1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 #include <linux/percpu_counter.h> 22 23 #include <asm/mmu.h> 24 25 #ifndef AT_VECTOR_SIZE_ARCH 26 #define AT_VECTOR_SIZE_ARCH 0 27 #endif 28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30 #define INIT_PASID 0 31 32 struct address_space; 33 struct mem_cgroup; 34 35 /* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70 #else 71 #define _struct_page_alignment __aligned(sizeof(unsigned long)) 72 #endif 73 74 struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 union { 129 /** 130 * dma_addr_upper: might require a 64-bit 131 * value on 32-bit architectures. 132 */ 133 unsigned long dma_addr_upper; 134 /** 135 * For frag page support, not supported in 136 * 32-bit architectures with 64-bit DMA. 137 */ 138 atomic_long_t pp_frag_count; 139 }; 140 }; 141 struct { /* Tail pages of compound page */ 142 unsigned long compound_head; /* Bit zero is set */ 143 144 /* First tail page only */ 145 unsigned char compound_dtor; 146 unsigned char compound_order; 147 atomic_t compound_mapcount; 148 atomic_t subpages_mapcount; 149 atomic_t compound_pincount; 150 #ifdef CONFIG_64BIT 151 unsigned int compound_nr; /* 1 << compound_order */ 152 #endif 153 }; 154 struct { /* Second tail page of transparent huge page */ 155 unsigned long _compound_pad_1; /* compound_head */ 156 unsigned long _compound_pad_2; 157 /* For both global and memcg */ 158 struct list_head deferred_list; 159 }; 160 struct { /* Second tail page of hugetlb page */ 161 unsigned long _hugetlb_pad_1; /* compound_head */ 162 void *hugetlb_subpool; 163 void *hugetlb_cgroup; 164 void *hugetlb_cgroup_rsvd; 165 void *hugetlb_hwpoison; 166 /* No more space on 32-bit: use third tail if more */ 167 }; 168 struct { /* Page table pages */ 169 unsigned long _pt_pad_1; /* compound_head */ 170 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 171 unsigned long _pt_pad_2; /* mapping */ 172 union { 173 struct mm_struct *pt_mm; /* x86 pgds only */ 174 atomic_t pt_frag_refcount; /* powerpc */ 175 }; 176 #if ALLOC_SPLIT_PTLOCKS 177 spinlock_t *ptl; 178 #else 179 spinlock_t ptl; 180 #endif 181 }; 182 struct { /* ZONE_DEVICE pages */ 183 /** @pgmap: Points to the hosting device page map. */ 184 struct dev_pagemap *pgmap; 185 void *zone_device_data; 186 /* 187 * ZONE_DEVICE private pages are counted as being 188 * mapped so the next 3 words hold the mapping, index, 189 * and private fields from the source anonymous or 190 * page cache page while the page is migrated to device 191 * private memory. 192 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 193 * use the mapping, index, and private fields when 194 * pmem backed DAX files are mapped. 195 */ 196 }; 197 198 /** @rcu_head: You can use this to free a page by RCU. */ 199 struct rcu_head rcu_head; 200 }; 201 202 union { /* This union is 4 bytes in size. */ 203 /* 204 * If the page can be mapped to userspace, encodes the number 205 * of times this page is referenced by a page table. 206 */ 207 atomic_t _mapcount; 208 209 /* 210 * If the page is neither PageSlab nor mappable to userspace, 211 * the value stored here may help determine what this page 212 * is used for. See page-flags.h for a list of page types 213 * which are currently stored here. 214 */ 215 unsigned int page_type; 216 }; 217 218 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 219 atomic_t _refcount; 220 221 #ifdef CONFIG_MEMCG 222 unsigned long memcg_data; 223 #endif 224 225 /* 226 * On machines where all RAM is mapped into kernel address space, 227 * we can simply calculate the virtual address. On machines with 228 * highmem some memory is mapped into kernel virtual memory 229 * dynamically, so we need a place to store that address. 230 * Note that this field could be 16 bits on x86 ... ;) 231 * 232 * Architectures with slow multiplication can define 233 * WANT_PAGE_VIRTUAL in asm/page.h 234 */ 235 #if defined(WANT_PAGE_VIRTUAL) 236 void *virtual; /* Kernel virtual address (NULL if 237 not kmapped, ie. highmem) */ 238 #endif /* WANT_PAGE_VIRTUAL */ 239 240 #ifdef CONFIG_KMSAN 241 /* 242 * KMSAN metadata for this page: 243 * - shadow page: every bit indicates whether the corresponding 244 * bit of the original page is initialized (0) or not (1); 245 * - origin page: every 4 bytes contain an id of the stack trace 246 * where the uninitialized value was created. 