1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 22 #include <asm/mmu.h> 23 24 #ifndef AT_VECTOR_SIZE_ARCH 25 #define AT_VECTOR_SIZE_ARCH 0 26 #endif 27 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 28 29 #define INIT_PASID 0 30 31 struct address_space; 32 struct mem_cgroup; 33 34 /* 35 * Each physical page in the system has a struct page associated with 36 * it to keep track of whatever it is we are using the page for at the 37 * moment. Note that we have no way to track which tasks are using 38 * a page, though if it is a pagecache page, rmap structures can tell us 39 * who is mapping it. 40 * 41 * If you allocate the page using alloc_pages(), you can use some of the 42 * space in struct page for your own purposes. The five words in the main 43 * union are available, except for bit 0 of the first word which must be 44 * kept clear. Many users use this word to store a pointer to an object 45 * which is guaranteed to be aligned. If you use the same storage as 46 * page->mapping, you must restore it to NULL before freeing the page. 47 * 48 * If your page will not be mapped to userspace, you can also use the four 49 * bytes in the mapcount union, but you must call page_mapcount_reset() 50 * before freeing it. 51 * 52 * If you want to use the refcount field, it must be used in such a way 53 * that other CPUs temporarily incrementing and then decrementing the 54 * refcount does not cause problems. On receiving the page from 55 * alloc_pages(), the refcount will be positive. 56 * 57 * If you allocate pages of order > 0, you can use some of the fields 58 * in each subpage, but you may need to restore some of their values 59 * afterwards. 60 * 61 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 62 * That requires that freelist & counters in struct slab be adjacent and 63 * double-word aligned. Because struct slab currently just reinterprets the 64 * bits of struct page, we align all struct pages to double-word boundaries, 65 * and ensure that 'freelist' is aligned within struct slab. 66 */ 67 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 68 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 69 #else 70 #define _struct_page_alignment 71 #endif 72 73 struct page { 74 unsigned long flags; /* Atomic flags, some possibly 75 * updated asynchronously */ 76 /* 77 * Five words (20/40 bytes) are available in this union. 78 * WARNING: bit 0 of the first word is used for PageTail(). That 79 * means the other users of this union MUST NOT use the bit to 80 * avoid collision and false-positive PageTail(). 81 */ 82 union { 83 struct { /* Page cache and anonymous pages */ 84 /** 85 * @lru: Pageout list, eg. active_list protected by 86 * lruvec->lru_lock. Sometimes used as a generic list 87 * by the page owner. 88 */ 89 union { 90 struct list_head lru; 91 92 /* Or, for the Unevictable "LRU list" slot */ 93 struct { 94 /* Always even, to negate PageTail */ 95 void *__filler; 96 /* Count page's or folio's mlocks */ 97 unsigned int mlock_count; 98 }; 99 100 /* Or, free page */ 101 struct list_head buddy_list; 102 struct list_head pcp_list; 103 }; 104 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 105 struct address_space *mapping; 106 pgoff_t index; /* Our offset within mapping. */ 107 /** 108 * @private: Mapping-private opaque data. 109 * Usually used for buffer_heads if PagePrivate. 110 * Used for swp_entry_t if PageSwapCache. 111 * Indicates order in the buddy system if PageBuddy. 112 */ 113 unsigned long private; 114 }; 115 struct { /* page_pool used by netstack */ 116 /** 117 * @pp_magic: magic value to avoid recycling non 118 * page_pool allocated pages. 119 */ 120 unsigned long pp_magic; 121 struct page_pool *pp; 122 unsigned long _pp_mapping_pad; 123 unsigned long dma_addr; 124 union { 125 /** 126 * dma_addr_upper: might require a 64-bit 127 * value on 32-bit architectures. 