1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/rwsem.h> 13 #include <linux/completion.h> 14 #include <linux/cpumask.h> 15 #include <linux/uprobes.h> 16 #include <linux/rcupdate.h> 17 #include <linux/page-flags-layout.h> 18 #include <linux/workqueue.h> 19 #include <linux/seqlock.h> 20 21 #include <asm/mmu.h> 22 23 #ifndef AT_VECTOR_SIZE_ARCH 24 #define AT_VECTOR_SIZE_ARCH 0 25 #endif 26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 27 28 #define INIT_PASID 0 29 30 struct address_space; 31 struct mem_cgroup; 32 33 /* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * If you allocate the page using alloc_pages(), you can use some of the 41 * space in struct page for your own purposes. The five words in the main 42 * union are available, except for bit 0 of the first word which must be 43 * kept clear. Many users use this word to store a pointer to an object 44 * which is guaranteed to be aligned. If you use the same storage as 45 * page->mapping, you must restore it to NULL before freeing the page. 46 * 47 * If your page will not be mapped to userspace, you can also use the four 48 * bytes in the mapcount union, but you must call page_mapcount_reset() 49 * before freeing it. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68 #else 69 #define _struct_page_alignment 70 #endif 71 72 struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 struct list_head lru; 89 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 90 struct address_space *mapping; 91 pgoff_t index; /* Our offset within mapping. */ 92 /** 93 * @private: Mapping-private opaque data. 94 * Usually used for buffer_heads if PagePrivate. 95 * Used for swp_entry_t if PageSwapCache. 96 * Indicates order in the buddy system if PageBuddy. 97 */ 98 unsigned long private; 99 }; 100 struct { /* page_pool used by netstack */ 101 /** 102 * @pp_magic: magic value to avoid recycling non 103 * page_pool allocated pages. 104 */ 105 unsigned long pp_magic; 106 struct page_pool *pp; 107 unsigned long _pp_mapping_pad; 108 unsigned long dma_addr; 109 union { 110 /** 111 * dma_addr_upper: might require a 64-bit 112 * value on 32-bit architectures. 113 */ 114 unsigned long dma_addr_upper; 115 /** 116 * For frag page support, not supported in 117 * 32-bit architectures with 64-bit DMA. 118 */ 119 atomic_long_t pp_frag_count; 120 }; 121 }; 122 struct { /* Tail pages of compound page */ 123 unsigned long compound_head; /* Bit zero is set */ 124 125 /* First tail page only */ 126 unsigned char compound_dtor; 127 unsigned char compound_order; 128 atomic_t compound_mapcount; 129 unsigned int compound_nr; /* 1 << compound_order */ 130 }; 131 struct { /* Second tail page of compound page */ 132 unsigned long _compound_pad_1; /* compound_head */ 133 atomic_t hpage_pinned_refcount; 134 /* For both global and memcg */ 135 struct list_head deferred_list; 136 }; 137 struct { /* Page table pages */ 138 unsigned long _pt_pad_1; /* compound_head */ 139 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 140 unsigned long _pt_pad_2; /* mapping */ 141 union { 142 struct mm_struct *pt_mm; /* x86 pgds only */ 143 atomic_t pt_frag_refcount; /* powerpc */ 144 }; 145 #if ALLOC_SPLIT_PTLOCKS 146 spinlock_t *ptl; 147 #else 148 spinlock_t ptl; 149 #endif 150 }; 151 struct { /* ZONE_DEVICE pages */ 152 /** @pgmap: Points to the hosting device page map. */ 153 struct dev_pagemap *pgmap; 154 void *zone_device_data; 155 /* 156 * ZONE_DEVICE private pages are counted as being 157 * mapped so the next 3 words hold the mapping, index, 158 * and private fields from the source anonymous or 159 * page cache page while the page is migrated to device 160 * private memory. 161 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 162 * use the mapping, index, and private fields when 163 * pmem backed DAX files are mapped. 164 */ 165 }; 166 167 /** @rcu_head: You can use this to free a page by RCU. */ 168 struct rcu_head rcu_head; 169 }; 170 171 union { /* This union is 4 bytes in size. */ 172 /* 173 * If the page can be mapped to userspace, encodes the number 174 * of times this page is referenced by a page table. 