1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMU_NOTIFIER_H 3 #define _LINUX_MMU_NOTIFIER_H 4 5 #include <linux/list.h> 6 #include <linux/spinlock.h> 7 #include <linux/mm_types.h> 8 #include <linux/srcu.h> 9 #include <linux/interval_tree.h> 10 11 struct mmu_notifier_mm; 12 struct mmu_notifier; 13 struct mmu_notifier_range; 14 struct mmu_interval_notifier; 15 16 /** 17 * enum mmu_notifier_event - reason for the mmu notifier callback 18 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that 19 * move the range 20 * 21 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like 22 * madvise() or replacing a page by another one, ...). 23 * 24 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range 25 * ie using the vma access permission (vm_page_prot) to update the whole range 26 * is enough no need to inspect changes to the CPU page table (mprotect() 27 * syscall) 28 * 29 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for 30 * pages in the range so to mirror those changes the user must inspect the CPU 31 * page table (from the end callback). 32 * 33 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same 34 * access flags). User should soft dirty the page in the end callback to make 35 * sure that anyone relying on soft dirtyness catch pages that might be written 36 * through non CPU mappings. 37 * 38 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal 39 * that the mm refcount is zero and the range is no longer accessible. 40 */ 41 enum mmu_notifier_event { 42 MMU_NOTIFY_UNMAP = 0, 43 MMU_NOTIFY_CLEAR, 44 MMU_NOTIFY_PROTECTION_VMA, 45 MMU_NOTIFY_PROTECTION_PAGE, 46 MMU_NOTIFY_SOFT_DIRTY, 47 MMU_NOTIFY_RELEASE, 48 }; 49 50 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) 51 52 struct mmu_notifier_ops { 53 /* 54 * Called either by mmu_notifier_unregister or when the mm is 55 * being destroyed by exit_mmap, always before all pages are 56 * freed. This can run concurrently with other mmu notifier 57 * methods (the ones invoked outside the mm context) and it 58 * should tear down all secondary mmu mappings and freeze the 59 * secondary mmu. If this method isn't implemented you've to 60 * be sure that nothing could possibly write to the pages 61 * through the secondary mmu by the time the last thread with 62 * tsk->mm == mm exits. 63 * 64 * As side note: the pages freed after ->release returns could 65 * be immediately reallocated by the gart at an alias physical 66 * address with a different cache model, so if ->release isn't 67 * implemented because all _software_ driven memory accesses 68 * through the secondary mmu are terminated by the time the 69 * last thread of this mm quits, you've also to be sure that 70 * speculative _hardware_ operations can't allocate dirty 71 * cachelines in the cpu that could not be snooped and made 72 * coherent with the other read and write operations happening 73 * through the gart alias address, so leading to memory 74 * corruption. 75 */ 76 void (*release)(struct mmu_notifier *mn, 77 struct mm_struct *mm); 78 79 /* 80 * clear_flush_young is called after the VM is 81 * test-and-clearing the young/accessed bitflag in the 82 * pte. This way the VM will provide proper aging to the 83 * accesses to the page through the secondary MMUs and not 84 * only to the ones through the Linux pte. 85 * Start-end is necessary in case the secondary MMU is mapping the page 86 * at a smaller granularity than the primary MMU. 87 */ 88 int (*clear_flush_young)(struct mmu_notifier *mn, 89 struct mm_struct *mm, 90 unsigned long start, 91 unsigned long end); 92 93 /* 94 * clear_young is a lightweight version of clear_flush_young. Like the 95 * latter, it is supposed to test-and-clear the young/accessed bitflag 96 * in the secondary pte, but it may omit flushing the secondary tlb. 97 */ 98 int (*clear_young)(struct mmu_notifier *mn, 99 struct mm_struct *mm, 100 unsigned long start, 101 unsigned long end); 102 103 /* 104 * test_young is called to check the young/accessed bitflag in 105 * the secondary pte. This is used to know if the page is 106 * frequently used without actually clearing the flag or tearing 107 * down the secondary mapping on the page. 108 */ 109 int (*test_young)(struct mmu_notifier *mn, 110 struct mm_struct *mm, 111 unsigned long address); 112 113 /* 114 * change_pte is called in cases that pte mapping to page is changed: 115 * for example, when ksm remaps pte to point to a new shared page. 116 */ 117 void (*change_pte)(struct mmu_notifier *mn, 118 struct mm_struct *mm, 119 unsigned long address, 120 pte_t pte); 121 122 /* 123 * invalidate_range_start() and invalidate_range_end() must be 124 * paired and are called only when the mmap_sem and/or the 125 * locks protecting the reverse maps are held. If the subsystem 126 * can't guarantee that no additional references are taken to 127 * the pages in the range, it has to implement the 128 * invalidate_range() notifier to remove any references taken 129 * after invalidate_range_start(). 