xref: /linux-6.15/include/linux/mm_types.h (revision e8fa600e)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/prio_tree.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/page-debug-flags.h>
15 #include <linux/uprobes.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 
24 struct address_space;
25 
26 #define USE_SPLIT_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 
28 /*
29  * Each physical page in the system has a struct page associated with
30  * it to keep track of whatever it is we are using the page for at the
31  * moment. Note that we have no way to track which tasks are using
32  * a page, though if it is a pagecache page, rmap structures can tell us
33  * who is mapping it.
34  *
35  * The objects in struct page are organized in double word blocks in
36  * order to allows us to use atomic double word operations on portions
37  * of struct page. That is currently only used by slub but the arrangement
38  * allows the use of atomic double word operations on the flags/mapping
39  * and lru list pointers also.
40  */
41 struct page {
42 	/* First double word block */
43 	unsigned long flags;		/* Atomic flags, some possibly
44 					 * updated asynchronously */
45 	struct address_space *mapping;	/* If low bit clear, points to
46 					 * inode address_space, or NULL.
47 					 * If page mapped as anonymous
48 					 * memory, low bit is set, and
49 					 * it points to anon_vma object:
50 					 * see PAGE_MAPPING_ANON below.
51 					 */
52 	/* Second double word */
53 	struct {
54 		union {
55 			pgoff_t index;		/* Our offset within mapping. */
56 			void *freelist;		/* slub/slob first free object */
57 			bool pfmemalloc;	/* If set by the page allocator,
58 						 * ALLOC_NO_WATERMARKS was set
59 						 * and the low watermark was not
60 						 * met implying that the system
61 						 * is under some pressure. The
62 						 * caller should try ensure
63 						 * this page is only used to
64 						 * free other pages.
65 						 */
66 		};
67 
68 		union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 			/* Used for cmpxchg_double in slub */
72 			unsigned long counters;
73 #else
74 			/*
75 			 * Keep _count separate from slub cmpxchg_double data.
76 			 * As the rest of the double word is protected by
77 			 * slab_lock but _count is not.
78 			 */
79 			unsigned counters;
80 #endif
81 
82 			struct {
83 
84 				union {
85 					/*
86 					 * Count of ptes mapped in
87 					 * mms, to show when page is
88 					 * mapped & limit reverse map
89 					 * searches.
90 					 *
91 					 * Used also for tail pages
92 					 * refcounting instead of
93 					 * _count. Tail pages cannot
94 					 * be mapped and keeping the
95 					 * tail page _count zero at
96 					 * all times guarantees
97 					 * get_page_unless_zero() will
98 					 * never succeed on tail
99 					 * pages.
100 					 */
101 					atomic_t _mapcount;
102 
103 					struct { /* SLUB */
104 						unsigned inuse:16;
105 						unsigned objects:15;
106 						unsigned frozen:1;
107 					};
108 					int units;	/* SLOB */
109 				};
110 				atomic_t _count;		/* Usage count, see below. */
111 			};
112 		};
113 	};
114 
115 	/* Third double word block */
116 	union {
117 		struct list_head lru;	/* Pageout list, eg. active_list
118 					 * protected by zone->lru_lock !
119 					 */
120 		struct {		/* slub per cpu partial pages */
121 			struct page *next;	/* Next partial slab */
122 #ifdef CONFIG_64BIT
123 			int pages;	/* Nr of partial slabs left */
124 			int pobjects;	/* Approximate # of objects */
125 #else
126 			short int pages;
127 			short int pobjects;
128 #endif
129 		};
130 
131 		struct list_head list;	/* slobs list of pages */
132 		struct {		/* slab fields */
133 			struct kmem_cache *slab_cache;
134 			struct slab *slab_page;
135 		};
136 	};
137 
138 	/* Remainder is not double word aligned */
139 	union {
140 		unsigned long private;		/* Mapping-private opaque data:
141 					 	 * usually used for buffer_heads
142 						 * if PagePrivate set; used for
143 						 * swp_entry_t if PageSwapCache;
144 						 * indicates order in the buddy
145 						 * system if PG_buddy is set.
146 						 */
147 #if USE_SPLIT_PTLOCKS
148 		spinlock_t ptl;
149 #endif
150 		struct kmem_cache *slab;	/* SLUB: Pointer to slab */
151 		struct page *first_page;	/* Compound tail pages */
152 	};
153 
154 	/*
155 	 * On machines where all RAM is mapped into kernel address space,
156 	 * we can simply calculate the virtual address. On machines with
157 	 * highmem some memory is mapped into kernel virtual memory
158 	 * dynamically, so we need a place to store that address.
