1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 #include <linux/percpu_counter.h> 22 23 #include <asm/mmu.h> 24 25 #ifndef AT_VECTOR_SIZE_ARCH 26 #define AT_VECTOR_SIZE_ARCH 0 27 #endif 28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30 #define INIT_PASID 0 31 32 struct address_space; 33 struct mem_cgroup; 34 35 /* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70 #else 71 #define _struct_page_alignment __aligned(sizeof(unsigned long)) 72 #endif 73 74 struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 union { 129 /** 130 * dma_addr_upper: might require a 64-bit 131 * value on 32-bit architectures. 132 */ 133 unsigned long dma_addr_upper; 134 /** 135 * For frag page support, not supported in 136 * 32-bit architectures with 64-bit DMA. 137 */ 138 atomic_long_t pp_frag_count; 139 }; 140 }; 141 struct { /* Tail pages of compound page */ 142 unsigned long compound_head; /* Bit zero is set */ 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152 #if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154 #else 155 spinlock_t ptl; 156 #endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 void *zone_device_data; 162 /* 163 * ZONE_DEVICE private pages are counted as being 164 * mapped so the next 3 words hold the mapping, index, 165 * and private fields from the source anonymous or 166 * page cache page while the page is migrated to device 167 * private memory. 168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 169 * use the mapping, index, and private fields when 170 * pmem backed DAX files are mapped. 171 */ 172 }; 173 174 /** @rcu_head: You can use this to free a page by RCU. */ 175 struct rcu_head rcu_head; 176 }; 177 178 union { /* This union is 4 bytes in size. */ 179 /* 180 * If the page can be mapped to userspace, encodes the number 181 * of times this page is referenced by a page table. 182 */ 183 atomic_t _mapcount; 184 185 /* 186 * If the page is neither PageSlab nor mappable to userspace, 187 * the value stored here may help determine what this page 188 * is used for. See page-flags.h for a list of page types 189 * which are currently stored here. 190 */ 191 unsigned int page_type; 192 }; 193 194 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 195 atomic_t _refcount; 196 197 #ifdef CONFIG_MEMCG 198 unsigned long memcg_data; 199 #endif 200 201 /* 202 * On machines where all RAM is mapped into kernel address space, 203 * we can simply calculate the virtual address. On machines with 204 * highmem some memory is mapped into kernel virtual memory 205 * dynamically, so we need a place to store that address. 206 * Note that this field could be 16 bits on x86 ... ;) 207 * 208 * Architectures with slow multiplication can define 209 * WANT_PAGE_VIRTUAL in asm/page.h 210 */ 211 #if defined(WANT_PAGE_VIRTUAL) 212 void *virtual; /* Kernel virtual address (NULL if 213 not kmapped, ie. highmem) */ 214 #endif /* WANT_PAGE_VIRTUAL */ 215 216 #ifdef CONFIG_KMSAN 217 /* 218 * KMSAN metadata for this page: 219 * - shadow page: every bit indicates whether the corresponding 220 * bit of the original page is initialized (0) or not (1); 221 * - origin page: every 4 bytes contain an id of the stack trace 222 * where the uninitialized value was created. 223 */ 224 struct page *kmsan_shadow; 225 struct page *kmsan_origin; 226 #endif 227 228 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 229 int _last_cpupid; 230 #endif 231 } _struct_page_alignment; 232 233 /* 234 * struct encoded_page - a nonexistent type marking this pointer 235 * 236 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 237 * with the low bits of the pointer indicating extra context-dependent 238 * information. Not super-common, but happens in mmu_gather and mlock 239 * handling, and this acts as a type system check on that use. 240 * 241 * We only really have two guaranteed bits in general, although you could 242 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 243 * for more. 244 * 245 * Use the supplied helper functions to endcode/decode the pointer and bits. 246 */ 247 struct encoded_page; 248 #define ENCODE_PAGE_BITS 3ul 249 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 250 { 251 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 252 return (struct encoded_page *)(flags | (unsigned long)page); 253 } 254 255 static inline unsigned long encoded_page_flags(struct encoded_page *page) 256 { 257 return ENCODE_PAGE_BITS & (unsigned long)page; 258 } 259 260 static inline struct page *encoded_page_ptr(struct encoded_page *page) 261 { 262 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 263 } 264 265 /** 266 * struct folio - Represents a contiguous set of bytes. 