175 */ 176 atomic_t _mapcount; 177 178 /* 179 * If the page is neither PageSlab nor mappable to userspace, 180 * the value stored here may help determine what this page 181 * is used for. See page-flags.h for a list of page types 182 * which are currently stored here. 183 */ 184 unsigned int page_type; 185 }; 186 187 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 188 atomic_t _refcount; 189 190 #ifdef CONFIG_MEMCG 191 unsigned long memcg_data; 192 #endif 193 194 /* 195 * On machines where all RAM is mapped into kernel address space, 196 * we can simply calculate the virtual address. On machines with 197 * highmem some memory is mapped into kernel virtual memory 198 * dynamically, so we need a place to store that address. 199 * Note that this field could be 16 bits on x86 ... ;) 200 * 201 * Architectures with slow multiplication can define 202 * WANT_PAGE_VIRTUAL in asm/page.h 203 */ 204 #if defined(WANT_PAGE_VIRTUAL) 205 void *virtual; /* Kernel virtual address (NULL if 206 not kmapped, ie. highmem) */ 207 #endif /* WANT_PAGE_VIRTUAL */ 208 209 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 210 int _last_cpupid; 211 #endif 212 } _struct_page_alignment; 213 214 /** 215 * struct folio - Represents a contiguous set of bytes. 216 * @flags: Identical to the page flags. 217 * @lru: Least Recently Used list; tracks how recently this folio was used. 218 * @mapping: The file this page belongs to, or refers to the anon_vma for 219 * anonymous memory. 220 * @index: Offset within the file, in units of pages. For anonymous memory, 221 * this is the index from the beginning of the mmap. 222 * @private: Filesystem per-folio data (see folio_attach_private()). 223 * Used for swp_entry_t if folio_test_swapcache(). 224 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 225 * find out how many times this folio is mapped by userspace. 226 * @_refcount: Do not access this member directly. Use folio_ref_count() 227 * to find how many references there are to this folio. 228 * @memcg_data: Memory Control Group data. 229 * 230 * A folio is a physically, virtually and logically contiguous set 231 * of bytes. It is a power-of-two in size, and it is aligned to that 232 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 233 * in the page cache, it is at a file offset which is a multiple of that 234 * power-of-two. It may be mapped into userspace at an address which is 235 * at an arbitrary page offset, but its kernel virtual address is aligned 236 * to its size. 237 */ 238 struct folio { 239 /* private: don't document the anon union */ 240 union { 241 struct { 242 /* public: */ 243 unsigned long flags; 244 struct list_head lru; 245 struct address_space *mapping; 246 pgoff_t index; 247 void *private; 248 atomic_t _mapcount; 249 atomic_t _refcount; 250 #ifdef CONFIG_MEMCG 251 unsigned long memcg_data; 252 #endif 253 /* private: the union with struct page is transitional */ 254 }; 255 struct page page; 256 }; 257 }; 258 259 static_assert(sizeof(struct page) == sizeof(struct folio)); 260 #define FOLIO_MATCH(pg, fl) \ 261 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 262 FOLIO_MATCH(flags, flags); 263 FOLIO_MATCH(lru, lru); 264 FOLIO_MATCH(compound_head, lru); 265 FOLIO_MATCH(index, index); 266 FOLIO_MATCH(private, private); 267 FOLIO_MATCH(_mapcount, _mapcount); 268 FOLIO_MATCH(_refcount, _refcount); 269 #ifdef CONFIG_MEMCG 270 FOLIO_MATCH(memcg_data, memcg_data); 271 #endif 272 #undef FOLIO_MATCH 273 274 static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 275 { 276 struct page *tail = &folio->page + 1; 277 return &tail->compound_mapcount; 278 } 279 280 static inline atomic_t *compound_mapcount_ptr(struct page *page) 281 { 282 return &page[1].compound_mapcount; 283 } 284 285 static inline atomic_t *compound_pincount_ptr(struct page *page) 286 { 287 return &page[2].hpage_pinned_refcount; 288 } 289 290 /* 291 * Used for sizing the vmemmap region on some architectures 292 */ 293 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 294 295 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 296 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 297 298 /* 299 * page_private can be used on tail pages. However, PagePrivate is only 300 * checked by the VM on the head page. So page_private on the tail pages 301 * should be used for data that's ancillary to the head page (eg attaching 302 * buffer heads to tail pages after attaching buffer heads to the head page) 303 */ 304 #define page_private(page) ((page)->private) 305 306 static inline void set_page_private(struct page *page, unsigned long private) 307 { 308 page->private = private; 309 } 310 311 static inline void *folio_get_private(struct folio *folio) 312 { 313 return folio->private; 314 } 315 316 struct page_frag_cache { 317 void * va; 318 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 319 __u16 offset; 320 __u16 size; 321 #else 322 __u32 offset; 323 #endif 324 /* we maintain a pagecount bias, so that we dont dirty cache line 325 * containing page->_refcount every time we allocate a fragment. 