xref: /linux-6.15/include/linux/mm_types.h (revision e00a844a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 struct address_space;
26 struct mem_cgroup;
27 struct hmm;
28 
29 /*
30  * Each physical page in the system has a struct page associated with
31  * it to keep track of whatever it is we are using the page for at the
32  * moment. Note that we have no way to track which tasks are using
33  * a page, though if it is a pagecache page, rmap structures can tell us
34  * who is mapping it.
35  *
36  * The objects in struct page are organized in double word blocks in
37  * order to allows us to use atomic double word operations on portions
38  * of struct page. That is currently only used by slub but the arrangement
39  * allows the use of atomic double word operations on the flags/mapping
40  * and lru list pointers also.
41  */
42 struct page {
43 	/* First double word block */
44 	unsigned long flags;		/* Atomic flags, some possibly
45 					 * updated asynchronously */
46 	union {
47 		struct address_space *mapping;	/* If low bit clear, points to
48 						 * inode address_space, or NULL.
49 						 * If page mapped as anonymous
50 						 * memory, low bit is set, and
51 						 * it points to anon_vma object
52 						 * or KSM private structure. See
53 						 * PAGE_MAPPING_ANON and
54 						 * PAGE_MAPPING_KSM.
55 						 */
56 		void *s_mem;			/* slab first object */
57 		atomic_t compound_mapcount;	/* first tail page */
58 		/* page_deferred_list().next	 -- second tail page */
59 	};
60 
61 	/* Second double word */
62 	union {
63 		pgoff_t index;		/* Our offset within mapping. */
64 		void *freelist;		/* sl[aou]b first free object */
65 		/* page_deferred_list().prev	-- second tail page */
66 	};
67 
68 	union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 		/* Used for cmpxchg_double in slub */
72 		unsigned long counters;
73 #else
74 		/*
75 		 * Keep _refcount separate from slub cmpxchg_double data.
76 		 * As the rest of the double word is protected by slab_lock
77 		 * but _refcount is not.
78 		 */
79 		unsigned counters;
80 #endif
81 		struct {
82 
83 			union {
84 				/*
85 				 * Count of ptes mapped in mms, to show when
86 				 * page is mapped & limit reverse map searches.
87 				 *
88 				 * Extra information about page type may be
89 				 * stored here for pages that are never mapped,
90 				 * in which case the value MUST BE <= -2.
91 				 * See page-flags.h for more details.
92 				 */
93 				atomic_t _mapcount;
94 
95 				unsigned int active;		/* SLAB */
96 				struct {			/* SLUB */
97 					unsigned inuse:16;
98 					unsigned objects:15;
99 					unsigned frozen:1;
100 				};
101 				int units;			/* SLOB */
102 			};
103 			/*
104 			 * Usage count, *USE WRAPPER FUNCTION* when manual
105 			 * accounting. See page_ref.h
106 			 */
107 			atomic_t _refcount;
108 		};
109 	};
110 
111 	/*
112 	 * Third double word block
113 	 *
114 	 * WARNING: bit 0 of the first word encode PageTail(). That means
115 	 * the rest users of the storage space MUST NOT use the bit to
116 	 * avoid collision and false-positive PageTail().
117 	 */
118 	union {
119 		struct list_head lru;	/* Pageout list, eg. active_list
120 					 * protected by zone_lru_lock !
121 					 * Can be used as a generic list
122 					 * by the page owner.
123 					 */
124 		struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
125 					    * lru or handled by a slab
126 					    * allocator, this points to the
127 					    * hosting device page map.
128 					    */
129 		struct {		/* slub per cpu partial pages */
130 			struct page *next;	/* Next partial slab */
131 #ifdef CONFIG_64BIT
132 			int pages;	/* Nr of partial slabs left */
133 			int pobjects;	/* Approximate # of objects */
134 #else
135 			short int pages;
136 			short int pobjects;
137 #endif
138 		};
139 
140 		struct rcu_head rcu_head;	/* Used by SLAB
141 						 * when destroying via RCU
142 						 */
143 		/* Tail pages of compound page */
144 		struct {
145 			unsigned long compound_head; /* If bit zero is set */
146 
147 			/* First tail page only */
148 #ifdef CONFIG_64BIT
149 			/*
150 			 * On 64 bit system we have enough space in struct page
151 			 * to encode compound_dtor and compound_order with
152 			 * unsigned int. It can help compiler generate better or
153 			 * smaller code on some archtectures.