128 */ 129 unsigned long dma_addr_upper; 130 /** 131 * For frag page support, not supported in 132 * 32-bit architectures with 64-bit DMA. 133 */ 134 atomic_long_t pp_frag_count; 135 }; 136 }; 137 struct { /* Tail pages of compound page */ 138 unsigned long compound_head; /* Bit zero is set */ 139 140 /* First tail page only */ 141 unsigned char compound_dtor; 142 unsigned char compound_order; 143 atomic_t compound_mapcount; 144 atomic_t compound_pincount; 145 #ifdef CONFIG_64BIT 146 unsigned int compound_nr; /* 1 << compound_order */ 147 #endif 148 }; 149 struct { /* Second tail page of compound page */ 150 unsigned long _compound_pad_1; /* compound_head */ 151 unsigned long _compound_pad_2; 152 /* For both global and memcg */ 153 struct list_head deferred_list; 154 }; 155 struct { /* Page table pages */ 156 unsigned long _pt_pad_1; /* compound_head */ 157 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 158 unsigned long _pt_pad_2; /* mapping */ 159 union { 160 struct mm_struct *pt_mm; /* x86 pgds only */ 161 atomic_t pt_frag_refcount; /* powerpc */ 162 }; 163 #if ALLOC_SPLIT_PTLOCKS 164 spinlock_t *ptl; 165 #else 166 spinlock_t ptl; 167 #endif 168 }; 169 struct { /* ZONE_DEVICE pages */ 170 /** @pgmap: Points to the hosting device page map. */ 171 struct dev_pagemap *pgmap; 172 void *zone_device_data; 173 /* 174 * ZONE_DEVICE private pages are counted as being 175 * mapped so the next 3 words hold the mapping, index, 176 * and private fields from the source anonymous or 177 * page cache page while the page is migrated to device 178 * private memory. 179 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 180 * use the mapping, index, and private fields when 181 * pmem backed DAX files are mapped. 182 */ 183 }; 184 185 /** @rcu_head: You can use this to free a page by RCU. */ 186 struct rcu_head rcu_head; 187 }; 188 189 union { /* This union is 4 bytes in size. */ 190 /* 191 * If the page can be mapped to userspace, encodes the number 192 * of times this page is referenced by a page table. 193 */ 194 atomic_t _mapcount; 195 196 /* 197 * If the page is neither PageSlab nor mappable to userspace, 198 * the value stored here may help determine what this page 199 * is used for. See page-flags.h for a list of page types 200 * which are currently stored here. 201 */ 202 unsigned int page_type; 203 }; 204 205 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 206 atomic_t _refcount; 207 208 #ifdef CONFIG_MEMCG 209 unsigned long memcg_data; 210 #endif 211 212 /* 213 * On machines where all RAM is mapped into kernel address space, 214 * we can simply calculate the virtual address. On machines with 215 * highmem some memory is mapped into kernel virtual memory 216 * dynamically, so we need a place to store that address. 217 * Note that this field could be 16 bits on x86 ... ;) 218 * 219 * Architectures with slow multiplication can define 220 * WANT_PAGE_VIRTUAL in asm/page.h 221 */ 222 #if defined(WANT_PAGE_VIRTUAL) 223 void *virtual; /* Kernel virtual address (NULL if 224 not kmapped, ie. highmem) */ 225 #endif /* WANT_PAGE_VIRTUAL */ 226 227 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 228 int _last_cpupid; 229 #endif 230 } _struct_page_alignment; 231 232 /** 233 * struct folio - Represents a contiguous set of bytes. 234 * @flags: Identical to the page flags. 235 * @lru: Least Recently Used list; tracks how recently this folio was used. 236 * @mlock_count: Number of times this folio has been pinned by mlock(). 237 * @mapping: The file this page belongs to, or refers to the anon_vma for 238 * anonymous memory. 239 * @index: Offset within the file, in units of pages. For anonymous memory, 240 * this is the index from the beginning of the mmap. 241 * @private: Filesystem per-folio data (see folio_attach_private()). 242 * Used for swp_entry_t if folio_test_swapcache(). 243 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 244 * find out how many times this folio is mapped by userspace. 245 * @_refcount: Do not access this member directly. Use folio_ref_count() 246 * to find how many references there are to this folio. 247 * @memcg_data: Memory Control Group data. 248 * @_flags_1: For large folios, additional page flags. 249 * @__head: Points to the folio. Do not use. 250 * @_folio_dtor: Which destructor to use for this folio. 