1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMU_NOTIFIER_H 3 #define _LINUX_MMU_NOTIFIER_H 4 5 #include <linux/types.h> 6 #include <linux/list.h> 7 #include <linux/spinlock.h> 8 #include <linux/mm_types.h> 9 #include <linux/srcu.h> 10 11 struct mmu_notifier; 12 struct mmu_notifier_ops; 13 14 /* mmu_notifier_ops flags */ 15 #define MMU_INVALIDATE_DOES_NOT_BLOCK (0x01) 16 17 #ifdef CONFIG_MMU_NOTIFIER 18 19 /* 20 * The mmu notifier_mm structure is allocated and installed in 21 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected 22 * critical section and it's released only when mm_count reaches zero 23 * in mmdrop(). 24 */ 25 struct mmu_notifier_mm { 26 /* all mmu notifiers registerd in this mm are queued in this list */ 27 struct hlist_head list; 28 /* to serialize the list modifications and hlist_unhashed */ 29 spinlock_t lock; 30 }; 31 32 struct mmu_notifier_ops { 33 /* 34 * Flags to specify behavior of callbacks for this MMU notifier. 35 * Used to determine which context an operation may be called. 36 * 37 * MMU_INVALIDATE_DOES_NOT_BLOCK: invalidate_range_* callbacks do not 38 * block 39 */ 40 int flags; 41 42 /* 43 * Called either by mmu_notifier_unregister or when the mm is 44 * being destroyed by exit_mmap, always before all pages are 45 * freed. This can run concurrently with other mmu notifier 46 * methods (the ones invoked outside the mm context) and it 47 * should tear down all secondary mmu mappings and freeze the 48 * secondary mmu. If this method isn't implemented you've to 49 * be sure that nothing could possibly write to the pages 50 * through the secondary mmu by the time the last thread with 51 * tsk->mm == mm exits. 52 * 53 * As side note: the pages freed after ->release returns could 54 * be immediately reallocated by the gart at an alias physical 55 * address with a different cache model, so if ->release isn't 56 * implemented because all _software_ driven memory accesses 57 * through the secondary mmu are terminated by the time the 58 * last thread of this mm quits, you've also to be sure that 59 * speculative _hardware_ operations can't allocate dirty 60 * cachelines in the cpu that could not be snooped and made 61 * coherent with the other read and write operations happening 62 * through the gart alias address, so leading to memory 63 * corruption. 64 */ 65 void (*release)(struct mmu_notifier *mn, 66 struct mm_struct *mm); 67 68 /* 69 * clear_flush_young is called after the VM is 70 * test-and-clearing the young/accessed bitflag in the 71 * pte. This way the VM will provide proper aging to the 72 * accesses to the page through the secondary MMUs and not 73 * only to the ones through the Linux pte. 74 * Start-end is necessary in case the secondary MMU is mapping the page 75 * at a smaller granularity than the primary MMU. 76 */ 77 int (*clear_flush_young)(struct mmu_notifier *mn, 78 struct mm_struct *mm, 79 unsigned long start, 80 unsigned long end); 81 82 /* 83 * clear_young is a lightweight version of clear_flush_young. Like the 84 * latter, it is supposed to test-and-clear the young/accessed bitflag 85 * in the secondary pte, but it may omit flushing the secondary tlb. 86 */ 87 int (*clear_young)(struct mmu_notifier *mn, 88 struct mm_struct *mm, 89 unsigned long start, 90 unsigned long end); 91 92 /* 93 * test_young is called to check the young/accessed bitflag in 94 * the secondary pte. This is used to know if the page is 95 * frequently used without actually clearing the flag or tearing 96 * down the secondary mapping on the page. 97 */ 98 int (*test_young)(struct mmu_notifier *mn, 99 struct mm_struct *mm, 100 unsigned long address); 101 102 /* 103 * change_pte is called in cases that pte mapping to page is changed: 104 * for example, when ksm remaps pte to point to a new shared page. 105 */ 106 void (*change_pte)(struct mmu_notifier *mn, 107 struct mm_struct *mm, 108 unsigned long address, 109 pte_t pte); 110 111 /* 112 * invalidate_range_start() and invalidate_range_end() must be 113 * paired and are called only when the mmap_sem and/or the 114 * locks protecting the reverse maps are held. If the subsystem 115 * can't guarantee that no additional references are taken to 116 * the pages in the range, it has to implement the 117 * invalidate_range() notifier to remove any references taken 118 * after invalidate_range_start(). 