154 			 */
155 			unsigned int compound_dtor;
156 			unsigned int compound_order;
157 #else
158 			unsigned short int compound_dtor;
159 			unsigned short int compound_order;
160 #endif
161 		};
162 
163 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
164 		struct {
165 			unsigned long __pad;	/* do not overlay pmd_huge_pte
166 						 * with compound_head to avoid
167 						 * possible bit 0 collision.
168 						 */
169 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
170 		};
171 #endif
172 	};
173 
174 	/* Remainder is not double word aligned */
175 	union {
176 		unsigned long private;		/* Mapping-private opaque data:
177 					 	 * usually used for buffer_heads
178 						 * if PagePrivate set; used for
179 						 * swp_entry_t if PageSwapCache;
180 						 * indicates order in the buddy
181 						 * system if PG_buddy is set.
182 						 */
183 #if USE_SPLIT_PTE_PTLOCKS
184 #if ALLOC_SPLIT_PTLOCKS
185 		spinlock_t *ptl;
186 #else
187 		spinlock_t ptl;
188 #endif
189 #endif
190 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
191 	};
192 
193 #ifdef CONFIG_MEMCG
194 	struct mem_cgroup *mem_cgroup;
195 #endif
196 
197 	/*
198 	 * On machines where all RAM is mapped into kernel address space,
199 	 * we can simply calculate the virtual address. On machines with
200 	 * highmem some memory is mapped into kernel virtual memory
201 	 * dynamically, so we need a place to store that address.
202 	 * Note that this field could be 16 bits on x86 ... ;)
203 	 *
204 	 * Architectures with slow multiplication can define
205 	 * WANT_PAGE_VIRTUAL in asm/page.h
206 	 */
207 #if defined(WANT_PAGE_VIRTUAL)
208 	void *virtual;			/* Kernel virtual address (NULL if
209 					   not kmapped, ie. highmem) */
210 #endif /* WANT_PAGE_VIRTUAL */
211 
212 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
213 	int _last_cpupid;
214 #endif
215 }
216 /*
217  * The struct page can be forced to be double word aligned so that atomic ops
218  * on double words work. The SLUB allocator can make use of such a feature.
219  */
220 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
221 	__aligned(2 * sizeof(unsigned long))
222 #endif
223 ;
224 
225 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
226 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
227 
228 struct page_frag_cache {
229 	void * va;
230 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
231 	__u16 offset;
232 	__u16 size;
233 #else
234 	__u32 offset;
235 #endif
236 	/* we maintain a pagecount bias, so that we dont dirty cache line
237 	 * containing page->_refcount every time we allocate a fragment.
238 	 */
239 	unsigned int		pagecnt_bias;
240 	bool pfmemalloc;
241 };
242 
243 typedef unsigned long vm_flags_t;
244 
245 /*
246  * A region containing a mapping of a non-memory backed file under NOMMU
247  * conditions.  These are held in a global tree and are pinned by the VMAs that
248  * map parts of them.
249  */
250 struct vm_region {
251 	struct rb_node	vm_rb;		/* link in global region tree */
252 	vm_flags_t	vm_flags;	/* VMA vm_flags */
253 	unsigned long	vm_start;	/* start address of region */
254 	unsigned long	vm_end;		/* region initialised to here */
255 	unsigned long	vm_top;		/* region allocated to here */
256 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
257 	struct file	*vm_file;	/* the backing file or NULL */
258 
259 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
260 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
261 						* this region */
262 };
263 
264 #ifdef CONFIG_USERFAULTFD
265 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
266 struct vm_userfaultfd_ctx {
267 	struct userfaultfd_ctx *ctx;
268 };
269 #else /* CONFIG_USERFAULTFD */
270 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
271 struct vm_userfaultfd_ctx {};
272 #endif /* CONFIG_USERFAULTFD */
273 
274 /*
275  * This struct defines a memory VMM memory area. There is one of these
276  * per VM-area/task.  A VM area is any part of the process virtual memory
277  * space that has a special rule for the page-fault handlers (ie a shared
278  * library, the executable area etc).
