1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMU_NOTIFIER_H 3 #define _LINUX_MMU_NOTIFIER_H 4 5 #include <linux/list.h> 6 #include <linux/spinlock.h> 7 #include <linux/mm_types.h> 8 #include <linux/mmap_lock.h> 9 #include <linux/srcu.h> 10 #include <linux/interval_tree.h> 11 12 struct mmu_notifier_subscriptions; 13 struct mmu_notifier; 14 struct mmu_notifier_range; 15 struct mmu_interval_notifier; 16 17 /** 18 * enum mmu_notifier_event - reason for the mmu notifier callback 19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that 20 * move the range 21 * 22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like 23 * madvise() or replacing a page by another one, ...). 24 * 25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range 26 * ie using the vma access permission (vm_page_prot) to update the whole range 27 * is enough no need to inspect changes to the CPU page table (mprotect() 28 * syscall) 29 * 30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for 31 * pages in the range so to mirror those changes the user must inspect the CPU 32 * page table (from the end callback). 33 * 34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same 35 * access flags). User should soft dirty the page in the end callback to make 36 * sure that anyone relying on soft dirtiness catch pages that might be written 37 * through non CPU mappings. 38 * 39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal 40 * that the mm refcount is zero and the range is no longer accessible. 41 * 42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal 43 * a device driver to possibly ignore the invalidation if the 44 * owner field matches the driver's device private pgmap owner. 45 * 46 * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no 47 * longer have exclusive access to the page. When sent during creation of an 48 * exclusive range the owner will be initialised to the value provided by the 49 * caller of make_device_exclusive_range(), otherwise the owner will be NULL. 50 */ 51 enum mmu_notifier_event { 52 MMU_NOTIFY_UNMAP = 0, 53 MMU_NOTIFY_CLEAR, 54 MMU_NOTIFY_PROTECTION_VMA, 55 MMU_NOTIFY_PROTECTION_PAGE, 56 MMU_NOTIFY_SOFT_DIRTY, 57 MMU_NOTIFY_RELEASE, 58 MMU_NOTIFY_MIGRATE, 59 MMU_NOTIFY_EXCLUSIVE, 60 }; 61 62 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) 63 64 struct mmu_notifier_ops { 65 /* 66 * Called either by mmu_notifier_unregister or when the mm is 67 * being destroyed by exit_mmap, always before all pages are 68 * freed. This can run concurrently with other mmu notifier 69 * methods (the ones invoked outside the mm context) and it 70 * should tear down all secondary mmu mappings and freeze the 71 * secondary mmu. If this method isn't implemented you've to 72 * be sure that nothing could possibly write to the pages 73 * through the secondary mmu by the time the last thread with 74 * tsk->mm == mm exits. 75 * 76 * As side note: the pages freed after ->release returns could 77 * be immediately reallocated by the gart at an alias physical 78 * address with a different cache model, so if ->release isn't 79 * implemented because all _software_ driven memory accesses 80 * through the secondary mmu are terminated by the time the 81 * last thread of this mm quits, you've also to be sure that 82 * speculative _hardware_ operations can't allocate dirty 83 * cachelines in the cpu that could not be snooped and made 84 * coherent with the other read and write operations happening 85 * through the gart alias address, so leading to memory 86 * corruption. 87 */ 88 void (*release)(struct mmu_notifier *subscription, 89 struct mm_struct *mm); 90 91 /* 92 * clear_flush_young is called after the VM is 93 * test-and-clearing the young/accessed bitflag in the 94 * pte. This way the VM will provide proper aging to the 95 * accesses to the page through the secondary MMUs and not 96 * only to the ones through the Linux pte. 97 * Start-end is necessary in case the secondary MMU is mapping the page 98 * at a smaller granularity than the primary MMU. 99 */ 100 int (*clear_flush_young)(struct mmu_notifier *subscription, 101 struct mm_struct *mm, 102 unsigned long start, 103 unsigned long end); 104 105 /* 106 * clear_young is a lightweight version of clear_flush_young. Like the 107 * latter, it is supposed to test-and-clear the young/accessed bitflag 108 * in the secondary pte, but it may omit flushing the secondary tlb. 109 */ 110 int (*clear_young)(struct mmu_notifier *subscription, 111 struct mm_struct *mm, 112 unsigned long start, 113 unsigned long end); 114 115 /* 116 * test_young is called to check the young/accessed bitflag in 117 * the secondary pte. This is used to know if the page is 118 * frequently used without actually clearing the flag or tearing 119 * down the secondary mapping on the page. 120 */ 121 int (*test_young)(struct mmu_notifier *subscription, 122 struct mm_struct *mm, 123 unsigned long address); 124 125 /* 126 * change_pte is called in cases that pte mapping to page is changed: 127 * for example, when ksm remaps pte to point to a new shared page. 128 */ 129 void (*change_pte)(struct mmu_notifier *subscription, 130 struct mm_struct *mm, 131 unsigned long address, 132 pte_t pte); 133 134 /* 135 * invalidate_range_start() and invalidate_range_end() must be 136 * paired and are called only when the mmap_lock and/or the 137 * locks protecting the reverse maps are held. If the subsystem 138 * can't guarantee that no additional references are taken to 139 * the pages in the range, it has to implement the 140 * invalidate_range() notifier to remove any references taken 141 * after invalidate_range_start(). 