xref: /linux-6.15/include/linux/mmu_notifier.h (revision bb4e9af0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/srcu.h>
9 
10 struct mmu_notifier;
11 struct mmu_notifier_ops;
12 
13 /**
14  * enum mmu_notifier_event - reason for the mmu notifier callback
15  * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
16  * move the range
17  *
18  * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
19  * madvise() or replacing a page by another one, ...).
20  *
21  * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
22  * ie using the vma access permission (vm_page_prot) to update the whole range
23  * is enough no need to inspect changes to the CPU page table (mprotect()
24  * syscall)
25  *
26  * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
27  * pages in the range so to mirror those changes the user must inspect the CPU
28  * page table (from the end callback).
29  *
30  * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
31  * access flags). User should soft dirty the page in the end callback to make
32  * sure that anyone relying on soft dirtyness catch pages that might be written
33  * through non CPU mappings.
34  */
35 enum mmu_notifier_event {
36 	MMU_NOTIFY_UNMAP = 0,
37 	MMU_NOTIFY_CLEAR,
38 	MMU_NOTIFY_PROTECTION_VMA,
39 	MMU_NOTIFY_PROTECTION_PAGE,
40 	MMU_NOTIFY_SOFT_DIRTY,
41 };
42 
43 #ifdef CONFIG_MMU_NOTIFIER
44 
45 /*
46  * The mmu notifier_mm structure is allocated and installed in
47  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
48  * critical section and it's released only when mm_count reaches zero
49  * in mmdrop().
50  */
51 struct mmu_notifier_mm {
52 	/* all mmu notifiers registerd in this mm are queued in this list */
53 	struct hlist_head list;
54 	/* to serialize the list modifications and hlist_unhashed */
55 	spinlock_t lock;
56 };
57 
58 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
59 
60 struct mmu_notifier_range {
61 	struct vm_area_struct *vma;
62 	struct mm_struct *mm;
63 	unsigned long start;
64 	unsigned long end;
65 	unsigned flags;
66 	enum mmu_notifier_event event;
67 };
68 
69 struct mmu_notifier_ops {
70 	/*
71 	 * Called either by mmu_notifier_unregister or when the mm is
72 	 * being destroyed by exit_mmap, always before all pages are
73 	 * freed. This can run concurrently with other mmu notifier
74 	 * methods (the ones invoked outside the mm context) and it
75 	 * should tear down all secondary mmu mappings and freeze the
76 	 * secondary mmu. If this method isn't implemented you've to
77 	 * be sure that nothing could possibly write to the pages
78 	 * through the secondary mmu by the time the last thread with
79 	 * tsk->mm == mm exits.
80 	 *
81 	 * As side note: the pages freed after ->release returns could
82 	 * be immediately reallocated by the gart at an alias physical
83 	 * address with a different cache model, so if ->release isn't
84 	 * implemented because all _software_ driven memory accesses
85 	 * through the secondary mmu are terminated by the time the
86 	 * last thread of this mm quits, you've also to be sure that
87 	 * speculative _hardware_ operations can't allocate dirty
88 	 * cachelines in the cpu that could not be snooped and made
89 	 * coherent with the other read and write operations happening
90 	 * through the gart alias address, so leading to memory
91 	 * corruption.
92 	 */
93 	void (*release)(struct mmu_notifier *mn,
94 			struct mm_struct *mm);
95 
96 	/*
97 	 * clear_flush_young is called after the VM is
98 	 * test-and-clearing the young/accessed bitflag in the
99 	 * pte. This way the VM will provide proper aging to the
100 	 * accesses to the page through the secondary MMUs and not
101 	 * only to the ones through the Linux pte.
102 	 * Start-end is necessary in case the secondary MMU is mapping the page
103 	 * at a smaller granularity than the primary MMU.
104 	 */
105 	int (*clear_flush_young)(struct mmu_notifier *mn,
106 				 struct mm_struct *mm,
107 				 unsigned long start,
108 				 unsigned long end);
109 
110 	/*
111 	 * clear_young is a lightweight version of clear_flush_young. Like the
112 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
113 	 * in the secondary pte, but it may omit flushing the secondary tlb.
114 	 */
115 	int (*clear_young)(struct mmu_notifier *mn,
116 			   struct mm_struct *mm,
117 			   unsigned long start,
118 			   unsigned long end);
119 
120 	/*
121 	 * test_young is called to check the young/accessed bitflag in
122 	 * the secondary pte. This is used to know if the page is
123 	 * frequently used without actually clearing the flag or tearing
124 	 * down the secondary mapping on the page.