251 * @_folio_order: Do not use directly, call folio_order(). 252 * @_total_mapcount: Do not use directly, call folio_entire_mapcount(). 253 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 254 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 255 * 256 * A folio is a physically, virtually and logically contiguous set 257 * of bytes. It is a power-of-two in size, and it is aligned to that 258 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 259 * in the page cache, it is at a file offset which is a multiple of that 260 * power-of-two. It may be mapped into userspace at an address which is 261 * at an arbitrary page offset, but its kernel virtual address is aligned 262 * to its size. 263 */ 264 struct folio { 265 /* private: don't document the anon union */ 266 union { 267 struct { 268 /* public: */ 269 unsigned long flags; 270 union { 271 struct list_head lru; 272 /* private: avoid cluttering the output */ 273 struct { 274 void *__filler; 275 /* public: */ 276 unsigned int mlock_count; 277 /* private: */ 278 }; 279 /* public: */ 280 }; 281 struct address_space *mapping; 282 pgoff_t index; 283 void *private; 284 atomic_t _mapcount; 285 atomic_t _refcount; 286 #ifdef CONFIG_MEMCG 287 unsigned long memcg_data; 288 #endif 289 /* private: the union with struct page is transitional */ 290 }; 291 struct page page; 292 }; 293 unsigned long _flags_1; 294 unsigned long __head; 295 unsigned char _folio_dtor; 296 unsigned char _folio_order; 297 atomic_t _total_mapcount; 298 atomic_t _pincount; 299 #ifdef CONFIG_64BIT 300 unsigned int _folio_nr_pages; 301 #endif 302 }; 303 304 #define FOLIO_MATCH(pg, fl) \ 305 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 306 FOLIO_MATCH(flags, flags); 307 FOLIO_MATCH(lru, lru); 308 FOLIO_MATCH(mapping, mapping); 309 FOLIO_MATCH(compound_head, lru); 310 FOLIO_MATCH(index, index); 311 FOLIO_MATCH(private, private); 312 FOLIO_MATCH(_mapcount, _mapcount); 313 FOLIO_MATCH(_refcount, _refcount); 314 #ifdef CONFIG_MEMCG 315 FOLIO_MATCH(memcg_data, memcg_data); 316 #endif 317 #undef FOLIO_MATCH 318 #define FOLIO_MATCH(pg, fl) \ 319 static_assert(offsetof(struct folio, fl) == \ 320 offsetof(struct page, pg) + sizeof(struct page)) 321 FOLIO_MATCH(flags, _flags_1); 322 FOLIO_MATCH(compound_head, __head); 323 FOLIO_MATCH(compound_dtor, _folio_dtor); 324 FOLIO_MATCH(compound_order, _folio_order); 325 FOLIO_MATCH(compound_mapcount, _total_mapcount); 326 FOLIO_MATCH(compound_pincount, _pincount); 327 #ifdef CONFIG_64BIT 328 FOLIO_MATCH(compound_nr, _folio_nr_pages); 329 #endif 330 #undef FOLIO_MATCH 331 332 static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 333 { 334 struct page *tail = &folio->page + 1; 335 return &tail->compound_mapcount; 336 } 337 338 static inline atomic_t *compound_mapcount_ptr(struct page *page) 339 { 340 return &page[1].compound_mapcount; 341 } 342 343 static inline atomic_t *compound_pincount_ptr(struct page *page) 344 { 345 return &page[1].compound_pincount; 346 } 347 348 /* 349 * Used for sizing the vmemmap region on some architectures 350 */ 351 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 352 353 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 354 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 355 356 /* 357 * page_private can be used on tail pages. However, PagePrivate is only 358 * checked by the VM on the head page. So page_private on the tail pages 359 * should be used for data that's ancillary to the head page (eg attaching 360 * buffer heads to tail pages after attaching buffer heads to the head page) 361 */ 362 #define page_private(page) ((page)->private) 363 364 static inline void set_page_private(struct page *page, unsigned long private) 365 { 366 page->private = private; 367 } 368 369 static inline void *folio_get_private(struct folio *folio) 370 { 371 return folio->private; 372 } 373 374 struct page_frag_cache { 375 void * va; 376 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 377 __u16 offset; 378 __u16 size; 379 #else 380 __u32 offset; 381 #endif 382 /* we maintain a pagecount bias, so that we dont dirty cache line 383 * containing page->_refcount every time we allocate a fragment. 