279  */
280 struct vm_area_struct {
281 	/* The first cache line has the info for VMA tree walking. */
282 
283 	unsigned long vm_start;		/* Our start address within vm_mm. */
284 	unsigned long vm_end;		/* The first byte after our end address
285 					   within vm_mm. */
286 
287 	/* linked list of VM areas per task, sorted by address */
288 	struct vm_area_struct *vm_next, *vm_prev;
289 
290 	struct rb_node vm_rb;
291 
292 	/*
293 	 * Largest free memory gap in bytes to the left of this VMA.
294 	 * Either between this VMA and vma->vm_prev, or between one of the
295 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
296 	 * get_unmapped_area find a free area of the right size.
297 	 */
298 	unsigned long rb_subtree_gap;
299 
300 	/* Second cache line starts here. */
301 
302 	struct mm_struct *vm_mm;	/* The address space we belong to. */
303 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
304 	unsigned long vm_flags;		/* Flags, see mm.h. */
305 
306 	/*
307 	 * For areas with an address space and backing store,
308 	 * linkage into the address_space->i_mmap interval tree.
309 	 */
310 	struct {
311 		struct rb_node rb;
312 		unsigned long rb_subtree_last;
313 	} shared;
314 
315 	/*
316 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
317 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
318 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
319 	 * or brk vma (with NULL file) can only be in an anon_vma list.
320 	 */
321 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
322 					  * page_table_lock */
323 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
324 
325 	/* Function pointers to deal with this struct. */
326 	const struct vm_operations_struct *vm_ops;
327 
328 	/* Information about our backing store: */
329 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
330 					   units */
331 	struct file * vm_file;		/* File we map to (can be NULL). */
332 	void * vm_private_data;		/* was vm_pte (shared mem) */
333 
334 	atomic_long_t swap_readahead_info;
335 #ifndef CONFIG_MMU
336 	struct vm_region *vm_region;	/* NOMMU mapping region */
337 #endif
338 #ifdef CONFIG_NUMA
339 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
340 #endif
341 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
342 } __randomize_layout;
343 
344 struct core_thread {
345 	struct task_struct *task;
346 	struct core_thread *next;
347 };
348 
349 struct core_state {
350 	atomic_t nr_threads;
351 	struct core_thread dumper;
352 	struct completion startup;
353 };
354 
355 struct kioctx_table;
356 struct mm_struct {
357 	struct vm_area_struct *mmap;		/* list of VMAs */
358 	struct rb_root mm_rb;
359 	u32 vmacache_seqnum;                   /* per-thread vmacache */
360 #ifdef CONFIG_MMU
361 	unsigned long (*get_unmapped_area) (struct file *filp,
362 				unsigned long addr, unsigned long len,
363 				unsigned long pgoff, unsigned long flags);
364 #endif
365 	unsigned long mmap_base;		/* base of mmap area */
366 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
367 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
368 	/* Base adresses for compatible mmap() */
369 	unsigned long mmap_compat_base;
370 	unsigned long mmap_compat_legacy_base;
371 #endif
372 	unsigned long task_size;		/* size of task vm space */
373 	unsigned long highest_vm_end;		/* highest vma end address */
374 	pgd_t * pgd;
375 
376 	/**
377 	 * @mm_users: The number of users including userspace.
378 	 *
379 	 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
380 	 * to 0 (i.e. when the task exits and there are no other temporary
381 	 * reference holders), we also release a reference on @mm_count
382 	 * (which may then free the &struct mm_struct if @mm_count also
383 	 * drops to 0).
384 	 */
385 	atomic_t mm_users;
386 
387 	/**
388 	 * @mm_count: The number of references to &struct mm_struct
389 	 * (@mm_users count as 1).
390 	 *
391 	 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
392 	 * &struct mm_struct is freed.