125 	 */
126 	int (*test_young)(struct mmu_notifier *mn,
127 			  struct mm_struct *mm,
128 			  unsigned long address);
129 
130 	/*
131 	 * change_pte is called in cases that pte mapping to page is changed:
132 	 * for example, when ksm remaps pte to point to a new shared page.
133 	 */
134 	void (*change_pte)(struct mmu_notifier *mn,
135 			   struct mm_struct *mm,
136 			   unsigned long address,
137 			   pte_t pte);
138 
139 	/*
140 	 * invalidate_range_start() and invalidate_range_end() must be
141 	 * paired and are called only when the mmap_sem and/or the
142 	 * locks protecting the reverse maps are held. If the subsystem
143 	 * can't guarantee that no additional references are taken to
144 	 * the pages in the range, it has to implement the
145 	 * invalidate_range() notifier to remove any references taken
146 	 * after invalidate_range_start().
147 	 *
148 	 * Invalidation of multiple concurrent ranges may be
149 	 * optionally permitted by the driver. Either way the
150 	 * establishment of sptes is forbidden in the range passed to
151 	 * invalidate_range_begin/end for the whole duration of the
152 	 * invalidate_range_begin/end critical section.
153 	 *
154 	 * invalidate_range_start() is called when all pages in the
155 	 * range are still mapped and have at least a refcount of one.
156 	 *
157 	 * invalidate_range_end() is called when all pages in the
158 	 * range have been unmapped and the pages have been freed by
159 	 * the VM.
160 	 *
161 	 * The VM will remove the page table entries and potentially
162 	 * the page between invalidate_range_start() and
163 	 * invalidate_range_end(). If the page must not be freed
164 	 * because of pending I/O or other circumstances then the
165 	 * invalidate_range_start() callback (or the initial mapping
166 	 * by the driver) must make sure that the refcount is kept
167 	 * elevated.
168 	 *
169 	 * If the driver increases the refcount when the pages are
170 	 * initially mapped into an address space then either
171 	 * invalidate_range_start() or invalidate_range_end() may
172 	 * decrease the refcount. If the refcount is decreased on
173 	 * invalidate_range_start() then the VM can free pages as page
174 	 * table entries are removed.  If the refcount is only
175 	 * droppped on invalidate_range_end() then the driver itself
176 	 * will drop the last refcount but it must take care to flush
177 	 * any secondary tlb before doing the final free on the
178 	 * page. Pages will no longer be referenced by the linux
179 	 * address space but may still be referenced by sptes until
180 	 * the last refcount is dropped.
181 	 *
182 	 * If blockable argument is set to false then the callback cannot
183 	 * sleep and has to return with -EAGAIN. 0 should be returned
184 	 * otherwise. Please note that if invalidate_range_start approves
185 	 * a non-blocking behavior then the same applies to
186 	 * invalidate_range_end.
187 	 *
188 	 */
189 	int (*invalidate_range_start)(struct mmu_notifier *mn,
190 				      const struct mmu_notifier_range *range);
191 	void (*invalidate_range_end)(struct mmu_notifier *mn,
192 				     const struct mmu_notifier_range *range);
193 
194 	/*
195 	 * invalidate_range() is either called between
196 	 * invalidate_range_start() and invalidate_range_end() when the
197 	 * VM has to free pages that where unmapped, but before the
198 	 * pages are actually freed, or outside of _start()/_end() when
199 	 * a (remote) TLB is necessary.
200 	 *
201 	 * If invalidate_range() is used to manage a non-CPU TLB with
202 	 * shared page-tables, it not necessary to implement the
203 	 * invalidate_range_start()/end() notifiers, as
204 	 * invalidate_range() alread catches the points in time when an
205 	 * external TLB range needs to be flushed. For more in depth
206 	 * discussion on this see Documentation/vm/mmu_notifier.rst
207 	 *
208 	 * Note that this function might be called with just a sub-range
209 	 * of what was passed to invalidate_range_start()/end(), if
210 	 * called between those functions.
211 	 */
212 	void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
213 				 unsigned long start, unsigned long end);
214 };
215 
216 /*
217  * The notifier chains are protected by mmap_sem and/or the reverse map
218  * semaphores. Notifier chains are only changed when all reverse maps and
219  * the mmap_sem locks are taken.
220  *
221  * Therefore notifier chains can only be traversed when either
222  *
223  * 1. mmap_sem is held.