384 */ 385 unsigned int pagecnt_bias; 386 bool pfmemalloc; 387 }; 388 389 typedef unsigned long vm_flags_t; 390 391 /* 392 * A region containing a mapping of a non-memory backed file under NOMMU 393 * conditions. These are held in a global tree and are pinned by the VMAs that 394 * map parts of them. 395 */ 396 struct vm_region { 397 struct rb_node vm_rb; /* link in global region tree */ 398 vm_flags_t vm_flags; /* VMA vm_flags */ 399 unsigned long vm_start; /* start address of region */ 400 unsigned long vm_end; /* region initialised to here */ 401 unsigned long vm_top; /* region allocated to here */ 402 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 403 struct file *vm_file; /* the backing file or NULL */ 404 405 int vm_usage; /* region usage count (access under nommu_region_sem) */ 406 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 407 * this region */ 408 }; 409 410 #ifdef CONFIG_USERFAULTFD 411 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 412 struct vm_userfaultfd_ctx { 413 struct userfaultfd_ctx *ctx; 414 }; 415 #else /* CONFIG_USERFAULTFD */ 416 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 417 struct vm_userfaultfd_ctx {}; 418 #endif /* CONFIG_USERFAULTFD */ 419 420 struct anon_vma_name { 421 struct kref kref; 422 /* The name needs to be at the end because it is dynamically sized. */ 423 char name[]; 424 }; 425 426 /* 427 * This struct describes a virtual memory area. There is one of these 428 * per VM-area/task. A VM area is any part of the process virtual memory 429 * space that has a special rule for the page-fault handlers (ie a shared 430 * library, the executable area etc). 431 */ 432 struct vm_area_struct { 433 /* The first cache line has the info for VMA tree walking. */ 434 435 unsigned long vm_start; /* Our start address within vm_mm. */ 436 unsigned long vm_end; /* The first byte after our end address 437 within vm_mm. */ 438 439 struct mm_struct *vm_mm; /* The address space we belong to. */ 440 441 /* 442 * Access permissions of this VMA. 443 * See vmf_insert_mixed_prot() for discussion. 444 */ 445 pgprot_t vm_page_prot; 446 unsigned long vm_flags; /* Flags, see mm.h. */ 447 448 /* 449 * For areas with an address space and backing store, 450 * linkage into the address_space->i_mmap interval tree. 451 * 452 * For private anonymous mappings, a pointer to a null terminated string 453 * containing the name given to the vma, or NULL if unnamed. 454 */ 455 456 union { 457 struct { 458 struct rb_node rb; 459 unsigned long rb_subtree_last; 460 } shared; 461 /* 462 * Serialized by mmap_sem. Never use directly because it is 463 * valid only when vm_file is NULL. Use anon_vma_name instead. 464 */ 465 struct anon_vma_name *anon_name; 466 }; 467 468 /* 469 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 470 * list, after a COW of one of the file pages. A MAP_SHARED vma 471 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 472 * or brk vma (with NULL file) can only be in an anon_vma list. 473 */ 474 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 475 * page_table_lock */ 476 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 477 478 /* Function pointers to deal with this struct. */ 479 const struct vm_operations_struct *vm_ops; 480 481 /* Information about our backing store: */ 482 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 483 units */ 484 struct file * vm_file; /* File we map to (can be NULL). */ 485 void * vm_private_data; /* was vm_pte (shared mem) */ 486 487 #ifdef CONFIG_SWAP 488 atomic_long_t swap_readahead_info; 489 #endif 490 #ifndef CONFIG_MMU 491 struct vm_region *vm_region; /* NOMMU mapping region */ 492 #endif 493 #ifdef CONFIG_NUMA 494 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 495 #endif 496 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 497 } __randomize_layout; 498 499 struct kioctx_table; 500 struct mm_struct { 501 struct { 502 struct maple_tree mm_mt; 503 #ifdef CONFIG_MMU 504 unsigned long (*get_unmapped_area) (struct file *filp, 505 unsigned long addr, unsigned long len, 506 unsigned long pgoff, unsigned long flags); 507 #endif 508 unsigned long mmap_base; /* base of mmap area */ 509 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 510 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 511 /* Base addresses for compatible mmap() */ 512 unsigned long mmap_compat_base; 513 unsigned long mmap_compat_legacy_base; 514 #endif 515 unsigned long task_size; /* size of task vm space */ 516 pgd_t * pgd; 517 518 #ifdef CONFIG_MEMBARRIER 519 /** 520 * @membarrier_state: Flags controlling membarrier behavior. 