393 	 */
394 	atomic_t mm_count;
395 
396 #ifdef CONFIG_MMU
397 	atomic_long_t pgtables_bytes;		/* PTE page table pages */
398 #endif
399 	int map_count;				/* number of VMAs */
400 
401 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
402 	struct rw_semaphore mmap_sem;
403 
404 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
405 						 * together off init_mm.mmlist, and are protected
406 						 * by mmlist_lock
407 						 */
408 
409 
410 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
411 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
412 
413 	unsigned long total_vm;		/* Total pages mapped */
414 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
415 	unsigned long pinned_vm;	/* Refcount permanently increased */
416 	unsigned long data_vm;		/* VM_WRITE & ~VM_SHARED & ~VM_STACK */
417 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE & ~VM_STACK */
418 	unsigned long stack_vm;		/* VM_STACK */
419 	unsigned long def_flags;
420 	unsigned long start_code, end_code, start_data, end_data;
421 	unsigned long start_brk, brk, start_stack;
422 	unsigned long arg_start, arg_end, env_start, env_end;
423 
424 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
425 
426 	/*
427 	 * Special counters, in some configurations protected by the
428 	 * page_table_lock, in other configurations by being atomic.
429 	 */
430 	struct mm_rss_stat rss_stat;
431 
432 	struct linux_binfmt *binfmt;
433 
434 	cpumask_var_t cpu_vm_mask_var;
435 
436 	/* Architecture-specific MM context */
437 	mm_context_t context;
438 
439 	unsigned long flags; /* Must use atomic bitops to access the bits */
440 
441 	struct core_state *core_state; /* coredumping support */
442 #ifdef CONFIG_MEMBARRIER
443 	atomic_t membarrier_state;
444 #endif
445 #ifdef CONFIG_AIO
446 	spinlock_t			ioctx_lock;
447 	struct kioctx_table __rcu	*ioctx_table;
448 #endif
449 #ifdef CONFIG_MEMCG
450 	/*
451 	 * "owner" points to a task that is regarded as the canonical
452 	 * user/owner of this mm. All of the following must be true in
453 	 * order for it to be changed:
454 	 *
455 	 * current == mm->owner
456 	 * current->mm != mm
457 	 * new_owner->mm == mm
458 	 * new_owner->alloc_lock is held
459 	 */
460 	struct task_struct __rcu *owner;
461 #endif
462 	struct user_namespace *user_ns;
463 
464 	/* store ref to file /proc/<pid>/exe symlink points to */
465 	struct file __rcu *exe_file;
466 #ifdef CONFIG_MMU_NOTIFIER
467 	struct mmu_notifier_mm *mmu_notifier_mm;
468 #endif
469 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
470 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
471 #endif
472 #ifdef CONFIG_CPUMASK_OFFSTACK
473 	struct cpumask cpumask_allocation;
474 #endif
475 #ifdef CONFIG_NUMA_BALANCING
476 	/*
477 	 * numa_next_scan is the next time that the PTEs will be marked
478 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
479 	 * pages to new nodes if necessary.
480 	 */
481 	unsigned long numa_next_scan;
482 
483 	/* Restart point for scanning and setting pte_numa */
484 	unsigned long numa_scan_offset;
485 
486 	/* numa_scan_seq prevents two threads setting pte_numa */
487 	int numa_scan_seq;
488 #endif
489 	/*
490 	 * An operation with batched TLB flushing is going on. Anything that
491 	 * can move process memory needs to flush the TLB when moving a
492 	 * PROT_NONE or PROT_NUMA mapped page.
493 	 */
494 	atomic_t tlb_flush_pending;
495 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
496 	/* See flush_tlb_batched_pending() */
497 	bool tlb_flush_batched;
498 #endif
499 	struct uprobes_state uprobes_state;
500 #ifdef CONFIG_HUGETLB_PAGE
501 	atomic_long_t hugetlb_usage;
502 #endif
503 	struct work_struct async_put_work;
504 
505 #if IS_ENABLED(CONFIG_HMM)
506 	/* HMM needs to track a few things per mm */
507 	struct hmm *hmm;
508 #endif
509 } __randomize_layout;
510 
511 extern struct mm_struct init_mm;
512 
513 static inline void mm_init_cpumask(struct mm_struct *mm)
514 {
515 #ifdef CONFIG_CPUMASK_OFFSTACK
516 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
517 #endif
518 	cpumask_clear(mm->cpu_vm_mask_var);
519 }
520 
521 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
522 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
523 {
524 	return mm->cpu_vm_mask_var;
525 }
526 
527 struct mmu_gather;
528 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
529 				unsigned long start, unsigned long end);
530 extern void tlb_finish_mmu(struct mmu_gather *tlb,
531 				unsigned long start, unsigned long end);
532 
533 static inline void init_tlb_flush_pending(struct mm_struct *mm)
534 {
535 	atomic_set(&mm->tlb_flush_pending, 0);
536 }
537 
538 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
539 {
540 	atomic_inc(&mm->tlb_flush_pending);
541 	/*
542 	 * The only time this value is relevant is when there are indeed pages
543 	 * to flush. And we'll only flush pages after changing them, which
544 	 * requires the PTL.
