xref: /linux-6.15/include/linux/mm_types.h (revision e756bc56)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/page-debug-flags.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 
24 struct address_space;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 
30 /*
31  * Each physical page in the system has a struct page associated with
32  * it to keep track of whatever it is we are using the page for at the
33  * moment. Note that we have no way to track which tasks are using
34  * a page, though if it is a pagecache page, rmap structures can tell us
35  * who is mapping it.
36  *
37  * The objects in struct page are organized in double word blocks in
38  * order to allows us to use atomic double word operations on portions
39  * of struct page. That is currently only used by slub but the arrangement
40  * allows the use of atomic double word operations on the flags/mapping
41  * and lru list pointers also.
42  */
43 struct page {
44 	/* First double word block */
45 	unsigned long flags;		/* Atomic flags, some possibly
46 					 * updated asynchronously */
47 	union {
48 		struct address_space *mapping;	/* If low bit clear, points to
49 						 * inode address_space, or NULL.
50 						 * If page mapped as anonymous
51 						 * memory, low bit is set, and
52 						 * it points to anon_vma object:
53 						 * see PAGE_MAPPING_ANON below.
54 						 */
55 		void *s_mem;			/* slab first object */
56 	};
57 
58 	/* Second double word */
59 	struct {
60 		union {
61 			pgoff_t index;		/* Our offset within mapping. */
62 			void *freelist;		/* sl[aou]b first free object */
63 			bool pfmemalloc;	/* If set by the page allocator,
64 						 * ALLOC_NO_WATERMARKS was set
65 						 * and the low watermark was not
66 						 * met implying that the system
67 						 * is under some pressure. The
68 						 * caller should try ensure
69 						 * this page is only used to
70 						 * free other pages.
71 						 */
72 		};
73 
74 		union {
75 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
76 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
77 			/* Used for cmpxchg_double in slub */
78 			unsigned long counters;
79 #else
80 			/*
81 			 * Keep _count separate from slub cmpxchg_double data.
82 			 * As the rest of the double word is protected by
83 			 * slab_lock but _count is not.
84 			 */
85 			unsigned counters;
86 #endif
87 
88 			struct {
89 
90 				union {
91 					/*
92 					 * Count of ptes mapped in
93 					 * mms, to show when page is
94 					 * mapped & limit reverse map
95 					 * searches.
96 					 *
97 					 * Used also for tail pages
98 					 * refcounting instead of
99 					 * _count. Tail pages cannot
100 					 * be mapped and keeping the
101 					 * tail page _count zero at
102 					 * all times guarantees
103 					 * get_page_unless_zero() will
104 					 * never succeed on tail
105 					 * pages.
106 					 */
107 					atomic_t _mapcount;
108 
109 					struct { /* SLUB */
110 						unsigned inuse:16;
111 						unsigned objects:15;
112 						unsigned frozen:1;
113 					};
114 					int units;	/* SLOB */
115 				};
116 				atomic_t _count;		/* Usage count, see below. */
117 			};
118 			unsigned int active;	/* SLAB */
119 		};
120 	};
121 
122 	/* Third double word block */
123 	union {
124 		struct list_head lru;	/* Pageout list, eg. active_list
125 					 * protected by zone->lru_lock !
126 					 */
127 		struct {		/* slub per cpu partial pages */
128 			struct page *next;	/* Next partial slab */
129 #ifdef CONFIG_64BIT
130 			int pages;	/* Nr of partial slabs left */
131 			int pobjects;	/* Approximate # of objects */
132 #else
133 			short int pages;
134 			short int pobjects;
135 #endif
136 		};
137 
138 		struct list_head list;	/* slobs list of pages */
139 		struct slab *slab_page; /* slab fields */
140 		struct rcu_head rcu_head;	/* Used by SLAB
141 						 * when destroying via RCU
142 						 */
143 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
144 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
145 #endif
146 	};
147 
148 	/* Remainder is not double word aligned */
149 	union {
150 		unsigned long private;		/* Mapping-private opaque data:
151 					 	 * usually used for buffer_heads
152 						 * if PagePrivate set; used for
153 						 * swp_entry_t if PageSwapCache;
154 						 * indicates order in the buddy
155 						 * system if PG_buddy is set.
156 						 */
157 #if USE_SPLIT_PTE_PTLOCKS
158 #if BLOATED_SPINLOCKS
159 		spinlock_t *ptl;
160 #else
161 		spinlock_t ptl;
162 #endif
163 #endif
164 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
165 		struct page *first_page;	/* Compound tail pages */
166 	};
167 
168 	/*
169 	 * On machines where all RAM is mapped into kernel address space,
170 	 * we can simply calculate the virtual address. On machines with
171 	 * highmem some memory is mapped into kernel virtual memory
172 	 * dynamically, so we need a place to store that address.