521 * 522 * This field is close to @pgd to hopefully fit in the same 523 * cache-line, which needs to be touched by switch_mm(). 524 */ 525 atomic_t membarrier_state; 526 #endif 527 528 /** 529 * @mm_users: The number of users including userspace. 530 * 531 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 532 * drops to 0 (i.e. when the task exits and there are no other 533 * temporary reference holders), we also release a reference on 534 * @mm_count (which may then free the &struct mm_struct if 535 * @mm_count also drops to 0). 536 */ 537 atomic_t mm_users; 538 539 /** 540 * @mm_count: The number of references to &struct mm_struct 541 * (@mm_users count as 1). 542 * 543 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 544 * &struct mm_struct is freed. 545 */ 546 atomic_t mm_count; 547 548 #ifdef CONFIG_MMU 549 atomic_long_t pgtables_bytes; /* PTE page table pages */ 550 #endif 551 int map_count; /* number of VMAs */ 552 553 spinlock_t page_table_lock; /* Protects page tables and some 554 * counters 555 */ 556 /* 557 * With some kernel config, the current mmap_lock's offset 558 * inside 'mm_struct' is at 0x120, which is very optimal, as 559 * its two hot fields 'count' and 'owner' sit in 2 different 560 * cachelines, and when mmap_lock is highly contended, both 561 * of the 2 fields will be accessed frequently, current layout 562 * will help to reduce cache bouncing. 563 * 564 * So please be careful with adding new fields before 565 * mmap_lock, which can easily push the 2 fields into one 566 * cacheline. 567 */ 568 struct rw_semaphore mmap_lock; 569 570 struct list_head mmlist; /* List of maybe swapped mm's. These 571 * are globally strung together off 572 * init_mm.mmlist, and are protected 573 * by mmlist_lock 574 */ 575 576 577 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 578 unsigned long hiwater_vm; /* High-water virtual memory usage */ 579 580 unsigned long total_vm; /* Total pages mapped */ 581 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 582 atomic64_t pinned_vm; /* Refcount permanently increased */ 583 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 584 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 585 unsigned long stack_vm; /* VM_STACK */ 586 unsigned long def_flags; 587 588 /** 589 * @write_protect_seq: Locked when any thread is write 590 * protecting pages mapped by this mm to enforce a later COW, 591 * for instance during page table copying for fork(). 592 */ 593 seqcount_t write_protect_seq; 594 595 spinlock_t arg_lock; /* protect the below fields */ 596 597 unsigned long start_code, end_code, start_data, end_data; 598 unsigned long start_brk, brk, start_stack; 599 unsigned long arg_start, arg_end, env_start, env_end; 600 601 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 602 603 /* 604 * Special counters, in some configurations protected by the 605 * page_table_lock, in other configurations by being atomic. 