130 * 131 * Invalidation of multiple concurrent ranges may be 132 * optionally permitted by the driver. Either way the 133 * establishment of sptes is forbidden in the range passed to 134 * invalidate_range_begin/end for the whole duration of the 135 * invalidate_range_begin/end critical section. 136 * 137 * invalidate_range_start() is called when all pages in the 138 * range are still mapped and have at least a refcount of one. 139 * 140 * invalidate_range_end() is called when all pages in the 141 * range have been unmapped and the pages have been freed by 142 * the VM. 143 * 144 * The VM will remove the page table entries and potentially 145 * the page between invalidate_range_start() and 146 * invalidate_range_end(). If the page must not be freed 147 * because of pending I/O or other circumstances then the 148 * invalidate_range_start() callback (or the initial mapping 149 * by the driver) must make sure that the refcount is kept 150 * elevated. 151 * 152 * If the driver increases the refcount when the pages are 153 * initially mapped into an address space then either 154 * invalidate_range_start() or invalidate_range_end() may 155 * decrease the refcount. If the refcount is decreased on 156 * invalidate_range_start() then the VM can free pages as page 157 * table entries are removed. If the refcount is only 158 * droppped on invalidate_range_end() then the driver itself 159 * will drop the last refcount but it must take care to flush 160 * any secondary tlb before doing the final free on the 161 * page. Pages will no longer be referenced by the linux 162 * address space but may still be referenced by sptes until 163 * the last refcount is dropped. 164 * 165 * If blockable argument is set to false then the callback cannot 166 * sleep and has to return with -EAGAIN. 0 should be returned 167 * otherwise. Please note that if invalidate_range_start approves 168 * a non-blocking behavior then the same applies to 169 * invalidate_range_end. 170 * 171 */ 172 int (*invalidate_range_start)(struct mmu_notifier *mn, 173 const struct mmu_notifier_range *range); 174 void (*invalidate_range_end)(struct mmu_notifier *mn, 175 const struct mmu_notifier_range *range); 176 177 /* 178 * invalidate_range() is either called between 179 * invalidate_range_start() and invalidate_range_end() when the 180 * VM has to free pages that where unmapped, but before the 181 * pages are actually freed, or outside of _start()/_end() when 182 * a (remote) TLB is necessary. 183 * 184 * If invalidate_range() is used to manage a non-CPU TLB with 185 * shared page-tables, it not necessary to implement the 186 * invalidate_range_start()/end() notifiers, as 187 * invalidate_range() alread catches the points in time when an 188 * external TLB range needs to be flushed. For more in depth 189 * discussion on this see Documentation/vm/mmu_notifier.rst 190 * 191 * Note that this function might be called with just a sub-range 192 * of what was passed to invalidate_range_start()/end(), if 193 * called between those functions. 194 */ 195 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm, 196 unsigned long start, unsigned long end); 197 198 /* 199 * These callbacks are used with the get/put interface to manage the 200 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new 201 * notifier for use with the mm. 202 * 203 * free_notifier() is only called after the mmu_notifier has been 204 * fully put, calls to any ops callback are prevented and no ops 205 * callbacks are currently running. It is called from a SRCU callback 206 * and cannot sleep. 207 */ 208 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); 209 void (*free_notifier)(struct mmu_notifier *mn); 210 }; 211 212 /* 213 * The notifier chains are protected by mmap_sem and/or the reverse map 214 * semaphores. Notifier chains are only changed when all reverse maps and 215 * the mmap_sem locks are taken. 216 * 217 * Therefore notifier chains can only be traversed when either 218 * 219 * 1. mmap_sem is held. 220 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 221 * 3. No other concurrent thread can access the list (release) 222 */ 223 struct mmu_notifier { 224 struct hlist_node hlist; 225 const struct mmu_notifier_ops *ops; 226 struct mm_struct *mm; 227 struct rcu_head rcu; 228 unsigned int users; 229 }; 230 231 /** 232 * struct mmu_interval_notifier_ops 233 * @invalidate: Upon return the caller must stop using any SPTEs within this 234 * range. This function can sleep. Return false only if sleeping 235 * was required but mmu_notifier_range_blockable(range) is false. 