159 	 * Note that this field could be 16 bits on x86 ... ;)
160 	 *
161 	 * Architectures with slow multiplication can define
162 	 * WANT_PAGE_VIRTUAL in asm/page.h
163 	 */
164 #if defined(WANT_PAGE_VIRTUAL)
165 	void *virtual;			/* Kernel virtual address (NULL if
166 					   not kmapped, ie. highmem) */
167 #endif /* WANT_PAGE_VIRTUAL */
168 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
169 	unsigned long debug_flags;	/* Use atomic bitops on this */
170 #endif
171 
172 #ifdef CONFIG_KMEMCHECK
173 	/*
174 	 * kmemcheck wants to track the status of each byte in a page; this
175 	 * is a pointer to such a status block. NULL if not tracked.
176 	 */
177 	void *shadow;
178 #endif
179 }
180 /*
181  * The struct page can be forced to be double word aligned so that atomic ops
182  * on double words work. The SLUB allocator can make use of such a feature.
183  */
184 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
185 	__aligned(2 * sizeof(unsigned long))
186 #endif
187 ;
188 
189 struct page_frag {
190 	struct page *page;
191 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
192 	__u32 offset;
193 	__u32 size;
194 #else
195 	__u16 offset;
196 	__u16 size;
197 #endif
198 };
199 
200 typedef unsigned long __nocast vm_flags_t;
201 
202 /*
203  * A region containing a mapping of a non-memory backed file under NOMMU
204  * conditions.  These are held in a global tree and are pinned by the VMAs that
205  * map parts of them.
206  */
207 struct vm_region {
208 	struct rb_node	vm_rb;		/* link in global region tree */
209 	vm_flags_t	vm_flags;	/* VMA vm_flags */
210 	unsigned long	vm_start;	/* start address of region */
211 	unsigned long	vm_end;		/* region initialised to here */
212 	unsigned long	vm_top;		/* region allocated to here */
213 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
214 	struct file	*vm_file;	/* the backing file or NULL */
215 
216 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
217 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
218 						* this region */
219 };
220 
221 /*
222  * This struct defines a memory VMM memory area. There is one of these
223  * per VM-area/task.  A VM area is any part of the process virtual memory
224  * space that has a special rule for the page-fault handlers (ie a shared
225  * library, the executable area etc).
226  */
227 struct vm_area_struct {
228 	struct mm_struct * vm_mm;	/* The address space we belong to. */
229 	unsigned long vm_start;		/* Our start address within vm_mm. */
230 	unsigned long vm_end;		/* The first byte after our end address
231 					   within vm_mm. */
232 
233 	/* linked list of VM areas per task, sorted by address */
234 	struct vm_area_struct *vm_next, *vm_prev;
235 
236 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
237 	unsigned long vm_flags;		/* Flags, see mm.h. */
238 
239 	struct rb_node vm_rb;
240 
241 	/*
242 	 * For areas with an address space and backing store,
243 	 * linkage into the address_space->i_mmap prio tree, or
244 	 * linkage to the list of like vmas hanging off its node, or
245 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
246 	 */
247 	union {
248 		struct {
249 			struct list_head list;
250 			void *parent;	/* aligns with prio_tree_node parent */
251 			struct vm_area_struct *head;
252 		} vm_set;
253 
254 		struct raw_prio_tree_node prio_tree_node;
255 	} shared;
256 
257 	/*
258 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
259 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
260 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
261 	 * or brk vma (with NULL file) can only be in an anon_vma list.