606 */ 607 struct mm_rss_stat rss_stat; 608 609 struct linux_binfmt *binfmt; 610 611 /* Architecture-specific MM context */ 612 mm_context_t context; 613 614 unsigned long flags; /* Must use atomic bitops to access */ 615 616 #ifdef CONFIG_AIO 617 spinlock_t ioctx_lock; 618 struct kioctx_table __rcu *ioctx_table; 619 #endif 620 #ifdef CONFIG_MEMCG 621 /* 622 * "owner" points to a task that is regarded as the canonical 623 * user/owner of this mm. All of the following must be true in 624 * order for it to be changed: 625 * 626 * current == mm->owner 627 * current->mm != mm 628 * new_owner->mm == mm 629 * new_owner->alloc_lock is held 630 */ 631 struct task_struct __rcu *owner; 632 #endif 633 struct user_namespace *user_ns; 634 635 /* store ref to file /proc/<pid>/exe symlink points to */ 636 struct file __rcu *exe_file; 637 #ifdef CONFIG_MMU_NOTIFIER 638 struct mmu_notifier_subscriptions *notifier_subscriptions; 639 #endif 640 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 641 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 642 #endif 643 #ifdef CONFIG_NUMA_BALANCING 644 /* 645 * numa_next_scan is the next time that PTEs will be remapped 646 * PROT_NONE to trigger NUMA hinting faults; such faults gather 647 * statistics and migrate pages to new nodes if necessary. 648 */ 649 unsigned long numa_next_scan; 650 651 /* Restart point for scanning and remapping PTEs. */ 652 unsigned long numa_scan_offset; 653 654 /* numa_scan_seq prevents two threads remapping PTEs. */ 655 int numa_scan_seq; 656 #endif 657 /* 658 * An operation with batched TLB flushing is going on. Anything 659 * that can move process memory needs to flush the TLB when 660 * moving a PROT_NONE mapped page. 661 */ 662 atomic_t tlb_flush_pending; 663 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 664 /* See flush_tlb_batched_pending() */ 665 atomic_t tlb_flush_batched; 666 #endif 667 struct uprobes_state uprobes_state; 668 #ifdef CONFIG_PREEMPT_RT 669 struct rcu_head delayed_drop; 670 #endif 671 #ifdef CONFIG_HUGETLB_PAGE 672 atomic_long_t hugetlb_usage; 673 #endif 674 struct work_struct async_put_work; 675 676 #ifdef CONFIG_IOMMU_SVA 677 u32 pasid; 678 #endif 679 #ifdef CONFIG_KSM 680 /* 681 * Represent how many pages of this process are involved in KSM 682 * merging. 683 */ 684 unsigned long ksm_merging_pages; 685 /* 686 * Represent how many pages are checked for ksm merging 687 * including merged and not merged. 688 */ 689 unsigned long ksm_rmap_items; 690 #endif 691 #ifdef CONFIG_LRU_GEN 692 struct { 693 /* this mm_struct is on lru_gen_mm_list */ 694 struct list_head list; 695 /* 696 * Set when switching to this mm_struct, as a hint of 697 * whether it has been used since the last time per-node 698 * page table walkers cleared the corresponding bits. 699 */ 700 unsigned long bitmap; 701 #ifdef CONFIG_MEMCG 702 /* points to the memcg of "owner" above */ 703 struct mem_cgroup *memcg; 704 #endif 705 } lru_gen; 706 #endif /* CONFIG_LRU_GEN */ 707 } __randomize_layout; 708 709 /* 710 * The mm_cpumask needs to be at the end of mm_struct, because it 711 * is dynamically sized based on nr_cpu_ids. 712 */ 713 unsigned long cpu_bitmap[]; 714 }; 715 716 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN) 717 extern struct mm_struct init_mm; 718 719 /* Pointer magic because the dynamic array size confuses some compilers. */ 720 static inline void mm_init_cpumask(struct mm_struct *mm) 721 { 722 unsigned long cpu_bitmap = (unsigned long)mm; 723 724 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 725 cpumask_clear((struct cpumask *)cpu_bitmap); 726 } 727 728 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 729 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 730 { 731 return (struct cpumask *)&mm->cpu_bitmap; 732 } 733 734 #ifdef CONFIG_LRU_GEN 735 736 struct lru_gen_mm_list { 737 /* mm_struct list for page table walkers */ 738 struct list_head fifo; 739 /* protects the list above */ 740 spinlock_t lock; 741 }; 742 743 void lru_gen_add_mm(struct mm_struct *mm); 744 void lru_gen_del_mm(struct mm_struct *mm); 745 #ifdef CONFIG_MEMCG 746 void lru_gen_migrate_mm(struct mm_struct *mm); 747 #endif 748 749 static inline void lru_gen_init_mm(struct mm_struct *mm) 750 { 751 INIT_LIST_HEAD(&mm->lru_gen.list); 752 mm->lru_gen.bitmap = 0; 753 #ifdef CONFIG_MEMCG 754 mm->lru_gen.memcg = NULL; 755 #endif 756 } 757 758 static inline void lru_gen_use_mm(struct mm_struct *mm) 759 { 760 /* 761 * When the bitmap is set, page reclaim knows this mm_struct has been 762 * used since the last time it cleared the bitmap. So it might be worth 763 * walking the page tables of this mm_struct to clear the accessed bit. 764 */ 765 WRITE_ONCE(mm->lru_gen.bitmap, -1); 