326 */ 327 unsigned int pagecnt_bias; 328 bool pfmemalloc; 329 }; 330 331 typedef unsigned long vm_flags_t; 332 333 /* 334 * A region containing a mapping of a non-memory backed file under NOMMU 335 * conditions. These are held in a global tree and are pinned by the VMAs that 336 * map parts of them. 337 */ 338 struct vm_region { 339 struct rb_node vm_rb; /* link in global region tree */ 340 vm_flags_t vm_flags; /* VMA vm_flags */ 341 unsigned long vm_start; /* start address of region */ 342 unsigned long vm_end; /* region initialised to here */ 343 unsigned long vm_top; /* region allocated to here */ 344 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 345 struct file *vm_file; /* the backing file or NULL */ 346 347 int vm_usage; /* region usage count (access under nommu_region_sem) */ 348 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 349 * this region */ 350 }; 351 352 #ifdef CONFIG_USERFAULTFD 353 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 354 struct vm_userfaultfd_ctx { 355 struct userfaultfd_ctx *ctx; 356 }; 357 #else /* CONFIG_USERFAULTFD */ 358 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 359 struct vm_userfaultfd_ctx {}; 360 #endif /* CONFIG_USERFAULTFD */ 361 362 struct anon_vma_name { 363 struct kref kref; 364 /* The name needs to be at the end because it is dynamically sized. */ 365 char name[]; 366 }; 367 368 /* 369 * This struct describes a virtual memory area. There is one of these 370 * per VM-area/task. A VM area is any part of the process virtual memory 371 * space that has a special rule for the page-fault handlers (ie a shared 372 * library, the executable area etc). 373 */ 374 struct vm_area_struct { 375 /* The first cache line has the info for VMA tree walking. */ 376 377 unsigned long vm_start; /* Our start address within vm_mm. */ 378 unsigned long vm_end; /* The first byte after our end address 379 within vm_mm. */ 380 381 /* linked list of VM areas per task, sorted by address */ 382 struct vm_area_struct *vm_next, *vm_prev; 383 384 struct rb_node vm_rb; 385 386 /* 387 * Largest free memory gap in bytes to the left of this VMA. 388 * Either between this VMA and vma->vm_prev, or between one of the 389 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 390 * get_unmapped_area find a free area of the right size. 391 */ 392 unsigned long rb_subtree_gap; 393 394 /* Second cache line starts here. */ 395 396 struct mm_struct *vm_mm; /* The address space we belong to. */ 397 398 /* 399 * Access permissions of this VMA. 400 * See vmf_insert_mixed_prot() for discussion. 401 */ 402 pgprot_t vm_page_prot; 403 unsigned long vm_flags; /* Flags, see mm.h. */ 404 405 /* 406 * For areas with an address space and backing store, 407 * linkage into the address_space->i_mmap interval tree. 408 * 409 * For private anonymous mappings, a pointer to a null terminated string 410 * containing the name given to the vma, or NULL if unnamed. 411 */ 412 413 union { 414 struct { 415 struct rb_node rb; 416 unsigned long rb_subtree_last; 417 } shared; 418 /* Serialized by mmap_sem. */ 419 struct anon_vma_name *anon_name; 420 }; 421 422 /* 423 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 424 * list, after a COW of one of the file pages. A MAP_SHARED vma 425 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 426 * or brk vma (with NULL file) can only be in an anon_vma list. 427 */ 428 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 429 * page_table_lock */ 430 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 431 432 /* Function pointers to deal with this struct. */ 433 const struct vm_operations_struct *vm_ops; 434 435 /* Information about our backing store: */ 436 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 437 units */ 438 struct file * vm_file; /* File we map to (can be NULL). */ 439 void * vm_private_data; /* was vm_pte (shared mem) */ 440 441 #ifdef CONFIG_SWAP 442 atomic_long_t swap_readahead_info; 443 #endif 444 #ifndef CONFIG_MMU 445 struct vm_region *vm_region; /* NOMMU mapping region */ 446 #endif 447 #ifdef CONFIG_NUMA 448 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 449 #endif 450 