247 */ 248 struct page *kmsan_shadow; 249 struct page *kmsan_origin; 250 #endif 251 252 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 253 int _last_cpupid; 254 #endif 255 } _struct_page_alignment; 256 257 /* 258 * struct encoded_page - a nonexistent type marking this pointer 259 * 260 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 261 * with the low bits of the pointer indicating extra context-dependent 262 * information. Not super-common, but happens in mmu_gather and mlock 263 * handling, and this acts as a type system check on that use. 264 * 265 * We only really have two guaranteed bits in general, although you could 266 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 267 * for more. 268 * 269 * Use the supplied helper functions to endcode/decode the pointer and bits. 270 */ 271 struct encoded_page; 272 #define ENCODE_PAGE_BITS 3ul 273 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 274 { 275 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 276 return (struct encoded_page *)(flags | (unsigned long)page); 277 } 278 279 static inline unsigned long encoded_page_flags(struct encoded_page *page) 280 { 281 return ENCODE_PAGE_BITS & (unsigned long)page; 282 } 283 284 static inline struct page *encoded_page_ptr(struct encoded_page *page) 285 { 286 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 287 } 288 289 /** 290 * struct folio - Represents a contiguous set of bytes. 291 * @flags: Identical to the page flags. 292 * @lru: Least Recently Used list; tracks how recently this folio was used. 293 * @mlock_count: Number of times this folio has been pinned by mlock(). 294 * @mapping: The file this page belongs to, or refers to the anon_vma for 295 * anonymous memory. 296 * @index: Offset within the file, in units of pages. For anonymous memory, 297 * this is the index from the beginning of the mmap. 298 * @private: Filesystem per-folio data (see folio_attach_private()). 299 * Used for swp_entry_t if folio_test_swapcache(). 300 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 301 * find out how many times this folio is mapped by userspace. 302 * @_refcount: Do not access this member directly. Use folio_ref_count() 303 * to find how many references there are to this folio. 304 * @memcg_data: Memory Control Group data. 305 * @_flags_1: For large folios, additional page flags. 306 * @_head_1: Points to the folio. Do not use. 307 * @_folio_dtor: Which destructor to use for this folio. 308 * @_folio_order: Do not use directly, call folio_order(). 309 * @_compound_mapcount: Do not use directly, call folio_entire_mapcount(). 310 * @_subpages_mapcount: Do not use directly, call folio_mapcount(). 311 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 312 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 313 * @_flags_2: For alignment. Do not use. 314 * @_head_2: Points to the folio. Do not use. 315 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 316 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 317 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 318 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 319 * 320 * A folio is a physically, virtually and logically contiguous set 321 * of bytes. It is a power-of-two in size, and it is aligned to that 322 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 323 * in the page cache, it is at a file offset which is a multiple of that 324 * power-of-two. It may be mapped into userspace at an address which is 325 * at an arbitrary page offset, but its kernel virtual address is aligned 326 * to its size. 327 */ 328 struct folio { 329 /* private: don't document the anon union */ 330 union { 331 struct { 332 /* public: */ 333 unsigned long flags; 334 union { 335 struct list_head lru; 336 /* private: avoid cluttering the output */ 337 struct { 338 void *__filler; 339 /* public: */ 340 unsigned int mlock_count; 341 /* private: */ 342 }; 343 /* public: */ 344 }; 345 struct address_space *mapping; 346 pgoff_t index; 347 void *private; 348 atomic_t _mapcount; 349 atomic_t _refcount; 350 #ifdef CONFIG_MEMCG 351 unsigned long memcg_data; 352 #endif 353 /* private: the union