142 * 143 * Invalidation of multiple concurrent ranges may be 144 * optionally permitted by the driver. Either way the 145 * establishment of sptes is forbidden in the range passed to 146 * invalidate_range_begin/end for the whole duration of the 147 * invalidate_range_begin/end critical section. 148 * 149 * invalidate_range_start() is called when all pages in the 150 * range are still mapped and have at least a refcount of one. 151 * 152 * invalidate_range_end() is called when all pages in the 153 * range have been unmapped and the pages have been freed by 154 * the VM. 155 * 156 * The VM will remove the page table entries and potentially 157 * the page between invalidate_range_start() and 158 * invalidate_range_end(). If the page must not be freed 159 * because of pending I/O or other circumstances then the 160 * invalidate_range_start() callback (or the initial mapping 161 * by the driver) must make sure that the refcount is kept 162 * elevated. 163 * 164 * If the driver increases the refcount when the pages are 165 * initially mapped into an address space then either 166 * invalidate_range_start() or invalidate_range_end() may 167 * decrease the refcount. If the refcount is decreased on 168 * invalidate_range_start() then the VM can free pages as page 169 * table entries are removed. If the refcount is only 170 * dropped on invalidate_range_end() then the driver itself 171 * will drop the last refcount but it must take care to flush 172 * any secondary tlb before doing the final free on the 173 * page. Pages will no longer be referenced by the linux 174 * address space but may still be referenced by sptes until 175 * the last refcount is dropped. 176 * 177 * If blockable argument is set to false then the callback cannot 178 * sleep and has to return with -EAGAIN if sleeping would be required. 179 * 0 should be returned otherwise. Please note that notifiers that can 180 * fail invalidate_range_start are not allowed to implement 181 * invalidate_range_end, as there is no mechanism for informing the 182 * notifier that its start failed. 183 */ 184 int (*invalidate_range_start)(struct mmu_notifier *subscription, 185 const struct mmu_notifier_range *range); 186 void (*invalidate_range_end)(struct mmu_notifier *subscription, 187 const struct mmu_notifier_range *range); 188 189 /* 190 * arch_invalidate_secondary_tlbs() is used to manage a non-CPU TLB 191 * which shares page-tables with the CPU. The 192 * invalidate_range_start()/end() callbacks should not be implemented as 193 * invalidate_secondary_tlbs() already catches the points in time when 194 * an external TLB needs to be flushed. 195 * 196 * This requires arch_invalidate_secondary_tlbs() to be called while 197 * holding the ptl spin-lock and therefore this callback is not allowed 198 * to sleep. 199 * 200 * This is called by architecture code whenever invalidating a TLB 201 * entry. It is assumed that any secondary TLB has the same rules for 202 * when invalidations are required. If this is not the case architecture 203 * code will need to call this explicitly when required for secondary 204 * TLB invalidation. 205 */ 206 void (*arch_invalidate_secondary_tlbs)( 207 struct mmu_notifier *subscription, 208 struct mm_struct *mm, 209 unsigned long start, 210 unsigned long end); 211 212 /* 213 * These callbacks are used with the get/put interface to manage the 214 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new 215 * notifier for use with the mm. 216 * 217 * free_notifier() is only called after the mmu_notifier has been 218 * fully put, calls to any ops callback are prevented and no ops 219 * callbacks are currently running. It is called from a SRCU callback 220 * and cannot sleep. 221 */ 222 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); 223 void (*free_notifier)(struct mmu_notifier *subscription); 224 }; 225 226 /* 227 * The notifier chains are protected by mmap_lock and/or the reverse map 228 * semaphores. Notifier chains are only changed when all reverse maps and 229 * the mmap_lock locks are taken. 