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 451 } __randomize_layout; 452 453 struct kioctx_table; 454 struct mm_struct { 455 struct { 456 struct vm_area_struct *mmap; /* list of VMAs */ 457 struct rb_root mm_rb; 458 u64 vmacache_seqnum; /* per-thread vmacache */ 459 #ifdef CONFIG_MMU 460 unsigned long (*get_unmapped_area) (struct file *filp, 461 unsigned long addr, unsigned long len, 462 unsigned long pgoff, unsigned long flags); 463 #endif 464 unsigned long mmap_base; /* base of mmap area */ 465 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 466 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 467 /* Base addresses for compatible mmap() */ 468 unsigned long mmap_compat_base; 469 unsigned long mmap_compat_legacy_base; 470 #endif 471 unsigned long task_size; /* size of task vm space */ 472 unsigned long highest_vm_end; /* highest vma end address */ 473 pgd_t * pgd; 474 475 #ifdef CONFIG_MEMBARRIER 476 /** 477 * @membarrier_state: Flags controlling membarrier behavior. 478 * 479 * This field is close to @pgd to hopefully fit in the same 480 * cache-line, which needs to be touched by switch_mm(). 481 */ 482 atomic_t membarrier_state; 483 #endif 484 485 /** 486 * @mm_users: The number of users including userspace. 487 * 488 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 489 * drops to 0 (i.e. when the task exits and there are no other 490 * temporary reference holders), we also release a reference on 491 * @mm_count (which may then free the &struct mm_struct if 492 * @mm_count also drops to 0). 493 */ 494 atomic_t mm_users; 495 496 /** 497 * @mm_count: The number of references to &struct mm_struct 498 * (@mm_users count as 1). 499 * 500 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 501 * &struct mm_struct is freed. 502 */ 503 atomic_t mm_count; 504 505 #ifdef CONFIG_MMU 506 atomic_long_t pgtables_bytes; /* PTE page table pages */ 507 #endif 508 int map_count; /* number of VMAs */ 509 510 spinlock_t page_table_lock; /* Protects page tables and some 511 * counters 512 */ 513 /* 514 * With some kernel config, the current mmap_lock's offset 515 * inside 'mm_struct' is at 0x120, which is very optimal, as 516 * its two hot fields 'count' and 'owner' sit in 2 different 517 * cachelines, and when mmap_lock is highly contended, both 518 * of the 2 fields will be accessed frequently, current layout 519 * will help to reduce cache bouncing. 520 * 521 * So please be careful with adding new fields before 522 * mmap_lock, which can easily push the 2 fields into one 523 * cacheline. 524 */ 525 struct rw_semaphore mmap_lock; 526 527 struct list_head mmlist; /* List of maybe swapped mm's. These 528 * are globally strung together off 529 * init_mm.mmlist, and are protected 530 * by mmlist_lock 531 */ 532 533 534 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 535 unsigned long hiwater_vm; /* High-water virtual memory usage */ 536 537 unsigned long total_vm; /* Total pages mapped */ 538 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 539 atomic64_t pinned_vm; /* Refcount permanently increased */ 540 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 541 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 542 unsigned long stack_vm; /* VM_STACK */ 543 unsigned long def_flags; 544 545 /** 546 * @write_protect_seq: Locked when any thread is write 547 * protecting pages mapped by this mm to enforce a later COW, 548 * for instance during page table copying for fork(). 549 */ 550 seqcount_t write_protect_seq; 551 552 spinlock_t arg_lock; /* protect the below fields */ 553 554 unsigned long start_code, end_code, start_data, end_data; 555 unsigned long start_brk, brk, start_stack; 556 unsigned long arg_start, arg_end, env_start, env_end; 557 558 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 559 560 /* 561 * Special counters, in some configurations protected by the 562 * page_table_lock, in other configurations by being atomic. 