with struct page is transitional */ 354 }; 355 struct page page; 356 }; 357 union { 358 struct { 359 unsigned long _flags_1; 360 unsigned long _head_1; 361 unsigned char _folio_dtor; 362 unsigned char _folio_order; 363 atomic_t _compound_mapcount; 364 atomic_t _subpages_mapcount; 365 atomic_t _pincount; 366 #ifdef CONFIG_64BIT 367 unsigned int _folio_nr_pages; 368 #endif 369 }; 370 struct page __page_1; 371 }; 372 union { 373 struct { 374 unsigned long _flags_2; 375 unsigned long _head_2; 376 void *_hugetlb_subpool; 377 void *_hugetlb_cgroup; 378 void *_hugetlb_cgroup_rsvd; 379 void *_hugetlb_hwpoison; 380 }; 381 struct page __page_2; 382 }; 383 }; 384 385 #define FOLIO_MATCH(pg, fl) \ 386 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 387 FOLIO_MATCH(flags, flags); 388 FOLIO_MATCH(lru, lru); 389 FOLIO_MATCH(mapping, mapping); 390 FOLIO_MATCH(compound_head, lru); 391 FOLIO_MATCH(index, index); 392 FOLIO_MATCH(private, private); 393 FOLIO_MATCH(_mapcount, _mapcount); 394 FOLIO_MATCH(_refcount, _refcount); 395 #ifdef CONFIG_MEMCG 396 FOLIO_MATCH(memcg_data, memcg_data); 397 #endif 398 #undef FOLIO_MATCH 399 #define FOLIO_MATCH(pg, fl) \ 400 static_assert(offsetof(struct folio, fl) == \ 401 offsetof(struct page, pg) + sizeof(struct page)) 402 FOLIO_MATCH(flags, _flags_1); 403 FOLIO_MATCH(compound_head, _head_1); 404 FOLIO_MATCH(compound_dtor, _folio_dtor); 405 FOLIO_MATCH(compound_order, _folio_order); 406 FOLIO_MATCH(compound_mapcount, _compound_mapcount); 407 FOLIO_MATCH(subpages_mapcount, _subpages_mapcount); 408 FOLIO_MATCH(compound_pincount, _pincount); 409 #ifdef CONFIG_64BIT 410 FOLIO_MATCH(compound_nr, _folio_nr_pages); 411 #endif 412 #undef FOLIO_MATCH 413 #define FOLIO_MATCH(pg, fl) \ 414 static_assert(offsetof(struct folio, fl) == \ 415 offsetof(struct page, pg) + 2 * sizeof(struct page)) 416 FOLIO_MATCH(flags, _flags_2); 417 FOLIO_MATCH(compound_head, _head_2); 418 FOLIO_MATCH(hugetlb_subpool, _hugetlb_subpool); 419 FOLIO_MATCH(hugetlb_cgroup, _hugetlb_cgroup); 420 FOLIO_MATCH(hugetlb_cgroup_rsvd, _hugetlb_cgroup_rsvd); 421 FOLIO_MATCH(hugetlb_hwpoison, _hugetlb_hwpoison); 422 #undef FOLIO_MATCH 423 424 static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 425 { 426 struct page *tail = &folio->page + 1; 427 return &tail->compound_mapcount; 428 } 429 430 static inline atomic_t *folio_subpages_mapcount_ptr(struct folio *folio) 431 { 432 struct page *tail = &folio->page + 1; 433 return &tail->subpages_mapcount; 434 } 435 436 static inline atomic_t *compound_mapcount_ptr(struct page *page) 437 { 438 return &page[1].compound_mapcount; 439 } 440 441 static inline atomic_t *subpages_mapcount_ptr(struct page *page) 442 { 443 return &page[1].subpages_mapcount; 444 } 445 446 static inline atomic_t *compound_pincount_ptr(struct page *page) 447 { 448 return &page[1].compound_pincount; 449 } 450 451 /* 452 * Used for sizing the vmemmap region on some architectures 453 */ 454 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 455 456 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 457 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 458 459 /* 460 * page_private can be used on tail pages. However, PagePrivate is only 461 * checked by the VM on the head page. So page_private on the tail pages 462 * should be used for data that's ancillary to the head page (eg attaching 463 * buffer heads to tail pages after attaching buffer heads to the head page) 464 */ 465 #define page_private(page) ((page)->private) 466 467 static inline void set_page_private(struct page *page, unsigned long private) 468 { 469 page->private = private; 470 } 471 472 static inline void *folio_get_private(struct folio *folio) 473 { 474 return folio->private; 475 } 476 477 struct page_frag_cache { 478 void * va; 479 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 480 __u16 offset; 481 __u16 size; 482 #else 483 __u32 offset; 484 #endif 485 /* we maintain a pagecount bias, so that we dont dirty cache line 486 * containing page->_refcount every time we allocate a fragment. 