236 */ 237 struct mmu_interval_notifier_ops { 238 bool (*invalidate)(struct mmu_interval_notifier *mni, 239 const struct mmu_notifier_range *range, 240 unsigned long cur_seq); 241 }; 242 243 struct mmu_interval_notifier { 244 struct interval_tree_node interval_tree; 245 const struct mmu_interval_notifier_ops *ops; 246 struct mm_struct *mm; 247 struct hlist_node deferred_item; 248 unsigned long invalidate_seq; 249 }; 250 251 #ifdef CONFIG_MMU_NOTIFIER 252 253 #ifdef CONFIG_LOCKDEP 254 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; 255 #endif 256 257 struct mmu_notifier_range { 258 struct vm_area_struct *vma; 259 struct mm_struct *mm; 260 unsigned long start; 261 unsigned long end; 262 unsigned flags; 263 enum mmu_notifier_event event; 264 }; 265 266 static inline int mm_has_notifiers(struct mm_struct *mm) 267 { 268 return unlikely(mm->mmu_notifier_mm); 269 } 270 271 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 272 struct mm_struct *mm); 273 static inline struct mmu_notifier * 274 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) 275 { 276 struct mmu_notifier *ret; 277 278 down_write(&mm->mmap_sem); 279 ret = mmu_notifier_get_locked(ops, mm); 280 up_write(&mm->mmap_sem); 281 return ret; 282 } 283 void mmu_notifier_put(struct mmu_notifier *mn); 284 void mmu_notifier_synchronize(void); 285 286 extern int mmu_notifier_register(struct mmu_notifier *mn, 287 struct mm_struct *mm); 288 extern int __mmu_notifier_register(struct mmu_notifier *mn, 289 struct mm_struct *mm); 290 extern void mmu_notifier_unregister(struct mmu_notifier *mn, 291 struct mm_struct *mm); 292 293 unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni); 294 int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni, 295 struct mm_struct *mm, unsigned long start, 296 unsigned long length, 297 const struct mmu_interval_notifier_ops *ops); 298 int mmu_interval_notifier_insert_locked( 299 struct mmu_interval_notifier *mni, struct mm_struct *mm, 300 unsigned long start, unsigned long length, 301 const struct mmu_interval_notifier_ops *ops); 302 void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni); 303 304 /** 305 * mmu_interval_set_seq - Save the invalidation sequence 306 * @mni - The mni passed to invalidate 307 * @cur_seq - The cur_seq passed to the invalidate() callback 308 * 309 * This must be called unconditionally from the invalidate callback of a 310 * struct mmu_interval_notifier_ops under the same lock that is used to call 311 * mmu_interval_read_retry(). It updates the sequence number for later use by 312 * mmu_interval_read_retry(). The provided cur_seq will always be odd. 313 * 314 * If the caller does not call mmu_interval_read_begin() or 315 * mmu_interval_read_retry() then this call is not required. 316 */ 317 static inline void mmu_interval_set_seq(struct mmu_interval_notifier *mni, 318 unsigned long cur_seq) 319 { 320 WRITE_ONCE(mni->invalidate_seq, cur_seq); 321 } 322 323 /** 324 * mmu_interval_read_retry - End a read side critical section against a VA range 325 * mni: The range 326 * seq: The return of the paired mmu_interval_read_begin() 327 * 328 * This MUST be called under a user provided lock that is also held 329 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). 330 * 331 * Each call should be paired with a single mmu_interval_read_begin() and 332 * should be used to conclude the read side. 333 * 334 * Returns true if an invalidation collided with this critical section, and 335 * the caller should retry. 336 */ 337 static inline bool mmu_interval_read_retry(struct mmu_interval_notifier *mni, 338 unsigned long seq) 339 { 340 return mni->invalidate_seq != seq; 341 } 342 343 /** 344 * mmu_interval_check_retry - Test if a collision has occurred 345 * mni: The range 346 * seq: The return of the matching mmu_interval_read_begin() 347 * 348 * This can be used in the critical section between mmu_interval_read_begin() 349 * and mmu_interval_read_retry(). A return of true indicates an invalidation 350 * has collided with this critical region and a future 351 * mmu_interval_read_retry() will return true. 352 * 353 * False is not reliable and only suggests a collision may not have 354 * occured. It can be called many times and does not have to hold the user 355 * provided lock. 356 * 357 * This call can be used as part of loops and other expensive operations to 358 * expedite a retry. 