173 	 * Note that this field could be 16 bits on x86 ... ;)
174 	 *
175 	 * Architectures with slow multiplication can define
176 	 * WANT_PAGE_VIRTUAL in asm/page.h
177 	 */
178 #if defined(WANT_PAGE_VIRTUAL)
179 	void *virtual;			/* Kernel virtual address (NULL if
180 					   not kmapped, ie. highmem) */
181 #endif /* WANT_PAGE_VIRTUAL */
182 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
183 	unsigned long debug_flags;	/* Use atomic bitops on this */
184 #endif
185 
186 #ifdef CONFIG_KMEMCHECK
187 	/*
188 	 * kmemcheck wants to track the status of each byte in a page; this
189 	 * is a pointer to such a status block. NULL if not tracked.
190 	 */
191 	void *shadow;
192 #endif
193 
194 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
195 	int _last_cpupid;
196 #endif
197 }
198 /*
199  * The struct page can be forced to be double word aligned so that atomic ops
200  * on double words work. The SLUB allocator can make use of such a feature.
201  */
202 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
203 	__aligned(2 * sizeof(unsigned long))
204 #endif
205 ;
206 
207 struct page_frag {
208 	struct page *page;
209 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
210 	__u32 offset;
211 	__u32 size;
212 #else
213 	__u16 offset;
214 	__u16 size;
215 #endif
216 };
217 
218 typedef unsigned long __nocast vm_flags_t;
219 
220 /*
221  * A region containing a mapping of a non-memory backed file under NOMMU
222  * conditions.  These are held in a global tree and are pinned by the VMAs that
223  * map parts of them.
224  */
225 struct vm_region {
226 	struct rb_node	vm_rb;		/* link in global region tree */
227 	vm_flags_t	vm_flags;	/* VMA vm_flags */
228 	unsigned long	vm_start;	/* start address of region */
229 	unsigned long	vm_end;		/* region initialised to here */
230 	unsigned long	vm_top;		/* region allocated to here */
231 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
232 	struct file	*vm_file;	/* the backing file or NULL */
233 
234 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
235 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
236 						* this region */
237 };
238 
239 /*
240  * This struct defines a memory VMM memory area. There is one of these
241  * per VM-area/task.  A VM area is any part of the process virtual memory
242  * space that has a special rule for the page-fault handlers (ie a shared
243  * library, the executable area etc).
244  */
245 struct vm_area_struct {
246 	/* The first cache line has the info for VMA tree walking. */
247 
248 	unsigned long vm_start;		/* Our start address within vm_mm. */
249 	unsigned long vm_end;		/* The first byte after our end address
250 					   within vm_mm. */
251 
252 	/* linked list of VM areas per task, sorted by address */
253 	struct vm_area_struct *vm_next, *vm_prev;
254 
255 	struct rb_node vm_rb;
256 
257 	/*
258 	 * Largest free memory gap in bytes to the left of this VMA.
259 	 * Either between this VMA and vma->vm_prev, or between one of the
260 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
261 	 * get_unmapped_area find a free area of the right size.
262 	 */
263 	unsigned long rb_subtree_gap;
264 
265 	/* Second cache line starts here. */
266 
267 	struct mm_struct *vm_mm;	/* The address space we belong to. */
268 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
269 	unsigned long vm_flags;		/* Flags, see mm.h. */
270 
271 	/*
272 	 * For areas with an address space and backing store,
273 	 * linkage into the address_space->i_mmap interval tree, or
274 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
275 	 */
276 	union {
277 		struct {
278 			struct rb_node rb;
279 			unsigned long rb_subtree_last;
280 		} linear;
281 		struct list_head nonlinear;
282 	} shared;
283 
284 	/*
285 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
286 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
287 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
288 	 * or brk vma (with NULL file) can only be in an anon_vma list.