487 */ 488 unsigned int pagecnt_bias; 489 bool pfmemalloc; 490 }; 491 492 typedef unsigned long vm_flags_t; 493 494 /* 495 * A region containing a mapping of a non-memory backed file under NOMMU 496 * conditions. These are held in a global tree and are pinned by the VMAs that 497 * map parts of them. 498 */ 499 struct vm_region { 500 struct rb_node vm_rb; /* link in global region tree */ 501 vm_flags_t vm_flags; /* VMA vm_flags */ 502 unsigned long vm_start; /* start address of region */ 503 unsigned long vm_end; /* region initialised to here */ 504 unsigned long vm_top; /* region allocated to here */ 505 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 506 struct file *vm_file; /* the backing file or NULL */ 507 508 int vm_usage; /* region usage count (access under nommu_region_sem) */ 509 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 510 * this region */ 511 }; 512 513 #ifdef CONFIG_USERFAULTFD 514 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 515 struct vm_userfaultfd_ctx { 516 struct userfaultfd_ctx *ctx; 517 }; 518 #else /* CONFIG_USERFAULTFD */ 519 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 520 struct vm_userfaultfd_ctx {}; 521 #endif /* CONFIG_USERFAULTFD */ 522 523 struct anon_vma_name { 524 struct kref kref; 525 /* The name needs to be at the end because it is dynamically sized. */ 526 char name[]; 527 }; 528 529 /* 530 * This struct describes a virtual memory area. There is one of these 531 * per VM-area/task. A VM area is any part of the process virtual memory 532 * space that has a special rule for the page-fault handlers (ie a shared 533 * library, the executable area etc). 534 */ 535 struct vm_area_struct { 536 /* The first cache line has the info for VMA tree walking. */ 537 538 unsigned long vm_start; /* Our start address within vm_mm. */ 539 unsigned long vm_end; /* The first byte after our end address 540 within vm_mm. */ 541 542 struct mm_struct *vm_mm; /* The address space we belong to. */ 543 544 /* 545 * Access permissions of this VMA. 546 * See vmf_insert_mixed_prot() for discussion. 547 */ 548 pgprot_t vm_page_prot; 549 unsigned long vm_flags; /* Flags, see mm.h. */ 550 551 /* 552 * For areas with an address space and backing store, 553 * linkage into the address_space->i_mmap interval tree. 554 * 555 */ 556 struct { 557 struct rb_node rb; 558 unsigned long rb_subtree_last; 559 } shared; 560 561 /* 562 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 563 * list, after a COW of one of the file pages. A MAP_SHARED vma 564 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 565 * or brk vma (with NULL file) can only be in an anon_vma list. 566 */ 567 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 568 * page_table_lock */ 569 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 570 571 /* Function pointers to deal with this struct. */ 572 const struct vm_operations_struct *vm_ops; 573 574 /* Information about our backing store: */ 575 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 576 units */ 577 struct file * vm_file; /* File we map to (can be NULL). */ 578 void * vm_private_data; /* was vm_pte (shared mem) */ 579 580 #ifdef CONFIG_ANON_VMA_NAME 581 /* 582 * For private and shared anonymous mappings, a pointer to a null 583 * terminated string containing the name given to the vma, or NULL if 584 * unnamed. Serialized by mmap_sem. Use anon_vma_name to access. 585 */ 586 struct anon_vma_name *anon_name; 587 #endif 588 #ifdef CONFIG_SWAP 589 atomic_long_t swap_readahead_info; 590 #endif 591 #ifndef CONFIG_MMU 592 struct vm_region *vm_region; /* NOMMU mapping region */ 593 #endif 594 #ifdef CONFIG_NUMA 595 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 596 #endif 597 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 598 } __randomize_layout; 599 600 struct kioctx_table; 601 struct mm_struct { 602 struct { 603 struct maple_tree mm_mt; 604 #ifdef CONFIG_MMU 605 unsigned long (*get_unmapped_area) (struct file *filp, 606 unsigned long addr, unsigned long len, 607 unsigned long pgoff, unsigned long flags); 608 #endif 609 unsigned long mmap_base; /* base of mmap area */ 610 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 611 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 612 /* Base addresses for compatible mmap() */ 613 unsigned long mmap_compat_base; 614 unsigned long mmap_compat_legacy_base; 615 #endif 616 unsigned long task_size; /* size of task vm space */ 617 pgd_t * pgd; 618 619 #ifdef CONFIG_MEMBARRIER 620 /** 621 * @membarrier_state: Flags controlling membarrier behavior. 