230 * 231 * Therefore notifier chains can only be traversed when either 232 * 233 * 1. mmap_lock is held. 234 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 235 * 3. No other concurrent thread can access the list (release) 236 */ 237 struct mmu_notifier { 238 struct hlist_node hlist; 239 const struct mmu_notifier_ops *ops; 240 struct mm_struct *mm; 241 struct rcu_head rcu; 242 unsigned int users; 243 }; 244 245 /** 246 * struct mmu_interval_notifier_ops 247 * @invalidate: Upon return the caller must stop using any SPTEs within this 248 * range. This function can sleep. Return false only if sleeping 249 * was required but mmu_notifier_range_blockable(range) is false. 250 */ 251 struct mmu_interval_notifier_ops { 252 bool (*invalidate)(struct mmu_interval_notifier *interval_sub, 253 const struct mmu_notifier_range *range, 254 unsigned long cur_seq); 255 }; 256 257 struct mmu_interval_notifier { 258 struct interval_tree_node interval_tree; 259 const struct mmu_interval_notifier_ops *ops; 260 struct mm_struct *mm; 261 struct hlist_node deferred_item; 262 unsigned long invalidate_seq; 263 }; 264 265 #ifdef CONFIG_MMU_NOTIFIER 266 267 #ifdef CONFIG_LOCKDEP 268 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; 269 #endif 270 271 struct mmu_notifier_range { 272 struct mm_struct *mm; 273 unsigned long start; 274 unsigned long end; 275 unsigned flags; 276 enum mmu_notifier_event event; 277 void *owner; 278 }; 279 280 static inline int mm_has_notifiers(struct mm_struct *mm) 281 { 282 return unlikely(mm->notifier_subscriptions); 283 } 284 285 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 286 struct mm_struct *mm); 287 static inline struct mmu_notifier * 288 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) 289 { 290 struct mmu_notifier *ret; 291 292 mmap_write_lock(mm); 293 ret = mmu_notifier_get_locked(ops, mm); 294 mmap_write_unlock(mm); 295 return ret; 296 } 297 void mmu_notifier_put(struct mmu_notifier *subscription); 298 void mmu_notifier_synchronize(void); 299 300 extern int mmu_notifier_register(struct mmu_notifier *subscription, 301 struct mm_struct *mm); 302 extern int __mmu_notifier_register(struct mmu_notifier *subscription, 303 struct mm_struct *mm); 304 extern void mmu_notifier_unregister(struct mmu_notifier *subscription, 305 struct mm_struct *mm); 306 307 unsigned long 308 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); 309 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 310 struct mm_struct *mm, unsigned long start, 311 unsigned long length, 312 const struct mmu_interval_notifier_ops *ops); 313 int mmu_interval_notifier_insert_locked( 314 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 315 unsigned long start, unsigned long length, 316 const struct mmu_interval_notifier_ops *ops); 317 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); 318 319 /** 320 * mmu_interval_set_seq - Save the invalidation sequence 321 * @interval_sub - The subscription passed to invalidate 322 * @cur_seq - The cur_seq passed to the invalidate() callback 323 * 324 * This must be called unconditionally from the invalidate callback of a 325 * struct mmu_interval_notifier_ops under the same lock that is used to call 326 * mmu_interval_read_retry(). It updates the sequence number for later use by 327 * mmu_interval_read_retry(). The provided cur_seq will always be odd. 328 * 329 * If the caller does not call mmu_interval_read_begin() or 330 * mmu_interval_read_retry() then this call is not required. 331 */ 332 static inline void 333 mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, 334 unsigned long cur_seq) 335 { 336 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); 337 } 338 339 /** 340 * mmu_interval_read_retry - End a read side critical section against a VA range 341 * interval_sub: The subscription 342 * seq: The return of the paired mmu_interval_read_begin() 343 * 344 * This MUST be called under a user provided lock that is also held 345 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). 346 * 347 * Each call should be paired with a single mmu_interval_read_begin() and 348 * should be used to conclude the read side. 349 * 350 * Returns true if an invalidation collided with this critical section, and 351 * the caller should retry. 352 */ 353 static inline bool 354 mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, 355 unsigned long seq) 356 { 357 return interval_sub->invalidate_seq != seq; 358 } 359 360 /** 361 * mmu_interval_check_retry - Test if a collision has occurred 362 * interval_sub: The subscription 363 * seq: The return of the matching mmu_interval_read_begin() 364 * 365 * This can be used in the critical section between mmu_interval_read_begin() 366 * and mmu_interval_read_retry(). A return of true indicates an invalidation 367 * has collided with this critical region and a future 368 * mmu_interval_read_retry() will return true. 369 * 370 * False is not reliable and only suggests a collision may not have 371 * occurred. It can be called many times and does not have to hold the user 372 * provided lock. 373 * 374 * This call can be used as part of loops and other expensive operations to 375 * expedite a retry. 