number 1002 */ 1003 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1004 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1005 1006 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1007 1008 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1009 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1010 1011 #define SECTION_BLOCKFLAGS_BITS \ 1012 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1013 1014 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1015 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1016 #endif 1017 1018 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1019 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1020 1021 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1022 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1023 1024 struct page; 1025 struct page_ext; 1026 struct mem_section { 1027 /* 1028 * This is, logically, a pointer to an array of struct 1029 * pages. However, it is stored with some other magic. 1030 * (see sparse.c::sparse_init_one_section()) 1031 * 1032 * Additionally during early boot we encode node id of 1033 * the location of the section here to guide allocation. 1034 * (see sparse.c::memory_present()) 1035 * 1036 * Making it a UL at least makes someone do a cast 1037 * before using it wrong. 1038 */ 1039 unsigned long section_mem_map; 1040 1041 /* See declaration of similar field in struct zone */ 1042 unsigned long *pageblock_flags; 1043 #ifdef CONFIG_PAGE_EXTENSION 1044 /* 1045 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1046 * section. (see page_ext.h about this.) 1047 */ 1048 struct page_ext *page_ext; 1049 unsigned long pad; 1050 #endif 1051 /* 1052 * WARNING: mem_section must be a power-of-2 in size for the 1053 * calculation and use of SECTION_ROOT_MASK to make sense. 1054 */ 1055 }; 1056 1057 #ifdef CONFIG_SPARSEMEM_EXTREME 1058 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1059 #else 1060 #define SECTIONS_PER_ROOT 1 1061 #endif 1062 1063 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1064 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1065 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1066 1067 #ifdef CONFIG_SPARSEMEM_EXTREME 1068 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1069 #else 1070 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1071 #endif 1072 1073 static inline struct mem_section *__nr_to_section(unsigned long nr) 1074 { 1075 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1076 return NULL; 1077 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1078 } 1079 extern int __section_nr(struct mem_section* ms); 1080 extern unsigned long usemap_size(void); 1081 1082 /* 1083 * We use the lower bits of the mem_map pointer to store 1084 * a little bit of information. There should be at least 1085 * 3 bits here due to 32-bit alignment. 1086 */ 1087 #define SECTION_MARKED_PRESENT (1UL<<0) 1088 #define SECTION_HAS_MEM_MAP (1UL<<1) 1089 #define SECTION_MAP_LAST_BIT (1UL<<2) 1090 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1091 #define SECTION_NID_SHIFT 2 1092 1093 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1094 { 1095 unsigned long map = section->section_mem_map; 1096 map &= SECTION_MAP_MASK; 1097 return (struct page *)map; 1098 } 1099 1100 static inline int present_section(struct mem_section *section) 1101 { 1102 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1103 } 1104 1105 static inline int present_section_nr(unsigned long nr) 1106 { 1107 return present_section(__nr_to_section(nr)); 1108 } 1109 1110 static inline int valid_section(struct mem_section *section) 1111 { 1112 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1113 } 1114 1115 static inline int valid_section_nr(unsigned long nr) 1116 { 1117 return valid_section(__nr_to_section(nr)); 1118 } 1119 1120 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1121 { 1122 return __nr_to_section(pfn_to_section_nr(pfn)); 1123 } 1124 1125 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1126 static inline int pfn_valid(unsigned long pfn) 1127 { 1128 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1129 return 0; 1130 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1131 } 1132 #endif 1133 1134 static inline int pfn_present(unsigned long pfn) 1135 { 1136 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1137 return 0; 1138 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1139 } 1140 1141 /* 1142 * These are _only_ used during initialisation, therefore they 1143 * can use __initdata ... They could have names to indicate 1144 * this restriction. 1145 */ 1146 #ifdef CONFIG_NUMA 1147 #define pfn_to_nid(pfn) \ 1148 ({ \ 1149 unsigned long __pfn_to_nid_pfn = (pfn); \ 1150 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1151 }) 1152 #else 1153 #define pfn_to_nid(pfn) (0) 1154 #endif 1155 1156 #define early_pfn_valid(pfn) pfn_valid(pfn) 1157 void sparse_init(void); 1158 #else 1159 #define sparse_init() do {} while (0) 1160 #define sparse_index_init(_sec, _nid) do {} while (0) 1161 #endif /* CONFIG_SPARSEMEM */ 1162 1163 /* 1164 * During memory init memblocks map pfns to nids. The search is expensive and 1165 * this caches recent lookups. The implementation of __early_pfn_to_nid 1166 * may treat start/end as pfns or sections. 1167 */ 1168 struct mminit_pfnnid_cache { 1169 unsigned long last_start; 1170 unsigned long last_end; 1171 int last_nid; 1172 }; 1173 1174 #ifndef early_pfn_valid 1175 #define early_pfn_valid(pfn) (1) 1176 #endif 1177 1178 void memory_present(int nid, unsigned long start, unsigned long end); 1179 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1180 1181 /* 1182 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1183 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1184 * pfn_valid_within() should be used in this case; we optimise this away 1185 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1186 */ 1187 #ifdef CONFIG_HOLES_IN_ZONE 1188 #define pfn_valid_within(pfn) pfn_valid(pfn) 1189 #else 1190 #define pfn_valid_within(pfn) (1) 1191 #endif 1192 1193 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1194 /* 1195 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1196 * associated with it or not. In FLATMEM, it is expected that holes always 1197 * have valid memmap as long as there is valid PFNs either side of the hole. 1198 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1199 * entire section. 1200 * 1201 * However, an ARM, and maybe other embedded architectures in the future 1202 * free memmap backing holes to save memory on the assumption the memmap is 1203 * never used. The page_zone linkages are then broken even though pfn_valid() 1204 * returns true. A walker of the full memmap must then do this additional 1205 * check to ensure the memmap they are looking at is sane by making sure 1206 * the zone and PFN linkages are still valid. This is expensive, but walkers 1207 * of the full memmap are extremely rare. 1208 */ 1209 bool memmap_valid_within(unsigned long pfn, 1210 struct page *page, struct zone *zone); 1211 #else 1212 static inline bool memmap_valid_within(unsigned long pfn, 1213 struct page *page, struct zone *zone) 1214 { 1215 return true; 1216 } 1217 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1218 1219 #endif /* !__GENERATING_BOUNDS.H */ 1220 #endif /* !__ASSEMBLY__ */ 1221 #endif /* _LINUX_MMZONE_H */ 1222