119 * 120 * Invalidation of multiple concurrent ranges may be 121 * optionally permitted by the driver. Either way the 122 * establishment of sptes is forbidden in the range passed to 123 * invalidate_range_begin/end for the whole duration of the 124 * invalidate_range_begin/end critical section. 125 * 126 * invalidate_range_start() is called when all pages in the 127 * range are still mapped and have at least a refcount of one. 128 * 129 * invalidate_range_end() is called when all pages in the 130 * range have been unmapped and the pages have been freed by 131 * the VM. 132 * 133 * The VM will remove the page table entries and potentially 134 * the page between invalidate_range_start() and 135 * invalidate_range_end(). If the page must not be freed 136 * because of pending I/O or other circumstances then the 137 * invalidate_range_start() callback (or the initial mapping 138 * by the driver) must make sure that the refcount is kept 139 * elevated. 140 * 141 * If the driver increases the refcount when the pages are 142 * initially mapped into an address space then either 143 * invalidate_range_start() or invalidate_range_end() may 144 * decrease the refcount. If the refcount is decreased on 145 * invalidate_range_start() then the VM can free pages as page 146 * table entries are removed. If the refcount is only 147 * droppped on invalidate_range_end() then the driver itself 148 * will drop the last refcount but it must take care to flush 149 * any secondary tlb before doing the final free on the 150 * page. Pages will no longer be referenced by the linux 151 * address space but may still be referenced by sptes until 152 * the last refcount is dropped. 153 * 154 * If blockable argument is set to false then the callback cannot 155 * sleep and has to return with -EAGAIN. 0 should be returned 156 * otherwise. 157 * 158 */ 159 int (*invalidate_range_start)(struct mmu_notifier *mn, 160 struct mm_struct *mm, 161 unsigned long start, unsigned long end, 162 bool blockable); 163 void (*invalidate_range_end)(struct mmu_notifier *mn, 164 struct mm_struct *mm, 165 unsigned long start, unsigned long end); 166 167 /* 168 * invalidate_range() is either called between 169 * invalidate_range_start() and invalidate_range_end() when the 170 * VM has to free pages that where unmapped, but before the 171 * pages are actually freed, or outside of _start()/_end() when 172 * a (remote) TLB is necessary. 173 * 174 * If invalidate_range() is used to manage a non-CPU TLB with 175 * shared page-tables, it not necessary to implement the 176 * invalidate_range_start()/end() notifiers, as 177 * invalidate_range() alread catches the points in time when an 178 * external TLB range needs to be flushed. For more in depth 179 * discussion on this see Documentation/vm/mmu_notifier.rst 180 * 181 * Note that this function might be called with just a sub-range 182 * of what was passed to invalidate_range_start()/end(), if 183 * called between those functions. 184 * 185 * If this callback cannot block, and invalidate_range_{start,end} 186 * cannot block, mmu_notifier_ops.flags should have 187 * MMU_INVALIDATE_DOES_NOT_BLOCK set. 188 */ 189 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm, 190 unsigned long start, unsigned long end); 191 }; 192 193 /* 194 * The notifier chains are protected by mmap_sem and/or the reverse map 195 * semaphores. Notifier chains are only changed when all reverse maps and 196 * the mmap_sem locks are taken. 197 * 198 * Therefore notifier chains can only be traversed when either 199 * 200 * 1. mmap_sem is held. 201 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 202 * 3. No other concurrent thread can access the list (release) 203 */ 204 struct mmu_notifier { 205 struct hlist_node hlist; 206 const struct mmu_notifier_ops *ops; 207 }; 208 209 static inline int mm_has_notifiers(struct mm_struct *mm) 210 { 211 return unlikely(mm->mmu_notifier_mm); 212 } 213 214 extern int mmu_notifier_register(struct mmu_notifier *mn, 215 struct mm_struct *mm); 216 extern int __mmu_notifier_register(struct mmu_notifier *mn, 217 struct mm_struct *mm); 218 extern void mmu_notifier_unregister(struct mmu_notifier *mn, 219 struct mm_struct *mm); 220 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, 221 struct mm_struct *mm); 222 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); 223 extern void __mmu_notifier_release(struct mm_struct *mm); 224 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 