359 */ 360 static inline bool mmu_interval_check_retry(struct mmu_interval_notifier *mni, 361 unsigned long seq) 362 { 363 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 364 return READ_ONCE(mni->invalidate_seq) != seq; 365 } 366 367 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); 368 extern void __mmu_notifier_release(struct mm_struct *mm); 369 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 370 unsigned long start, 371 unsigned long end); 372 extern int __mmu_notifier_clear_young(struct mm_struct *mm, 373 unsigned long start, 374 unsigned long end); 375 extern int __mmu_notifier_test_young(struct mm_struct *mm, 376 unsigned long address); 377 extern void __mmu_notifier_change_pte(struct mm_struct *mm, 378 unsigned long address, pte_t pte); 379 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 380 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, 381 bool only_end); 382 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 383 unsigned long start, unsigned long end); 384 extern bool 385 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); 386 387 static inline bool 388 mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 389 { 390 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); 391 } 392 393 static inline void mmu_notifier_release(struct mm_struct *mm) 394 { 395 if (mm_has_notifiers(mm)) 396 __mmu_notifier_release(mm); 397 } 398 399 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 400 unsigned long start, 401 unsigned long end) 402 { 403 if (mm_has_notifiers(mm)) 404 return __mmu_notifier_clear_flush_young(mm, start, end); 405 return 0; 406 } 407 408 static inline int mmu_notifier_clear_young(struct mm_struct *mm, 409 unsigned long start, 410 unsigned long end) 411 { 412 if (mm_has_notifiers(mm)) 413 return __mmu_notifier_clear_young(mm, start, end); 414 return 0; 415 } 416 417 static inline int mmu_notifier_test_young(struct mm_struct *mm, 418 unsigned long address) 419 { 420 if (mm_has_notifiers(mm)) 421 return __mmu_notifier_test_young(mm, address); 422 return 0; 423 } 424 425 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 426 unsigned long address, pte_t pte) 427 { 428 if (mm_has_notifiers(mm)) 429 __mmu_notifier_change_pte(mm, address, pte); 430 } 431 432 static inline void 433 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 434 { 435 might_sleep(); 436 437 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 438 if (mm_has_notifiers(range->mm)) { 439 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; 440 __mmu_notifier_invalidate_range_start(range); 441 } 442 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 443 } 444 445 static inline int 446 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 447 { 448 int ret = 0; 449 450 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 451 if (mm_has_notifiers(range->mm)) { 452 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; 453 ret = __mmu_notifier_invalidate_range_start(range); 454 } 455 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 456 return ret; 457 } 458 459 static inline void 460 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 461 { 462 if (mmu_notifier_range_blockable(range)) 463 might_sleep(); 464 465 if (mm_has_notifiers(range->mm)) 466 __mmu_notifier_invalidate_range_end(range, false); 467 } 468 469 static inline void 470 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 471 { 472 if (mm_has_notifiers(range->mm)) 473 __mmu_notifier_invalidate_range_end(range, true); 474 } 475 476 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 477 unsigned long start, unsigned long end) 478 { 479 if (mm_has_notifiers(mm)) 480 __mmu_notifier_invalidate_range(mm, start, end); 481 } 482 483 static inline void mmu_notifier_mm_init(struct mm_struct *mm) 484 { 485 mm->mmu_notifier_mm = NULL; 486 } 487 488 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 489 { 490 if (mm_has_notifiers(mm)) 491 __mmu_notifier_mm_destroy(mm); 492 } 493 494 495 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 496 enum mmu_notifier_event event, 497 unsigned flags, 498 struct vm_area_struct *vma, 499 struct mm_struct *mm, 500 unsigned long start, 501 unsigned long end) 502 { 503 range->vma = vma; 504 range->event = event; 505 range->mm = mm; 506 range->start = start; 507 range->end = end; 508 range->flags = flags; 509 } 510 511 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 512 ({ \ 513 int __young; \ 514 struct vm_area_struct *___vma = __vma; \ 515 unsigned long ___address = __address; \ 516 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 517 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 518 ___address, \ 519 ___address + \ 520 PAGE_SIZE); \ 521 __young; \ 522 }) 523 524 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 525 ({ \ 526 int __young; \ 527 struct vm_area_struct *___vma = __vma; \ 528 unsigned long ___address = __address; \ 529 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 530 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 531 ___address, \ 532 ___address + \ 533 PMD_SIZE); \ 534 __young; \ 535 }) 536 537 #define ptep_clear_young_notify(__vma, __address, __ptep) \ 538 ({ \ 539 int __young; \ 540 struct vm_area_struct *___vma = __vma; \ 541 unsigned long ___address = __address; \ 542 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 543 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 544 ___address + PAGE_SIZE); \ 545 __young; \ 546 }) 