622 * 623 * This field is close to @pgd to hopefully fit in the same 624 * cache-line, which needs to be touched by switch_mm(). 625 */ 626 atomic_t membarrier_state; 627 #endif 628 629 /** 630 * @mm_users: The number of users including userspace. 631 * 632 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 633 * drops to 0 (i.e. when the task exits and there are no other 634 * temporary reference holders), we also release a reference on 635 * @mm_count (which may then free the &struct mm_struct if 636 * @mm_count also drops to 0). 637 */ 638 atomic_t mm_users; 639 640 /** 641 * @mm_count: The number of references to &struct mm_struct 642 * (@mm_users count as 1). 643 * 644 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 645 * &struct mm_struct is freed. 646 */ 647 atomic_t mm_count; 648 #ifdef CONFIG_SCHED_MM_CID 649 /** 650 * @cid_lock: Protect cid bitmap updates vs lookups. 651 * 652 * Prevent situations where updates to the cid bitmap happen 653 * concurrently with lookups. Those can lead to situations 654 * where a lookup cannot find a free bit simply because it was 655 * unlucky enough to load, non-atomically, bitmap words as they 656 * were being concurrently updated by the updaters. 657 */ 658 raw_spinlock_t cid_lock; 659 #endif 660 #ifdef CONFIG_MMU 661 atomic_long_t pgtables_bytes; /* PTE page table pages */ 662 #endif 663 int map_count; /* number of VMAs */ 664 665 spinlock_t page_table_lock; /* Protects page tables and some 666 * counters 667 */ 668 /* 669 * With some kernel config, the current mmap_lock's offset 670 * inside 'mm_struct' is at 0x120, which is very optimal, as 671 * its two hot fields 'count' and 'owner' sit in 2 different 672 * cachelines, and when mmap_lock is highly contended, both 673 * of the 2 fields will be accessed frequently, current layout 674 * will help to reduce cache bouncing. 675 * 676 * So please be careful with adding new fields before 677 * mmap_lock, which can easily push the 2 fields into one 678 * cacheline. 679 */ 680 struct rw_semaphore mmap_lock; 681 682 struct list_head mmlist; /* List of maybe swapped mm's. These 683 * are globally strung together off 684 * init_mm.mmlist, and are protected 685 * by mmlist_lock 686 */ 687 688 689 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 690 unsigned long hiwater_vm; /* High-water virtual memory usage */ 691 692 unsigned long total_vm; /* Total pages mapped */ 693 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 694 atomic64_t pinned_vm; /* Refcount permanently increased */ 695 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 696 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 697 unsigned long stack_vm; /* VM_STACK */ 698 unsigned long def_flags; 699 700 /** 701 * @write_protect_seq: Locked when any thread is write 702 * protecting pages mapped by this mm to enforce a later COW, 703 * for instance during page table copying for fork(). 704 */ 705 seqcount_t write_protect_seq; 706 707 spinlock_t arg_lock; /* protect the below fields */ 708 709 unsigned long start_code, end_code, start_data, end_data; 710 unsigned long start_brk, brk, start_stack; 711 unsigned long arg_start, arg_end, env_start, env_end; 712 713 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 714 715 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 716 717 struct linux_binfmt *binfmt; 718 719 /* Architecture-specific MM context */ 720 mm_context_t context; 721 722 unsigned long flags; /* Must use atomic bitops to access */ 723 724 #ifdef CONFIG_AIO 725 spinlock_t ioctx_lock; 726 struct kioctx_table __rcu *ioctx_table; 727 #endif 728 #ifdef CONFIG_MEMCG 729 /* 730 * "owner" points to a task that is regarded as the canonical 731 * user/owner of this mm. All of the following must be true in 732 * order for it to be changed: 733 * 734 * current == mm->owner 735 * current->mm != mm 736 * new_owner->mm == mm 737 * new_owner->alloc_lock is held 738 */ 739 struct task_struct __rcu *owner; 740 #endif 741 struct user_namespace *user_ns; 742 743 /* store ref to file /proc/<pid>/exe symlink points to */ 744 struct file __rcu *exe_file; 745 #ifdef CONFIG_MMU_NOTIFIER 746 struct mmu_notifier_subscriptions *notifier_subscriptions; 747 #endif 748 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 749 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 750 #endif 751 #ifdef CONFIG_NUMA_BALANCING 752 /* 753 * numa_next_scan is the next time that PTEs will be remapped 754 * PROT_NONE to trigger NUMA hinting faults; such faults gather 755 * statistics and migrate pages to new nodes if necessary. 