224  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
225  * 3. No other concurrent thread can access the list (release)
226  */
227 struct mmu_notifier {
228 	struct hlist_node hlist;
229 	const struct mmu_notifier_ops *ops;
230 };
231 
232 static inline int mm_has_notifiers(struct mm_struct *mm)
233 {
234 	return unlikely(mm->mmu_notifier_mm);
235 }
236 
237 extern int mmu_notifier_register(struct mmu_notifier *mn,
238 				 struct mm_struct *mm);
239 extern int __mmu_notifier_register(struct mmu_notifier *mn,
240 				   struct mm_struct *mm);
241 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
242 				    struct mm_struct *mm);
243 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
244 					       struct mm_struct *mm);
245 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
246 extern void __mmu_notifier_release(struct mm_struct *mm);
247 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
248 					  unsigned long start,
249 					  unsigned long end);
250 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
251 				      unsigned long start,
252 				      unsigned long end);
253 extern int __mmu_notifier_test_young(struct mm_struct *mm,
254 				     unsigned long address);
255 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
256 				      unsigned long address, pte_t pte);
257 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
258 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
259 				  bool only_end);
260 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
261 				  unsigned long start, unsigned long end);
262 extern bool
263 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
264 
265 static inline bool
266 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
267 {
268 	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
269 }
270 
271 static inline void mmu_notifier_release(struct mm_struct *mm)
272 {
273 	if (mm_has_notifiers(mm))
274 		__mmu_notifier_release(mm);
275 }
276 
277 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
278 					  unsigned long start,
279 					  unsigned long end)
280 {
281 	if (mm_has_notifiers(mm))
282 		return __mmu_notifier_clear_flush_young(mm, start, end);
283 	return 0;
284 }
285 
286 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
287 					   unsigned long start,
288 					   unsigned long end)
289 {
290 	if (mm_has_notifiers(mm))
291 		return __mmu_notifier_clear_young(mm, start, end);
292 	return 0;
293 }
294 
295 static inline int mmu_notifier_test_young(struct mm_struct *mm,
296 					  unsigned long address)
297 {
298 	if (mm_has_notifiers(mm))
299 		return __mmu_notifier_test_young(mm, address);
300 	return 0;
301 }
302 
303 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
304 					   unsigned long address, pte_t pte)
305 {
306 	if (mm_has_notifiers(mm))
307 		__mmu_notifier_change_pte(mm, address, pte);
308 }
309 
310 static inline void
311 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
312 {
313 	if (mm_has_notifiers(range->mm)) {
314 		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
315 		__mmu_notifier_invalidate_range_start(range);
316 	}
317 }
318 
319 static inline int
320 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
321 {
322 	if (mm_has_notifiers(range->mm)) {
323 		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
324 		return __mmu_notifier_invalidate_range_start(range);
325 	}
326 	return 0;
327 }
328 
329 static inline void
330 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
331 {
332 	if (mm_has_notifiers(range->mm))
333 		__mmu_notifier_invalidate_range_end(range, false);
334 }
335 
336 static inline void
337 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
338 {
339 	if (mm_has_notifiers(range->mm))
340 		__mmu_notifier_invalidate_range_end(range, true);
341 }
342 
343 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
344 				  unsigned long start, unsigned long end)
345 {
346 	if (mm_has_notifiers(mm))
347 		__mmu_notifier_invalidate_range(mm, start, end);
348 }
349 
350 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
351 {
352 	mm->mmu_notifier_mm = NULL;
353 }
354 
355 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
356 {
357 	if (mm_has_notifiers(mm))
358 		__mmu_notifier_mm_destroy(mm);
359 }
360 
361 
362 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
363 					   enum mmu_notifier_event event,
364 					   unsigned flags,
365 					   struct vm_area_struct *vma,
366 					   struct mm_struct *mm,
367 					   unsigned long start,
368 					   unsigned long end)
369 {
370 	range->vma = vma;
371 	range->event = event;
372 	range->mm = mm;
373 	range->start = start;
374 	range->end = end;
375 	range->flags = flags;
376 }
377 
378 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
379 ({									\
380 	int __young;							\
381 	struct vm_area_struct *___vma = __vma;				\
382 	unsigned long ___address = __address;				\
383 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
384 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
385 						  ___address,		\
386 						  ___address +		\
387 							PAGE_SIZE);	\
388 	__young;							\
389 })
390 
391 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
392 ({									\
393 	int __young;							\
394 	struct vm_area_struct *___vma = __vma;				\
395 	unsigned long ___address = __address;				\
396 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
397 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
398 						  ___address,		\
399 						  ___address +		\
400 							PMD_SIZE);	\
401 	__young;							\
402 })
403 
404 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