225 unsigned long start, 226 unsigned long end); 227 extern int __mmu_notifier_clear_young(struct mm_struct *mm, 228 unsigned long start, 229 unsigned long end); 230 extern int __mmu_notifier_test_young(struct mm_struct *mm, 231 unsigned long address); 232 extern void __mmu_notifier_change_pte(struct mm_struct *mm, 233 unsigned long address, pte_t pte); 234 extern int __mmu_notifier_invalidate_range_start(struct mm_struct *mm, 235 unsigned long start, unsigned long end, 236 bool blockable); 237 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, 238 unsigned long start, unsigned long end, 239 bool only_end); 240 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 241 unsigned long start, unsigned long end); 242 extern bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm); 243 244 static inline void mmu_notifier_release(struct mm_struct *mm) 245 { 246 if (mm_has_notifiers(mm)) 247 __mmu_notifier_release(mm); 248 } 249 250 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 251 unsigned long start, 252 unsigned long end) 253 { 254 if (mm_has_notifiers(mm)) 255 return __mmu_notifier_clear_flush_young(mm, start, end); 256 return 0; 257 } 258 259 static inline int mmu_notifier_clear_young(struct mm_struct *mm, 260 unsigned long start, 261 unsigned long end) 262 { 263 if (mm_has_notifiers(mm)) 264 return __mmu_notifier_clear_young(mm, start, end); 265 return 0; 266 } 267 268 static inline int mmu_notifier_test_young(struct mm_struct *mm, 269 unsigned long address) 270 { 271 if (mm_has_notifiers(mm)) 272 return __mmu_notifier_test_young(mm, address); 273 return 0; 274 } 275 276 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 277 unsigned long address, pte_t pte) 278 { 279 if (mm_has_notifiers(mm)) 280 __mmu_notifier_change_pte(mm, address, pte); 281 } 282 283 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, 284 unsigned long start, unsigned long end) 285 { 286 if (mm_has_notifiers(mm)) 287 __mmu_notifier_invalidate_range_start(mm, start, end, true); 288 } 289 290 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm, 291 unsigned long start, unsigned long end) 292 { 293 if (mm_has_notifiers(mm)) 294 return __mmu_notifier_invalidate_range_start(mm, start, end, false); 295 return 0; 296 } 297 298 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, 299 unsigned long start, unsigned long end) 300 { 301 if (mm_has_notifiers(mm)) 302 __mmu_notifier_invalidate_range_end(mm, start, end, false); 303 } 304 305 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm, 306 unsigned long start, unsigned long end) 307 { 308 if (mm_has_notifiers(mm)) 309 __mmu_notifier_invalidate_range_end(mm, start, end, true); 310 } 311 312 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 313 unsigned long start, unsigned long end) 314 { 315 if (mm_has_notifiers(mm)) 316 __mmu_notifier_invalidate_range(mm, start, end); 317 } 318 319 static inline void mmu_notifier_mm_init(struct mm_struct *mm) 320 { 321 mm->mmu_notifier_mm = NULL; 322 } 323 324 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 325 { 326 if (mm_has_notifiers(mm)) 327 __mmu_notifier_mm_destroy(mm); 328 } 329 330 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 331 ({ \ 332 int __young; \ 333 struct vm_area_struct *___vma = __vma; \ 334 unsigned long ___address = __address; \ 335 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 336 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 337 ___address, \ 338 ___address + \ 339 PAGE_SIZE); \ 340 __young; \ 341 }) 342 343 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 344 ({ \ 345 int __young; \ 346 struct vm_area_struct *___vma = __vma; \ 347 unsigned long ___address = __address; \ 348 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 349 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 350 ___address, \ 351 ___address + \ 352 PMD_SIZE); \ 353 __young; \ 354 }) 355 356 #define ptep_clear_young_notify(__vma, __address, __ptep) \ 357 ({ \ 358 int __young; \ 359 struct vm_area_struct *___vma = __vma; \ 360 unsigned long ___address = __address; \ 361 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 362 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 363 ___address + PAGE_SIZE); \ 364 __young; \ 365 }) 366 367 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 368 ({ \ 369 int __young; \ 370 struct vm_area_struct *___vma = __vma; \ 371 unsigned long ___address = __address; \ 372 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 373 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 374 ___address + PMD_SIZE); \ 375 __young; \ 376 }) 377 378 #define ptep_clear_flush_notify(__vma, __address, __ptep) \ 379 ({ \ 380 unsigned long ___addr = __address & PAGE_MASK; \ 381 struct mm_struct *___mm = (__vma)->vm_mm; \ 382 pte_t ___pte; \ 383 \ 384 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 385 mmu_notifier_invalidate_range(___mm, ___addr, \ 386 ___addr + PAGE_SIZE); \ 387 \ 388 ___pte; \ 389 }) 390 391 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 392 ({ \ 393 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 394 struct mm_struct *___mm = (__vma)->vm_mm; \ 395 pmd_t ___pmd; \ 396 \ 397 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 398 mmu_notifier_invalidate_range(___mm, ___haddr, \ 399 ___haddr + HPAGE_PMD_SIZE); \ 400 \ 401 ___pmd; \ 402 }) 403 404 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 405 ({ \ 406 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 407 struct mm_struct *___mm = (__vma)->vm_mm; \ 408 pud_t ___pud; \ 409 \ 410 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 411 mmu_notifier_invalidate_range(___mm, ___haddr, \ 412 ___haddr + HPAGE_PUD_SIZE); \ 413 \ 414 ___pud; \ 415 }) 416 417 /* 418 * set_pte_at_notify() sets the pte _after_ running the notifier. 419 * This is safe to start by updating the secondary MMUs, because the primary MMU 420 * pte invalidate must have already happened with a ptep_clear_flush() before 421 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 422 * required when we change both the protection of the mapping from read-only to 423 * read-write and the pfn (like during copy on write page faults). Otherwise the 424 * old page would remain mapped readonly in the secondary MMUs after the new 425 * page is already writable by some CPU through the primary MMU. 426 */ 427 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 428 ({ \ 429 struct mm_struct *___mm = __mm; \ 430 unsigned long ___address = __address; \ 431 pte_t ___pte = __pte; \ 432 \ 433 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 434 set_pte_at(___mm, ___address, __ptep, ___pte); \ 435 }) 436 437 extern void mmu_notifier_call_srcu(struct rcu_head *rcu, 438 void (*func)(struct rcu_head *rcu)); 439 extern void mmu_notifier_synchronize(void); 440 441 #else /* CONFIG_MMU_NOTIFIER */ 442 443 static inline int mm_has_notifiers(struct mm_struct *mm) 444 { 445 return 0; 446 } 447 448 static inline void mmu_notifier_release(struct mm_struct *mm) 449 { 450 } 451 452 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 453 unsigned long start, 454 unsigned long end) 455 { 456 return 0; 457 } 458 459 static inline int mmu_notifier_test_young(struct mm_struct *mm, 460 unsigned long address) 461 { 462 return 0; 463 } 464 465 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 466 unsigned long address, pte_t pte) 467 { 468 } 469 470 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, 471 unsigned long start, unsigned long end) 472 { 473 } 474 475 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm, 476 unsigned long start, unsigned long end) 477 { 478 return 0; 479 } 480 481 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, 482 unsigned long start, unsigned long end) 483 { 484 } 485 486 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm, 487 unsigned long start, unsigned long end) 488 { 489 } 490 491 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 492 unsigned long start, unsigned long end) 493 { 494 } 495 496 static inline bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm) 497 { 498 return false; 499 } 500 501 static inline void mmu_notifier_mm_init(struct mm_struct *mm) 502 { 503 } 504 505 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 506 { 507 } 508 509 #define ptep_clear_flush_young_notify ptep_clear_flush_young 510 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young 511 #define ptep_clear_young_notify ptep_test_and_clear_young 512 #define pmdp_clear_young_notify pmdp_test_and_clear_young 513 #define ptep_clear_flush_notify ptep_clear_flush 514 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 515 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush 516 #define set_pte_at_notify set_pte_at 517 518 #endif /* CONFIG_MMU_NOTIFIER */ 519 520 #endif /* _LINUX_MMU_NOTIFIER_H */ 521