766 } 767 768 #else /* !CONFIG_LRU_GEN */ 769 770 static inline void lru_gen_add_mm(struct mm_struct *mm) 771 { 772 } 773 774 static inline void lru_gen_del_mm(struct mm_struct *mm) 775 { 776 } 777 778 #ifdef CONFIG_MEMCG 779 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 780 { 781 } 782 #endif 783 784 static inline void lru_gen_init_mm(struct mm_struct *mm) 785 { 786 } 787 788 static inline void lru_gen_use_mm(struct mm_struct *mm) 789 { 790 } 791 792 #endif /* CONFIG_LRU_GEN */ 793 794 struct vma_iterator { 795 struct ma_state mas; 796 }; 797 798 #define VMA_ITERATOR(name, __mm, __addr) \ 799 struct vma_iterator name = { \ 800 .mas = { \ 801 .tree = &(__mm)->mm_mt, \ 802 .index = __addr, \ 803 .node = MAS_START, \ 804 }, \ 805 } 806 807 static inline void vma_iter_init(struct vma_iterator *vmi, 808 struct mm_struct *mm, unsigned long addr) 809 { 810 vmi->mas.tree = &mm->mm_mt; 811 vmi->mas.index = addr; 812 vmi->mas.node = MAS_START; 813 } 814 815 struct mmu_gather; 816 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 817 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 818 extern void tlb_finish_mmu(struct mmu_gather *tlb); 819 820 struct vm_fault; 821 822 /** 823 * typedef vm_fault_t - Return type for page fault handlers. 824 * 825 * Page fault handlers return a bitmask of %VM_FAULT values. 826 */ 827 typedef __bitwise unsigned int vm_fault_t; 828 829 /** 830 * enum vm_fault_reason - Page fault handlers return a bitmask of 831 * these values to tell the core VM what happened when handling the 832 * fault. Used to decide whether a process gets delivered SIGBUS or 833 * just gets major/minor fault counters bumped up. 834 * 835 * @VM_FAULT_OOM: Out Of Memory 836 * @VM_FAULT_SIGBUS: Bad access 837 * @VM_FAULT_MAJOR: Page read from storage 838 * @VM_FAULT_WRITE: Special case for get_user_pages 839 * @VM_FAULT_HWPOISON: Hit poisoned small page 840 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 841 * in upper bits 842 * @VM_FAULT_SIGSEGV: segmentation fault 843 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 844 * @VM_FAULT_LOCKED: ->fault locked the returned page 845 * @VM_FAULT_RETRY: ->fault blocked, must retry 846 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 847 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 848 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 849 * fsync() to complete (for synchronous page faults 850 * in DAX) 851 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 852 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 853 * 854 */ 855 enum vm_fault_reason { 856 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 857 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 858 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 859 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 860 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 861 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 862 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 863 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 864 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 865 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 866 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 867 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 868 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 869 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 870 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 871 }; 872 873 /* Encode hstate index for a hwpoisoned large page */ 874 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 875 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 876 877 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 878 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 879 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 880 881 #define VM_FAULT_RESULT_TRACE \ 882 { VM_FAULT_OOM, "OOM" }, \ 883 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 884 { VM_FAULT_MAJOR, "MAJOR" }, \ 885 { VM_FAULT_WRITE, "WRITE" }, \ 886 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 887 