262 	 */
263 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
264 					  * page_table_lock */
265 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
266 
267 	/* Function pointers to deal with this struct. */
268 	const struct vm_operations_struct *vm_ops;
269 
270 	/* Information about our backing store: */
271 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
272 					   units, *not* PAGE_CACHE_SIZE */
273 	struct file * vm_file;		/* File we map to (can be NULL). */
274 	void * vm_private_data;		/* was vm_pte (shared mem) */
275 
276 #ifndef CONFIG_MMU
277 	struct vm_region *vm_region;	/* NOMMU mapping region */
278 #endif
279 #ifdef CONFIG_NUMA
280 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
281 #endif
282 };
283 
284 struct core_thread {
285 	struct task_struct *task;
286 	struct core_thread *next;
287 };
288 
289 struct core_state {
290 	atomic_t nr_threads;
291 	struct core_thread dumper;
292 	struct completion startup;
293 };
294 
295 enum {
296 	MM_FILEPAGES,
297 	MM_ANONPAGES,
298 	MM_SWAPENTS,
299 	NR_MM_COUNTERS
300 };
301 
302 #if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU)
303 #define SPLIT_RSS_COUNTING
304 /* per-thread cached information, */
305 struct task_rss_stat {
306 	int events;	/* for synchronization threshold */
307 	int count[NR_MM_COUNTERS];
308 };
309 #endif /* USE_SPLIT_PTLOCKS */
310 
311 struct mm_rss_stat {
312 	atomic_long_t count[NR_MM_COUNTERS];
313 };
314 
315 struct mm_struct {
316 	struct vm_area_struct * mmap;		/* list of VMAs */
317 	struct rb_root mm_rb;
318 	struct vm_area_struct * mmap_cache;	/* last find_vma result */
319 #ifdef CONFIG_MMU
320 	unsigned long (*get_unmapped_area) (struct file *filp,
321 				unsigned long addr, unsigned long len,
322 				unsigned long pgoff, unsigned long flags);
323 	void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
324 #endif
325 	unsigned long mmap_base;		/* base of mmap area */
326 	unsigned long task_size;		/* size of task vm space */
327 	unsigned long cached_hole_size; 	/* if non-zero, the largest hole below free_area_cache */
328 	unsigned long free_area_cache;		/* first hole of size cached_hole_size or larger */
329 	pgd_t * pgd;
330 	atomic_t mm_users;			/* How many users with user space? */
331 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
332 	int map_count;				/* number of VMAs */
333 
334 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
335 	struct rw_semaphore mmap_sem;
336 
337 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
338 						 * together off init_mm.mmlist, and are protected
339 						 * by mmlist_lock
340 						 */
341 
342 
343 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
344 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
345 
346 	unsigned long total_vm;		/* Total pages mapped */
347 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
348 	unsigned long pinned_vm;	/* Refcount permanently increased */
349 	unsigned long shared_vm;	/* Shared pages (files) */
350 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
351 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
352 	unsigned long reserved_vm;	/* VM_RESERVED|VM_IO pages */
353 	unsigned long def_flags;
354 	unsigned long nr_ptes;		/* Page table pages */
355 	unsigned long start_code, end_code, start_data, end_data;
356 	unsigned long start_brk, brk, start_stack;
357 	unsigned long arg_start, arg_end, env_start, env_end;
358 
359 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
360 
361 	/*
362 	 * Special counters, in some configurations protected by the
363 	 * page_table_lock, in other configurations by being atomic.
364 	 */
365 	struct mm_rss_stat rss_stat;
366 
367 	struct linux_binfmt *binfmt;
368 
369 	cpumask_var_t cpu_vm_mask_var;
370 
371 	/* Architecture-specific MM context */
372 	mm_context_t context;
373 
374 	unsigned long flags; /* Must use atomic bitops to access the bits */
375 
376 	struct core_state *core_state; /* coredumping support */
377 #ifdef CONFIG_AIO
378 	spinlock_t		ioctx_lock;
379 	struct hlist_head	ioctx_list;
380 #endif
381 #ifdef CONFIG_MM_OWNER
382 	/*
383 	 * "owner" points to a task that is regarded as the canonical
384 	 * user/owner of this mm. All of the following must be true in
385 	 * order for it to be changed:
386 	 *
387 	 * current == mm->owner
388 	 * current->mm != mm
389 	 * new_owner->mm == mm
390 	 * new_owner->alloc_lock is held
391 	 */
392 	struct task_struct __rcu *owner;
393 #endif
394 
395 	/* store ref to file /proc/<pid>/exe symlink points to */
396 	struct file *exe_file;
397 	unsigned long num_exe_file_vmas;
398 #ifdef CONFIG_MMU_NOTIFIER
399 	struct mmu_notifier_mm *mmu_notifier_mm;
400 #endif
401 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
402 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
403 #endif
404 #ifdef CONFIG_CPUMASK_OFFSTACK
405 	struct cpumask cpumask_allocation;
406 #endif
407 	struct uprobes_state uprobes_state;
408 };
409 
410 static inline void mm_init_cpumask(struct mm_struct *mm)
411 {
412 #ifdef CONFIG_CPUMASK_OFFSTACK
413 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
414 #endif
415 }
416 
417 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
418 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
419 {
420 	return mm->cpu_vm_mask_var;
421 }
422 
423 #endif /* _LINUX_MM_TYPES_H */
424