405 ({									\
406 	int __young;							\
407 	struct vm_area_struct *___vma = __vma;				\
408 	unsigned long ___address = __address;				\
409 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
410 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
411 					    ___address + PAGE_SIZE);	\
412 	__young;							\
413 })
414 
415 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
416 ({									\
417 	int __young;							\
418 	struct vm_area_struct *___vma = __vma;				\
419 	unsigned long ___address = __address;				\
420 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
421 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
422 					    ___address + PMD_SIZE);	\
423 	__young;							\
424 })
425 
426 #define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
427 ({									\
428 	unsigned long ___addr = __address & PAGE_MASK;			\
429 	struct mm_struct *___mm = (__vma)->vm_mm;			\
430 	pte_t ___pte;							\
431 									\
432 	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
433 	mmu_notifier_invalidate_range(___mm, ___addr,			\
434 					___addr + PAGE_SIZE);		\
435 									\
436 	___pte;								\
437 })
438 
439 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
440 ({									\
441 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
442 	struct mm_struct *___mm = (__vma)->vm_mm;			\
443 	pmd_t ___pmd;							\
444 									\
445 	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
446 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
447 				      ___haddr + HPAGE_PMD_SIZE);	\
448 									\
449 	___pmd;								\
450 })
451 
452 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)		\
453 ({									\
454 	unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;		\
455 	struct mm_struct *___mm = (__vma)->vm_mm;			\
456 	pud_t ___pud;							\
457 									\
458 	___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);		\
459 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
460 				      ___haddr + HPAGE_PUD_SIZE);	\
461 									\
462 	___pud;								\
463 })
464 
465 /*
466  * set_pte_at_notify() sets the pte _after_ running the notifier.
467  * This is safe to start by updating the secondary MMUs, because the primary MMU
468  * pte invalidate must have already happened with a ptep_clear_flush() before
469  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
470  * required when we change both the protection of the mapping from read-only to
471  * read-write and the pfn (like during copy on write page faults). Otherwise the
472  * old page would remain mapped readonly in the secondary MMUs after the new
473  * page is already writable by some CPU through the primary MMU.
474  */
475 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
476 ({									\
477 	struct mm_struct *___mm = __mm;					\
478 	unsigned long ___address = __address;				\
479 	pte_t ___pte = __pte;						\
480 									\
481 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
482 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
483 })
484 
485 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
486 				   void (*func)(struct rcu_head *rcu));
487 
488 #else /* CONFIG_MMU_NOTIFIER */
489 
490 struct mmu_notifier_range {
491 	unsigned long start;
492 	unsigned long end;
493 };
494 
495 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
496 					    unsigned long start,
497 					    unsigned long end)
498 {
499 	range->start = start;
500 	range->end = end;
501 }
502 
503 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end)  \
504 	_mmu_notifier_range_init(range, start, end)
505 
506 static inline bool
507 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
508 {
509 	return true;
510 }
511 
512 static inline int mm_has_notifiers(struct mm_struct *mm)
513 {
514 	return 0;
515 }
516 
517 static inline void mmu_notifier_release(struct mm_struct *mm)
518 {
519 }
520 
521 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
522 					  unsigned long start,
523 					  unsigned long end)
524 {
525 	return 0;
526 }
527 
528 static inline int mmu_notifier_test_young(struct mm_struct *mm,
529 					  unsigned long address)
530 {
531 	return 0;
532 }
533 
534 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
535 					   unsigned long address, pte_t pte)
536 {
537 }
538 
539 static inline void
540 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
541 {
542 }
543 
544 static inline int
545 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
546 {
547 	return 0;
548 }
549 
550 static inline
551 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
552 {
553 }
554 
555 static inline void
556 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
557 {
558 }
559 
560 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
561 				  unsigned long start, unsigned long end)
562 {
563 }
564 
565 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
566 {
567 }
568 
569 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
570 {
571 }
572 
573 #define mmu_notifier_range_update_to_read_only(r) false
574 
575 #define ptep_clear_flush_young_notify ptep_clear_flush_young
576 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
577 #define ptep_clear_young_notify ptep_test_and_clear_young
578 #define pmdp_clear_young_notify pmdp_test_and_clear_young
579 #define	ptep_clear_flush_notify ptep_clear_flush
580 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
581 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
582 #define set_pte_at_notify set_pte_at
583 
584 #endif /* CONFIG_MMU_NOTIFIER */
585 
586 #endif /* _LINUX_MMU_NOTIFIER_H */
587