545 	 *
546 	 * So the ordering here is:
547 	 *
548 	 *	atomic_inc(&mm->tlb_flush_pending);
549 	 *	spin_lock(&ptl);
550 	 *	...
551 	 *	set_pte_at();
552 	 *	spin_unlock(&ptl);
553 	 *
554 	 *				spin_lock(&ptl)
555 	 *				mm_tlb_flush_pending();
556 	 *				....
557 	 *				spin_unlock(&ptl);
558 	 *
559 	 *	flush_tlb_range();
560 	 *	atomic_dec(&mm->tlb_flush_pending);
561 	 *
562 	 * Where the increment if constrained by the PTL unlock, it thus
563 	 * ensures that the increment is visible if the PTE modification is
564 	 * visible. After all, if there is no PTE modification, nobody cares
565 	 * about TLB flushes either.
566 	 *
567 	 * This very much relies on users (mm_tlb_flush_pending() and
568 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
569 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
570 	 * locks (PPC) the unlock of one doesn't order against the lock of
571 	 * another PTL.
572 	 *
573 	 * The decrement is ordered by the flush_tlb_range(), such that
574 	 * mm_tlb_flush_pending() will not return false unless all flushes have
575 	 * completed.
576 	 */
577 }
578 
579 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
580 {
581 	/*
582 	 * See inc_tlb_flush_pending().
583 	 *
584 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
585 	 * not order against TLB invalidate completion, which is what we need.
586 	 *
587 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
588 	 */
589 	atomic_dec(&mm->tlb_flush_pending);
590 }
591 
592 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
593 {
594 	/*
595 	 * Must be called after having acquired the PTL; orders against that
596 	 * PTLs release and therefore ensures that if we observe the modified
597 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
598 	 *
599 	 * That is, it only guarantees to return true if there is a flush
600 	 * pending for _this_ PTL.
601 	 */
602 	return atomic_read(&mm->tlb_flush_pending);
603 }
604 
605 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
606 {
607 	/*
608 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
609 	 * for which there is a TLB flush pending in order to guarantee
610 	 * we've seen both that PTE modification and the increment.
611 	 *
612 	 * (no requirement on actually still holding the PTL, that is irrelevant)
613 	 */
614 	return atomic_read(&mm->tlb_flush_pending) > 1;
615 }
616 
617 struct vm_fault;
618 
619 struct vm_special_mapping {
620 	const char *name;	/* The name, e.g. "[vdso]". */
621 
622 	/*
623 	 * If .fault is not provided, this points to a
624 	 * NULL-terminated array of pages that back the special mapping.
625 	 *
626 	 * This must not be NULL unless .fault is provided.
627 	 */
628 	struct page **pages;
629 
630 	/*
631 	 * If non-NULL, then this is called to resolve page faults
632 	 * on the special mapping.  If used, .pages is not checked.
633 	 */
634 	int (*fault)(const struct vm_special_mapping *sm,
635 		     struct vm_area_struct *vma,
636 		     struct vm_fault *vmf);
637 
638 	int (*mremap)(const struct vm_special_mapping *sm,
639 		     struct vm_area_struct *new_vma);
640 };
641 
642 enum tlb_flush_reason {
643 	TLB_FLUSH_ON_TASK_SWITCH,
644 	TLB_REMOTE_SHOOTDOWN,
645 	TLB_LOCAL_SHOOTDOWN,
646 	TLB_LOCAL_MM_SHOOTDOWN,
647 	TLB_REMOTE_SEND_IPI,
648 	NR_TLB_FLUSH_REASONS,
649 };
650 
651  /*
652   * A swap entry has to fit into a "unsigned long", as the entry is hidden
653   * in the "index" field of the swapper address space.
654   */
655 typedef struct {
656 	unsigned long val;
657 } swp_entry_t;
658 
659 #endif /* _LINUX_MM_TYPES_H */
660