563 */ 564 struct mm_rss_stat rss_stat; 565 566 struct linux_binfmt *binfmt; 567 568 /* Architecture-specific MM context */ 569 mm_context_t context; 570 571 unsigned long flags; /* Must use atomic bitops to access */ 572 573 #ifdef CONFIG_AIO 574 spinlock_t ioctx_lock; 575 struct kioctx_table __rcu *ioctx_table; 576 #endif 577 #ifdef CONFIG_MEMCG 578 /* 579 * "owner" points to a task that is regarded as the canonical 580 * user/owner of this mm. All of the following must be true in 581 * order for it to be changed: 582 * 583 * current == mm->owner 584 * current->mm != mm 585 * new_owner->mm == mm 586 * new_owner->alloc_lock is held 587 */ 588 struct task_struct __rcu *owner; 589 #endif 590 struct user_namespace *user_ns; 591 592 /* store ref to file /proc/<pid>/exe symlink points to */ 593 struct file __rcu *exe_file; 594 #ifdef CONFIG_MMU_NOTIFIER 595 struct mmu_notifier_subscriptions *notifier_subscriptions; 596 #endif 597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 598 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 599 #endif 600 #ifdef CONFIG_NUMA_BALANCING 601 /* 602 * numa_next_scan is the next time that the PTEs will be marked 603 * pte_numa. NUMA hinting faults will gather statistics and 604 * migrate pages to new nodes if necessary. 605 */ 606 unsigned long numa_next_scan; 607 608 /* Restart point for scanning and setting pte_numa */ 609 unsigned long numa_scan_offset; 610 611 /* numa_scan_seq prevents two threads setting pte_numa */ 612 int numa_scan_seq; 613 #endif 614 /* 615 * An operation with batched TLB flushing is going on. Anything 616 * that can move process memory needs to flush the TLB when 617 * moving a PROT_NONE or PROT_NUMA mapped page. 618 */ 619 atomic_t tlb_flush_pending; 620 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 621 /* See flush_tlb_batched_pending() */ 622 atomic_t tlb_flush_batched; 623 #endif 624 struct uprobes_state uprobes_state; 625 #ifdef CONFIG_PREEMPT_RT 626 struct rcu_head delayed_drop; 627 #endif 628 #ifdef CONFIG_HUGETLB_PAGE 629 atomic_long_t hugetlb_usage; 630 #endif 631 struct work_struct async_put_work; 632 633 #ifdef CONFIG_IOMMU_SUPPORT 634 u32 pasid; 635 #endif 636 } __randomize_layout; 637 638 /* 639 * The mm_cpumask needs to be at the end of mm_struct, because it 640 * is dynamically sized based on nr_cpu_ids. 641 */ 642 unsigned long cpu_bitmap[]; 643 }; 644 645 extern struct mm_struct init_mm; 646 647 /* Pointer magic because the dynamic array size confuses some compilers. */ 648 static inline void mm_init_cpumask(struct mm_struct *mm) 649 { 650 unsigned long cpu_bitmap = (unsigned long)mm; 651 652 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 653 cpumask_clear((struct cpumask *)cpu_bitmap); 654 } 655 656 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 657 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 658 { 659 return (struct cpumask *)&mm->cpu_bitmap; 660 } 661 662 struct mmu_gather; 663 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 664 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 665 extern void tlb_finish_mmu(struct mmu_gather *tlb); 666 667 struct vm_fault; 668 669 /** 670 * typedef vm_fault_t - Return type for page fault handlers. 671 * 672 * Page fault handlers return a bitmask of %VM_FAULT values. 673 */ 674 typedef __bitwise unsigned int vm_fault_t; 675 676 /** 677 * enum vm_fault_reason - Page fault handlers return a bitmask of 678 * these values to tell the core VM what happened when handling the 679 * fault. Used to decide whether a process gets delivered SIGBUS or 680 * just gets major/minor fault counters bumped up. 681 * 682 * @VM_FAULT_OOM: Out Of Memory 683 * @VM_FAULT_SIGBUS: Bad access 684 * @VM_FAULT_MAJOR: Page read from storage 685 * @VM_FAULT_WRITE: Special case for get_user_pages 686 * @VM_FAULT_HWPOISON: Hit poisoned small page 687 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 688 * in upper bits 689 * @VM_FAULT_SIGSEGV: segmentation fault 690 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 691 * @VM_FAULT_LOCKED: ->fault locked the returned page 692 * @VM_FAULT_RETRY: ->fault blocked, must retry 693 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 694 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 695 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 696 * fsync() to complete (for synchronous page faults 697 * in DAX) 698 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 699 * 700 */ 701 enum vm_fault_reason { 702 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 703 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 704 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 705 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 706 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 707 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 708 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 709 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 710 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 