547 548 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 549 ({ \ 550 int __young; \ 551 struct vm_area_struct *___vma = __vma; \ 552 unsigned long ___address = __address; \ 553 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 554 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 555 ___address + PMD_SIZE); \ 556 __young; \ 557 }) 558 559 #define ptep_clear_flush_notify(__vma, __address, __ptep) \ 560 ({ \ 561 unsigned long ___addr = __address & PAGE_MASK; \ 562 struct mm_struct *___mm = (__vma)->vm_mm; \ 563 pte_t ___pte; \ 564 \ 565 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 566 mmu_notifier_invalidate_range(___mm, ___addr, \ 567 ___addr + PAGE_SIZE); \ 568 \ 569 ___pte; \ 570 }) 571 572 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 573 ({ \ 574 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 575 struct mm_struct *___mm = (__vma)->vm_mm; \ 576 pmd_t ___pmd; \ 577 \ 578 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 579 mmu_notifier_invalidate_range(___mm, ___haddr, \ 580 ___haddr + HPAGE_PMD_SIZE); \ 581 \ 582 ___pmd; \ 583 }) 584 585 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 586 ({ \ 587 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 588 struct mm_struct *___mm = (__vma)->vm_mm; \ 589 pud_t ___pud; \ 590 \ 591 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 592 mmu_notifier_invalidate_range(___mm, ___haddr, \ 593 ___haddr + HPAGE_PUD_SIZE); \ 594 \ 595 ___pud; \ 596 }) 597 598 /* 599 * set_pte_at_notify() sets the pte _after_ running the notifier. 600 * This is safe to start by updating the secondary MMUs, because the primary MMU 601 * pte invalidate must have already happened with a ptep_clear_flush() before 602 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 603 * required when we change both the protection of the mapping from read-only to 604 * read-write and the pfn (like during copy on write page faults). Otherwise the 605 * old page would remain mapped readonly in the secondary MMUs after the new 606 * page is already writable by some CPU through the primary MMU. 607 */ 608 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 609 ({ \ 610 struct mm_struct *___mm = __mm; \ 611 unsigned long ___address = __address; \ 612 pte_t ___pte = __pte; \ 613 \ 614 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 615 set_pte_at(___mm, ___address, __ptep, ___pte); \ 616 }) 617 618 #else /* CONFIG_MMU_NOTIFIER */ 619 620 struct mmu_notifier_range { 621 unsigned long start; 622 unsigned long end; 623 }; 624 625 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 626 unsigned long start, 627 unsigned long end) 628 { 629 range->start = start; 630 range->end = end; 631 } 632 633 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ 634 _mmu_notifier_range_init(range, start, end) 635 636 static inline bool 637 mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 638 { 639 return true; 640 } 641 642 static inline int mm_has_notifiers(struct mm_struct *mm) 643 { 644 return 0; 645 } 646 647 static inline void mmu_notifier_release(struct mm_struct *mm) 648 { 649 } 650 651 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 652 unsigned long start, 653 unsigned long end) 654 { 655 return 0; 656 } 657 658 static inline int mmu_notifier_test_young(struct mm_struct *mm, 659 unsigned long address) 660 { 661 return 0; 662 } 663 664 static inline void mmu_notifier_change_pte(struct mm_struct *mm, 665 unsigned long address, pte_t pte) 666 { 667 } 668 669 static inline void 670 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 671 { 672 } 673 674 static inline int 675 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 676 { 677 return 0; 678 } 679 680 static inline 681 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 682 { 683 } 684 685 static inline void 686 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 687 { 688 } 689 690 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 691 unsigned long start, unsigned long end) 692 { 693 } 694 695 static inline void mmu_notifier_mm_init(struct mm_struct *mm) 696 { 697 } 698 699 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 700 { 701 } 702 703 #define mmu_notifier_range_update_to_read_only(r) false 704 705 #define ptep_clear_flush_young_notify ptep_clear_flush_young 706 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young 707 #define ptep_clear_young_notify ptep_test_and_clear_young 708 #define pmdp_clear_young_notify pmdp_test_and_clear_young 709 #define ptep_clear_flush_notify ptep_clear_flush 710 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 711 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush 712 #define set_pte_at_notify set_pte_at 713 714 static inline void mmu_notifier_synchronize(void) 715 { 716 } 717 718 #endif /* CONFIG_MMU_NOTIFIER */ 719 720 #endif /* _LINUX_MMU_NOTIFIER_H */ 721