289 	 */
290 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
291 					  * page_table_lock */
292 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
293 
294 	/* Function pointers to deal with this struct. */
295 	const struct vm_operations_struct *vm_ops;
296 
297 	/* Information about our backing store: */
298 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
299 					   units, *not* PAGE_CACHE_SIZE */
300 	struct file * vm_file;		/* File we map to (can be NULL). */
301 	void * vm_private_data;		/* was vm_pte (shared mem) */
302 
303 #ifndef CONFIG_MMU
304 	struct vm_region *vm_region;	/* NOMMU mapping region */
305 #endif
306 #ifdef CONFIG_NUMA
307 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
308 #endif
309 };
310 
311 struct core_thread {
312 	struct task_struct *task;
313 	struct core_thread *next;
314 };
315 
316 struct core_state {
317 	atomic_t nr_threads;
318 	struct core_thread dumper;
319 	struct completion startup;
320 };
321 
322 enum {
323 	MM_FILEPAGES,
324 	MM_ANONPAGES,
325 	MM_SWAPENTS,
326 	NR_MM_COUNTERS
327 };
328 
329 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
330 #define SPLIT_RSS_COUNTING
331 /* per-thread cached information, */
332 struct task_rss_stat {
333 	int events;	/* for synchronization threshold */
334 	int count[NR_MM_COUNTERS];
335 };
336 #endif /* USE_SPLIT_PTE_PTLOCKS */
337 
338 struct mm_rss_stat {
339 	atomic_long_t count[NR_MM_COUNTERS];
340 };
341 
342 struct kioctx_table;
343 struct mm_struct {
344 	struct vm_area_struct * mmap;		/* list of VMAs */
345 	struct rb_root mm_rb;
346 	struct vm_area_struct * mmap_cache;	/* last find_vma result */
347 #ifdef CONFIG_MMU
348 	unsigned long (*get_unmapped_area) (struct file *filp,
349 				unsigned long addr, unsigned long len,
350 				unsigned long pgoff, unsigned long flags);
351 #endif
352 	unsigned long mmap_base;		/* base of mmap area */
353 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
354 	unsigned long task_size;		/* size of task vm space */
355 	unsigned long highest_vm_end;		/* highest vma end address */
356 	pgd_t * pgd;
357 	atomic_t mm_users;			/* How many users with user space? */
358 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
359 	atomic_long_t nr_ptes;			/* Page table pages */
360 	int map_count;				/* number of VMAs */
361 
362 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
363 	struct rw_semaphore mmap_sem;
364 
365 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
366 						 * together off init_mm.mmlist, and are protected
367 						 * by mmlist_lock
368 						 */
369 
370 
371 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
372 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
373 
374 	unsigned long total_vm;		/* Total pages mapped */
375 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
376 	unsigned long pinned_vm;	/* Refcount permanently increased */
377 	unsigned long shared_vm;	/* Shared pages (files) */
378 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
379 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
380 	unsigned long def_flags;
381 	unsigned long start_code, end_code, start_data, end_data;
382 	unsigned long start_brk, brk, start_stack;
383 	unsigned long arg_start, arg_end, env_start, env_end;
384 
385 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
386 
387 	/*
388 	 * Special counters, in some configurations protected by the
389 	 * page_table_lock, in other configurations by being atomic.
390 	 */
391 	struct mm_rss_stat rss_stat;
392 
393 	struct linux_binfmt *binfmt;
394 
395 	cpumask_var_t cpu_vm_mask_var;
396 
397 	/* Architecture-specific MM context */
398 	mm_context_t context;
399 
400 	unsigned long flags; /* Must use atomic bitops to access the bits */
401 
402 	struct core_state *core_state; /* coredumping support */
403 #ifdef CONFIG_AIO
404 	spinlock_t			ioctx_lock;
405 	struct kioctx_table __rcu	*ioctx_table;
406 #endif
407 #ifdef CONFIG_MM_OWNER
408 	/*
409 	 * "owner" points to a task that is regarded as the canonical
410 	 * user/owner of this mm. All of the following must be true in
411 	 * order for it to be changed:
412 	 *
413 	 * current == mm->owner
414 	 * current->mm != mm
415 	 * new_owner->mm == mm
416 	 * new_owner->alloc_lock is held
417 	 */
418 	struct task_struct __rcu *owner;
419 #endif
420 
421 	/* store ref to file /proc/<pid>/exe symlink points to */
422 	struct file *exe_file;
423 #ifdef CONFIG_MMU_NOTIFIER
424 	struct mmu_notifier_mm *mmu_notifier_mm;
425 #endif
426 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
427 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
428 #endif
429 #ifdef CONFIG_CPUMASK_OFFSTACK
430 	struct cpumask cpumask_allocation;
431 #endif
432 #ifdef CONFIG_NUMA_BALANCING
433 	/*
434 	 * numa_next_scan is the next time that the PTEs will be marked
435 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
436 	 * pages to new nodes if necessary.
437 	 */
438 	unsigned long numa_next_scan;
439 
440 	/* Restart point for scanning and setting pte_numa */
441 	unsigned long numa_scan_offset;
442 
443 	/* numa_scan_seq prevents two threads setting pte_numa */
444 	int numa_scan_seq;
445 #endif
446 	struct uprobes_state uprobes_state;
447 };
448 
449 static inline void mm_init_cpumask(struct mm_struct *mm)
450 {
451 #ifdef CONFIG_CPUMASK_OFFSTACK
452 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
453 #endif
454 }
455 
456 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
457 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
458 {
459 	return mm->cpu_vm_mask_var;
460 }
461 
462 #endif /* _LINUX_MM_TYPES_H */
463