267 * @flags: Identical to the page flags. 268 * @lru: Least Recently Used list; tracks how recently this folio was used. 269 * @mlock_count: Number of times this folio has been pinned by mlock(). 270 * @mapping: The file this page belongs to, or refers to the anon_vma for 271 * anonymous memory. 272 * @index: Offset within the file, in units of pages. For anonymous memory, 273 * this is the index from the beginning of the mmap. 274 * @private: Filesystem per-folio data (see folio_attach_private()). 275 * Used for swp_entry_t if folio_test_swapcache(). 276 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 277 * find out how many times this folio is mapped by userspace. 278 * @_refcount: Do not access this member directly. Use folio_ref_count() 279 * to find how many references there are to this folio. 280 * @memcg_data: Memory Control Group data. 281 * @_folio_dtor: Which destructor to use for this folio. 282 * @_folio_order: Do not use directly, call folio_order(). 283 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 284 * @_nr_pages_mapped: Do not use directly, call folio_mapcount(). 285 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 286 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 287 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 288 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 289 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 290 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 291 * @_deferred_list: Folios to be split under memory pressure. 292 * 293 * A folio is a physically, virtually and logically contiguous set 294 * of bytes. It is a power-of-two in size, and it is aligned to that 295 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 296 * in the page cache, it is at a file offset which is a multiple of that 297 * power-of-two. It may be mapped into userspace at an address which is 298 * at an arbitrary page offset, but its kernel virtual address is aligned 299 * to its size. 300 */ 301 struct folio { 302 /* private: don't document the anon union */ 303 union { 304 struct { 305 /* public: */ 306 unsigned long flags; 307 union { 308 struct list_head lru; 309 /* private: avoid cluttering the output */ 310 struct { 311 void *__filler; 312 /* public: */ 313 unsigned int mlock_count; 314 /* private: */ 315 }; 316 /* public: */ 317 }; 318 struct address_space *mapping; 319 pgoff_t index; 320 void *private; 321 atomic_t _mapcount; 322 atomic_t _refcount; 323 #ifdef CONFIG_MEMCG 324 unsigned long memcg_data; 325 #endif 326 /* private: the union with struct page is transitional */ 327 }; 328 struct page page; 329 }; 330 union { 331 struct { 332 unsigned long _flags_1; 333 unsigned long _head_1; 334 /* public: */ 335 unsigned char _folio_dtor; 336 unsigned char _folio_order; 337 atomic_t _entire_mapcount; 338 atomic_t _nr_pages_mapped; 339 atomic_t _pincount; 340 #ifdef CONFIG_64BIT 341 unsigned int _folio_nr_pages; 342 #endif 343 /* private: the union with struct page is transitional */ 344 }; 345 struct page __page_1; 346 }; 347 union { 348 struct { 349 unsigned long _flags_2; 350 unsigned long _head_2; 351 /* public: */ 352 void *_hugetlb_subpool; 353 void *_hugetlb_cgroup; 354 void *_hugetlb_cgroup_rsvd; 355 void *_hugetlb_hwpoison; 356 /* private: the union with struct page is transitional */ 357 }; 358 struct { 359 unsigned long _flags_2a; 360 unsigned long _head_2a; 361 /* public: */ 362 struct list_head _deferred_list; 363 /* private: the union with struct page is transitional */ 364 }; 365 struct page __page_2; 366 }; 367 }; 368 369 #define FOLIO_MATCH(pg, fl) \ 370 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 371 FOLIO_MATCH(flags, flags); 372 FOLIO_MATCH(lru, lru); 373 FOLIO_MATCH(mapping, mapping); 374 FOLIO_MATCH(compound_head, lru); 375 FOLIO_MATCH(index, index); 376 FOLIO_MATCH(private, private); 377 FOLIO_MATCH(_mapcount, _mapcount); 378 FOLIO_MATCH(_refcount, _refcount); 379 #ifdef CONFIG_MEMCG 380 FOLIO_MATCH(memcg_data, memcg_data); 381 #endif 382 #undef FOLIO_MATCH 383 #define FOLIO_MATCH(pg, fl) \ 384 static_assert(offsetof(struct folio, fl) == \ 385 offsetof(struct page, pg) + sizeof(struct page)) 386 FOLIO_MATCH(flags, _flags_1); 387 FOLIO_MATCH(compound_head, _head_1); 388 #undef FOLIO_MATCH 389 #define FOLIO_MATCH(pg, fl) \ 390 static_assert(offsetof(struct folio, fl) == \ 