376 */ 377 static inline bool 378 mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, 379 unsigned long seq) 380 { 381 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 382 return READ_ONCE(interval_sub->invalidate_seq) != seq; 383 } 384 385 extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); 386 extern void __mmu_notifier_release(struct mm_struct *mm); 387 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 388 unsigned long start, 389 unsigned long end); 390 extern int __mmu_notifier_clear_young(struct mm_struct *mm, 391 unsigned long start, 392 unsigned long end); 393 extern int __mmu_notifier_test_young(struct mm_struct *mm, 394 unsigned long address); 395 extern void __mmu_notifier_change_pte(struct mm_struct *mm, 396 unsigned long address, pte_t pte); 397 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 398 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r); 399 extern void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm, 400 unsigned long start, unsigned long end); 401 extern bool 402 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); 403 404 static inline bool 405 mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 406 { 407 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); 408 } 409 410 static inline void mmu_notifier_release(struct mm_struct *mm) 411 { 412 if (mm_has_notifiers(mm)) 413 __mmu_notifier_release(mm); 414 } 415 416 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 417 unsigned long start, 418 unsigned long end) 419 { 420 if (mm_has_notifiers(mm)) 421 return __mmu_notifier_clear_flush_young(mm, start, end); 422 return 0; 423 } 424 425 static inline int mmu_notifier_clear_young(struct mm_struct *mm, 426 unsigned long start, 427 unsigned long end) 428 { 429 if (mm_has_notifiers(mm)) 430 return __mmu_notifier_clear_young(mm, start, end); 431 return 0; 432 } 433 434 static inline int mmu_notifier_test_young(struct mm_struct *mm, 435 unsigned long address) 436 { 437 if (mm_has_notifiers(mm)) 438 return __mmu_notifier_test_young(mm, address); 439 return 0; 440 } 441 442 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 443 unsigned long address, pte_t pte) 444 { 445 if (mm_has_notifiers(mm)) 446 __mmu_notifier_change_pte(mm, address, pte); 447 } 448 449 static inline void 450 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 451 { 452 might_sleep(); 453 454 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 455 if (mm_has_notifiers(range->mm)) { 456 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; 457 __mmu_notifier_invalidate_range_start(range); 458 } 459 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 460 } 461 462 /* 463 * This version of mmu_notifier_invalidate_range_start() avoids blocking, but it 464 * can return an error if a notifier can't proceed without blocking, in which 465 * case you're not allowed to modify PTEs in the specified range. 466 * 467 * This is mainly intended for OOM handling. 468 */ 469 static inline int __must_check 470 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 471 { 472 int ret = 0; 473 474 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 475 if (mm_has_notifiers(range->mm)) { 476 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; 477 ret = __mmu_notifier_invalidate_range_start(range); 478 } 479 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 480 return ret; 481 } 482 483 static inline void 484 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 485 { 486 if (mmu_notifier_range_blockable(range)) 487 might_sleep(); 488 489 if (mm_has_notifiers(range->mm)) 490 __mmu_notifier_invalidate_range_end(range); 491 } 492 493 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm, 494 unsigned long start, unsigned long end) 495 { 496 if (mm_has_notifiers(mm)) 497 __mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); 498 } 499 500 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 501 { 502 mm->notifier_subscriptions = NULL; 503 } 504 505 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 506 { 507 if (mm_has_notifiers(mm)) 508 __mmu_notifier_subscriptions_destroy(mm); 509 } 510 511 512 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 513 enum mmu_notifier_event event, 514 unsigned flags, 515 struct mm_struct *mm, 516 unsigned long start, 517 unsigned long end) 518 { 519 range->event = event; 520 range->mm = mm; 521 range->start = start; 522 range->end = end; 523 range->flags = flags; 524 } 525 526 static inline void mmu_notifier_range_init_owner( 527 struct mmu_notifier_range *range, 528 enum mmu_notifier_event event, unsigned int flags, 529 struct mm_struct *mm, unsigned long start, 530 unsigned long end, void *owner) 531 { 532 mmu_notifier_range_init(range, event, flags, mm, start, end); 