711 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 712 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 713 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 714 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 715 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 716 }; 717 718 /* Encode hstate index for a hwpoisoned large page */ 719 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 720 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 721 722 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 723 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 724 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 725 726 #define VM_FAULT_RESULT_TRACE \ 727 { VM_FAULT_OOM, "OOM" }, \ 728 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 729 { VM_FAULT_MAJOR, "MAJOR" }, \ 730 { VM_FAULT_WRITE, "WRITE" }, \ 731 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 732 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 733 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 734 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 735 { VM_FAULT_LOCKED, "LOCKED" }, \ 736 { VM_FAULT_RETRY, "RETRY" }, \ 737 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 738 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 739 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 740 741 struct vm_special_mapping { 742 const char *name; /* The name, e.g. "[vdso]". */ 743 744 /* 745 * If .fault is not provided, this points to a 746 * NULL-terminated array of pages that back the special mapping. 747 * 748 * This must not be NULL unless .fault is provided. 749 */ 750 struct page **pages; 751 752 /* 753 * If non-NULL, then this is called to resolve page faults 754 * on the special mapping. If used, .pages is not checked. 755 */ 756 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 757 struct vm_area_struct *vma, 758 struct vm_fault *vmf); 759 760 int (*mremap)(const struct vm_special_mapping *sm, 761 struct vm_area_struct *new_vma); 762 }; 763 764 enum tlb_flush_reason { 765 TLB_FLUSH_ON_TASK_SWITCH, 766 TLB_REMOTE_SHOOTDOWN, 767 TLB_LOCAL_SHOOTDOWN, 768 TLB_LOCAL_MM_SHOOTDOWN, 769 TLB_REMOTE_SEND_IPI, 770 NR_TLB_FLUSH_REASONS, 771 }; 772 773 /* 774 * A swap entry has to fit into a "unsigned long", as the entry is hidden 775 * in the "index" field of the swapper address space. 776 */ 777 typedef struct { 778 unsigned long val; 779 } swp_entry_t; 780 781 /** 782 * enum fault_flag - Fault flag definitions. 783 * @FAULT_FLAG_WRITE: Fault was a write fault. 784 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 785 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 786 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 787 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 788 * @FAULT_FLAG_TRIED: The fault has been tried once. 789 * @FAULT_FLAG_USER: The fault originated in userspace. 790 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 791 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 792 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 793 * 794 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 795 * whether we would allow page faults to retry by specifying these two 796 * fault flags correctly. Currently there can be three legal combinations: 797 * 798 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 799 * this is the first try 800 * 801 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 802 * we've already tried at least once 803 * 804 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 805 * 806 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 807 * be used. Note that page faults can be allowed to retry for multiple times, 808 * in which case we'll have an initial fault with flags (a) then later on 809 * continuous faults with flags (b). We should always try to detect pending 810 * signals before a retry to make sure the continuous page faults can still be 811 * interrupted if necessary. 812 */ 813 enum fault_flag { 814 FAULT_FLAG_WRITE = 1 << 0, 815 FAULT_FLAG_MKWRITE = 1 << 1, 816 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 817 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 818 FAULT_FLAG_KILLABLE = 1 << 4, 819 FAULT_FLAG_TRIED = 1 << 5, 820 FAULT_FLAG_USER = 1 << 6, 821 FAULT_FLAG_REMOTE = 1 << 7, 822 FAULT_FLAG_INSTRUCTION = 1 << 8, 823 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 824 }; 825 826 #endif /* _LINUX_MM_TYPES_H */ 827