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 888 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 889 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 890 { VM_FAULT_LOCKED, "LOCKED" }, \ 891 { VM_FAULT_RETRY, "RETRY" }, \ 892 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 893 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 894 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 895 896 struct vm_special_mapping { 897 const char *name; /* The name, e.g. "[vdso]". */ 898 899 /* 900 * If .fault is not provided, this points to a 901 * NULL-terminated array of pages that back the special mapping. 902 * 903 * This must not be NULL unless .fault is provided. 904 */ 905 struct page **pages; 906 907 /* 908 * If non-NULL, then this is called to resolve page faults 909 * on the special mapping. If used, .pages is not checked. 910 */ 911 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 912 struct vm_area_struct *vma, 913 struct vm_fault *vmf); 914 915 int (*mremap)(const struct vm_special_mapping *sm, 916 struct vm_area_struct *new_vma); 917 }; 918 919 enum tlb_flush_reason { 920 TLB_FLUSH_ON_TASK_SWITCH, 921 TLB_REMOTE_SHOOTDOWN, 922 TLB_LOCAL_SHOOTDOWN, 923 TLB_LOCAL_MM_SHOOTDOWN, 924 TLB_REMOTE_SEND_IPI, 925 NR_TLB_FLUSH_REASONS, 926 }; 927 928 /* 929 * A swap entry has to fit into a "unsigned long", as the entry is hidden 930 * in the "index" field of the swapper address space. 931 */ 932 typedef struct { 933 unsigned long val; 934 } swp_entry_t; 935 936 /** 937 * enum fault_flag - Fault flag definitions. 938 * @FAULT_FLAG_WRITE: Fault was a write fault. 939 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 940 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 941 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 942 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 943 * @FAULT_FLAG_TRIED: The fault has been tried once. 944 * @FAULT_FLAG_USER: The fault originated in userspace. 945 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 946 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 947 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 948 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to unshare (and mark 949 * exclusive) a possibly shared anonymous page that is 950 * mapped R/O. 951 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 952 * We should only access orig_pte if this flag set. 953 * 954 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 955 * whether we would allow page faults to retry by specifying these two 956 * fault flags correctly. Currently there can be three legal combinations: 957 * 958 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 959 * this is the first try 960 * 961 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 962 * we've already tried at least once 963 * 964 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 965 * 966 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 967 * be used. Note that page faults can be allowed to retry for multiple times, 968 * in which case we'll have an initial fault with flags (a) then later on 969 * continuous faults with flags (b). We should always try to detect pending 970 * signals before a retry to make sure the continuous page faults can still be 971 * interrupted if necessary. 972 * 973 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 974 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 975 * no existing R/O-mapped anonymous page is encountered. 976 */ 977 enum fault_flag { 978 FAULT_FLAG_WRITE = 1 << 0, 979 FAULT_FLAG_MKWRITE = 1 << 1, 980 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 981 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 982 FAULT_FLAG_KILLABLE = 1 << 4, 983 FAULT_FLAG_TRIED = 1 << 5, 984 FAULT_FLAG_USER = 1 << 6, 985 FAULT_FLAG_REMOTE = 1 << 7, 986 FAULT_FLAG_INSTRUCTION = 1 << 8, 987 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 988 FAULT_FLAG_UNSHARE = 1 << 10, 989 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 990 }; 991 992 typedef unsigned int __bitwise zap_flags_t; 993 994 #endif /* _LINUX_MM_TYPES_H */ 995