533 range->owner = owner; 534 } 535 536 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 537 ({ \ 538 int __young; \ 539 struct vm_area_struct *___vma = __vma; \ 540 unsigned long ___address = __address; \ 541 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 542 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 543 ___address, \ 544 ___address + \ 545 PAGE_SIZE); \ 546 __young; \ 547 }) 548 549 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 550 ({ \ 551 int __young; \ 552 struct vm_area_struct *___vma = __vma; \ 553 unsigned long ___address = __address; \ 554 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 555 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 556 ___address, \ 557 ___address + \ 558 PMD_SIZE); \ 559 __young; \ 560 }) 561 562 #define ptep_clear_young_notify(__vma, __address, __ptep) \ 563 ({ \ 564 int __young; \ 565 struct vm_area_struct *___vma = __vma; \ 566 unsigned long ___address = __address; \ 567 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 568 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 569 ___address + PAGE_SIZE); \ 570 __young; \ 571 }) 572 573 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 574 ({ \ 575 int __young; \ 576 struct vm_area_struct *___vma = __vma; \ 577 unsigned long ___address = __address; \ 578 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 579 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 580 ___address + PMD_SIZE); \ 581 __young; \ 582 }) 583 584 /* 585 * set_pte_at_notify() sets the pte _after_ running the notifier. 586 * This is safe to start by updating the secondary MMUs, because the primary MMU 587 * pte invalidate must have already happened with a ptep_clear_flush() before 588 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 589 * required when we change both the protection of the mapping from read-only to 590 * read-write and the pfn (like during copy on write page faults). Otherwise the 591 * old page would remain mapped readonly in the secondary MMUs after the new 592 * page is already writable by some CPU through the primary MMU. 593 */ 594 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 595 ({ \ 596 struct mm_struct *___mm = __mm; \ 597 unsigned long ___address = __address; \ 598 pte_t ___pte = __pte; \ 599 \ 600 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 601 set_pte_at(___mm, ___address, __ptep, ___pte); \ 602 }) 603 604 #else /* CONFIG_MMU_NOTIFIER */ 605 606 struct mmu_notifier_range { 607 unsigned long start; 608 unsigned long end; 609 }; 610 611 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 612 unsigned long start, 613 unsigned long end) 614 { 615 range->start = start; 616 range->end = end; 617 } 618 619 #define mmu_notifier_range_init(range,event,flags,mm,start,end) \ 620 _mmu_notifier_range_init(range, start, end) 621 #define mmu_notifier_range_init_owner(range, event, flags, mm, start, \ 622 end, owner) \ 623 _mmu_notifier_range_init(range, start, end) 624 625 static inline bool 626 mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 627 { 628 return true; 629 } 630 631 static inline int mm_has_notifiers(struct mm_struct *mm) 632 { 633 return 0; 634 } 635 636 static inline void mmu_notifier_release(struct mm_struct *mm) 637 { 638 } 639 640 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 641 unsigned long start, 642 unsigned long end) 643 { 644 return 0; 645 } 646 647 static inline int mmu_notifier_test_young(struct mm_struct *mm, 648 unsigned long address) 649 { 650 return 0; 651 } 652 653 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 654 unsigned long address, pte_t pte) 655 { 656 } 657 658 static inline void 659 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 660 { 661 } 662 663 static inline int 664 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 665 { 666 return 0; 667 } 668 669 static inline 670 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 671 { 672 } 673 674 static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm, 675 unsigned long start, unsigned long end) 676 { 677 } 678 679 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 680 { 681 } 682 683 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 684 { 685 } 686 687 #define mmu_notifier_range_update_to_read_only(r) false 688 689 #define ptep_clear_flush_young_notify ptep_clear_flush_young 690 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young 691 #define ptep_clear_young_notify ptep_test_and_clear_young 692 #define pmdp_clear_young_notify pmdp_test_and_clear_young 693 #define ptep_clear_flush_notify ptep_clear_flush 694 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 695 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush 696 #define set_pte_at_notify set_pte_at 697 698 static inline void mmu_notifier_synchronize(void) 699 { 700 } 701 702 #endif /* CONFIG_MMU_NOTIFIER */ 703 704 #endif /* _LINUX_MMU_NOTIFIER_H */ 705