756 */ 757 unsigned long numa_next_scan; 758 759 /* Restart point for scanning and remapping PTEs. */ 760 unsigned long numa_scan_offset; 761 762 /* numa_scan_seq prevents two threads remapping PTEs. */ 763 int numa_scan_seq; 764 #endif 765 /* 766 * An operation with batched TLB flushing is going on. Anything 767 * that can move process memory needs to flush the TLB when 768 * moving a PROT_NONE mapped page. 769 */ 770 atomic_t tlb_flush_pending; 771 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 772 /* See flush_tlb_batched_pending() */ 773 atomic_t tlb_flush_batched; 774 #endif 775 struct uprobes_state uprobes_state; 776 #ifdef CONFIG_PREEMPT_RT 777 struct rcu_head delayed_drop; 778 #endif 779 #ifdef CONFIG_HUGETLB_PAGE 780 atomic_long_t hugetlb_usage; 781 #endif 782 struct work_struct async_put_work; 783 784 #ifdef CONFIG_IOMMU_SVA 785 u32 pasid; 786 #endif 787 #ifdef CONFIG_KSM 788 /* 789 * Represent how many pages of this process are involved in KSM 790 * merging. 791 */ 792 unsigned long ksm_merging_pages; 793 /* 794 * Represent how many pages are checked for ksm merging 795 * including merged and not merged. 796 */ 797 unsigned long ksm_rmap_items; 798 #endif 799 #ifdef CONFIG_LRU_GEN 800 struct { 801 /* this mm_struct is on lru_gen_mm_list */ 802 struct list_head list; 803 /* 804 * Set when switching to this mm_struct, as a hint of 805 * whether it has been used since the last time per-node 806 * page table walkers cleared the corresponding bits. 807 */ 808 unsigned long bitmap; 809 #ifdef CONFIG_MEMCG 810 /* points to the memcg of "owner" above */ 811 struct mem_cgroup *memcg; 812 #endif 813 } lru_gen; 814 #endif /* CONFIG_LRU_GEN */ 815 } __randomize_layout; 816 817 /* 818 * The mm_cpumask needs to be at the end of mm_struct, because it 819 * is dynamically sized based on nr_cpu_ids. 820 */ 821 unsigned long cpu_bitmap[]; 822 }; 823 824 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN) 825 extern struct mm_struct init_mm; 826 827 /* Pointer magic because the dynamic array size confuses some compilers. */ 828 static inline void mm_init_cpumask(struct mm_struct *mm) 829 { 830 unsigned long cpu_bitmap = (unsigned long)mm; 831 832 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 833 cpumask_clear((struct cpumask *)cpu_bitmap); 834 } 835 836 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 837 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 838 { 839 return (struct cpumask *)&mm->cpu_bitmap; 840 } 841 842 #ifdef CONFIG_LRU_GEN 843 844 struct lru_gen_mm_list { 845 /* mm_struct list for page table walkers */ 846 struct list_head fifo; 847 /* protects the list above */ 848 spinlock_t lock; 849 }; 850 851 void lru_gen_add_mm(struct mm_struct *mm); 852 void lru_gen_del_mm(struct mm_struct *mm); 853 #ifdef CONFIG_MEMCG 854 void lru_gen_migrate_mm(struct mm_struct *mm); 855 #endif 856 857 static inline void lru_gen_init_mm(struct mm_struct *mm) 858 { 859 INIT_LIST_HEAD(&mm->lru_gen.list); 860 mm->lru_gen.bitmap = 0; 861 #ifdef CONFIG_MEMCG 862 mm->lru_gen.memcg = NULL; 863 #endif 864 } 865 866 static inline void lru_gen_use_mm(struct mm_struct *mm) 867 { 868 /* 869 * When the bitmap is set, page reclaim knows this mm_struct has been 870 * used since the last time it cleared the bitmap. So it might be worth 871 * walking the page tables of this mm_struct to clear the accessed bit. 872 */ 873 WRITE_ONCE(mm->lru_gen.bitmap, -1); 874 } 875 876 #else /* !CONFIG_LRU_GEN */ 877 878 static inline void lru_gen_add_mm(struct mm_struct *mm) 879 { 880 } 881 882 static inline void lru_gen_del_mm(struct mm_struct *mm) 883 { 884 } 885 886 #ifdef CONFIG_MEMCG 887 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 888 { 889 } 890 #endif 891 892 static inline void lru_gen_init_mm(struct mm_struct *mm) 893 { 894 } 895 896 static inline void lru_gen_use_mm(struct mm_struct *mm) 897 { 898 } 899 900 #endif /* CONFIG_LRU_GEN */ 901 902 struct vma_iterator { 903 struct ma_state mas; 904 }; 905 906 #define VMA_ITERATOR(name, __mm, __addr) \ 907 struct vma_iterator name = { \ 908 .mas = { \ 909 .tree = &(__mm)->mm_mt, \ 910 .index = __addr, \ 911 .node = MAS_START, \ 912 }, \ 913 } 914 915 static inline void vma_iter_init(struct vma_iterator *vmi, 916 struct mm_struct *mm, unsigned long addr) 917 { 918 vmi->mas.tree = &mm->mm_mt; 919 vmi->mas.index = addr; 920 vmi->mas.node = MAS_START; 921 } 922 923 #ifdef CONFIG_SCHED_MM_CID 924 /* Accessor for struct mm_struct's cidmask. */ 925 static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 926 { 927 unsigned long cid_bitmap = (unsigned long)mm; 928 929 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 930 /* Skip cpu_bitmap */ 931 cid_bitmap += cpumask_size(); 932 return (struct cpumask *)cid_bitmap; 933 } 934 935 static inline void mm_init_cid(struct mm_struct *mm) 936 { 937 raw_spin_lock_init(&mm->cid_lock); 938 cpumask_clear(mm_cidmask(mm)); 939 } 940 941 static inline unsigned int mm_cid_size(void) 942 { 943 return cpumask_size(); 944 } 945 #else /* CONFIG_SCHED_MM_CID */ 946 static inline void mm_init_cid(struct mm_struct *mm) { } 947 static inline unsigned int mm_cid_size(void) 948 { 949 return 0; 950 } 951 #endif /* CONFIG_SCHED_MM_CID */ 952 953 struct mmu_gather; 954 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 955 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 956 extern void tlb_finish_mmu(struct mmu_gather *tlb); 957 958 struct vm_fault; 959 960 /** 961 * typedef vm_fault_t - Return type for page fault handlers. 962 * 963 * Page fault handlers return a bitmask of %VM_FAULT values. 964 */ 965 typedef __bitwise unsigned int vm_fault_t; 966 967 /** 968 * enum vm_fault_reason - Page fault handlers return a bitmask of 969 * these values to tell the core VM what happened when handling the 970 * fault. Used to decide whether a process gets delivered SIGBUS or 971 * just gets major/minor fault counters bumped up. 972 * 973 * @VM_FAULT_OOM: Out Of Memory 974 * @VM_FAULT_SIGBUS: Bad access 975 * @VM_FAULT_MAJOR: Page read from storage 976 * @VM_FAULT_HWPOISON: Hit poisoned small page 977 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 978 * in upper bits 979 * @VM_FAULT_SIGSEGV: segmentation fault 980 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 981 * @VM_FAULT_LOCKED: ->fault locked the returned page 982 * @VM_FAULT_RETRY: ->fault blocked, must retry 983 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 984 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 985 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 986 * fsync() to complete (for synchronous page faults 987 * in DAX) 988 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 989 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 990 * 991 */ 992 enum vm_fault_reason { 993 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 994 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 995 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 996 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 997 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 998 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 999 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1000 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1001 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1002 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1003 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1004 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1005 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1006 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1007 }; 1008 1009 /* Encode hstate index for a hwpoisoned large page */ 1010 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1011 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1012 1013 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1014 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1015 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1016 1017 #define VM_FAULT_RESULT_TRACE \ 1018 { VM_FAULT_OOM, "OOM" }, \ 1019 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1020 { VM_FAULT_MAJOR, "MAJOR" }, \ 1021 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1022 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1023 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1024 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1025 { VM_FAULT_LOCKED, "LOCKED" }, \ 1026 { VM_FAULT_RETRY, "RETRY" }, \ 1027 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1028 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1029 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1030 1031 struct vm_special_mapping { 1032 const char *name; /* The name, e.g. "[vdso]". */ 1033 1034 /* 1035 * If .fault is not provided, this points to a 1036 * NULL-terminated array of pages that back the special mapping. 1037 * 1038 * This must not be NULL unless .fault is provided. 1039 */ 1040 struct page **pages; 1041 1042 /* 1043 * If non-NULL, then this is called to resolve page faults 1044 * on the special mapping. If used, .pages is not checked. 1045 */ 1046 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1047 struct vm_area_struct *vma, 1048 struct vm_fault *vmf); 1049 1050 int (*mremap)(const struct vm_special_mapping *sm, 1051 struct vm_area_struct *new_vma); 1052 }; 1053 1054 enum tlb_flush_reason { 1055 TLB_FLUSH_ON_TASK_SWITCH, 1056 TLB_REMOTE_SHOOTDOWN, 1057 TLB_LOCAL_SHOOTDOWN, 1058 TLB_LOCAL_MM_SHOOTDOWN, 1059 TLB_REMOTE_SEND_IPI, 1060 NR_TLB_FLUSH_REASONS, 1061 }; 1062 1063 /* 1064 * A swap entry has to fit into a "unsigned long", as the entry is hidden 1065 * in the "index" field of the swapper address space. 1066 */ 1067 typedef struct { 1068 unsigned long val; 1069 } swp_entry_t; 1070 1071 /** 1072 * enum fault_flag - Fault flag definitions. 1073 * @FAULT_FLAG_WRITE: Fault was a write fault. 1074 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1075 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1076 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1077 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1078 * @FAULT_FLAG_TRIED: The fault has been tried once. 1079 * @FAULT_FLAG_USER: The fault originated in userspace. 1080 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1081 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1082 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1083 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1084 * COW mapping, making sure that an exclusive anon page is 1085 * mapped after the fault. 1086 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1087 * We should only access orig_pte if this flag set. 1088 * 1089 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1090 * whether we would allow page faults to retry by specifying these two 1091 * fault flags correctly. Currently there can be three legal combinations: 1092 * 1093 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1094 * this is the first try 1095 * 1096 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1097 * we've already tried at least once 1098 * 1099 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1100 * 1101 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1102 * be used. Note that page faults can be allowed to retry for multiple times, 1103 * in which case we'll have an initial fault with flags (a) then later on 1104 * continuous faults with flags (b). We should always try to detect pending 1105 * signals before a retry to make sure the continuous page faults can still be 1106 * interrupted if necessary. 1107 * 1108 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1109 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1110 * applied to mappings that are not COW mappings. 1111 */ 1112 enum fault_flag { 1113 FAULT_FLAG_WRITE = 1 << 0, 1114 FAULT_FLAG_MKWRITE = 1 << 1, 1115 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1116 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1117 FAULT_FLAG_KILLABLE = 1 << 4, 1118 FAULT_FLAG_TRIED = 1 << 5, 1119 FAULT_FLAG_USER = 1 << 6, 1120 FAULT_FLAG_REMOTE = 1 << 7, 1121 FAULT_FLAG_INSTRUCTION = 1 << 8, 1122 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1123 FAULT_FLAG_UNSHARE = 1 << 10, 1124 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1125 }; 1126 1127 typedef unsigned int __bitwise zap_flags_t; 1128 1129 #endif /* _LINUX_MM_TYPES_H */ 1130