391 offsetof(struct page, pg) + 2 * sizeof(struct page)) 392 FOLIO_MATCH(flags, _flags_2); 393 FOLIO_MATCH(compound_head, _head_2); 394 #undef FOLIO_MATCH 395 396 /* 397 * Used for sizing the vmemmap region on some architectures 398 */ 399 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 400 401 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 402 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 403 404 /* 405 * page_private can be used on tail pages. However, PagePrivate is only 406 * checked by the VM on the head page. So page_private on the tail pages 407 * should be used for data that's ancillary to the head page (eg attaching 408 * buffer heads to tail pages after attaching buffer heads to the head page) 409 */ 410 #define page_private(page) ((page)->private) 411 412 static inline void set_page_private(struct page *page, unsigned long private) 413 { 414 page->private = private; 415 } 416 417 static inline void *folio_get_private(struct folio *folio) 418 { 419 return folio->private; 420 } 421 422 struct page_frag_cache { 423 void * va; 424 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 425 __u16 offset; 426 __u16 size; 427 #else 428 __u32 offset; 429 #endif 430 /* we maintain a pagecount bias, so that we dont dirty cache line 431 * containing page->_refcount every time we allocate a fragment. 432 */ 433 unsigned int pagecnt_bias; 434 bool pfmemalloc; 435 }; 436 437 typedef unsigned long vm_flags_t; 438 439 /* 440 * A region containing a mapping of a non-memory backed file under NOMMU 441 * conditions. These are held in a global tree and are pinned by the VMAs that 442 * map parts of them. 443 */ 444 struct vm_region { 445 struct rb_node vm_rb; /* link in global region tree */ 446 vm_flags_t vm_flags; /* VMA vm_flags */ 447 unsigned long vm_start; /* start address of region */ 448 unsigned long vm_end; /* region initialised to here */ 449 unsigned long vm_top; /* region allocated to here */ 450 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 451 struct file *vm_file; /* the backing file or NULL */ 452 453 int vm_usage; /* region usage count (access under nommu_region_sem) */ 454 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 455 * this region */ 456 }; 457 458 #ifdef CONFIG_USERFAULTFD 459 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 460 struct vm_userfaultfd_ctx { 461 struct userfaultfd_ctx *ctx; 462 }; 463 #else /* CONFIG_USERFAULTFD */ 464 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 465 struct vm_userfaultfd_ctx {}; 466 #endif /* CONFIG_USERFAULTFD */ 467 468 struct anon_vma_name { 469 struct kref kref; 470 /* The name needs to be at the end because it is dynamically sized. */ 471 char name[]; 472 }; 473 474 /* 475 * This struct describes a virtual memory area. There is one of these 476 * per VM-area/task. A VM area is any part of the process virtual memory 477 * space that has a special rule for the page-fault handlers (ie a shared 478 * library, the executable area etc). 479 */ 480 struct vm_area_struct { 481 /* The first cache line has the info for VMA tree walking. */ 482 483 unsigned long vm_start; /* Our start address within vm_mm. */ 484 unsigned long vm_end; /* The first byte after our end address 485 within vm_mm. */ 486 487 struct mm_struct *vm_mm; /* The address space we belong to. */ 488 489 /* 490 * Access permissions of this VMA. 491 * See vmf_insert_mixed_prot() for discussion. 492 */ 493 pgprot_t vm_page_prot; 494 495 /* 496 * Flags, see mm.h. 497 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 498 */ 499 union { 500 const vm_flags_t vm_flags; 501 vm_flags_t __private __vm_flags; 502 }; 503 504 /* 505 * For areas with an address space and backing store, 506 * linkage into the address_space->i_mmap interval tree. 507 * 508 */ 509 struct { 510 struct rb_node rb; 511 unsigned long rb_subtree_last; 512 } shared; 513 514 /* 515 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 516 * list, after a COW of one of the file pages. A MAP_SHARED vma 517 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 518 * or brk vma (with NULL file) can only be in an anon_vma list. 519 */ 520 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 521 * page_table_lock */ 522 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 523 524 /* Function pointers to deal with this struct. */ 525 const struct vm_operations_struct *vm_ops; 526 527 /* Information about our backing store: */ 528 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 529 units */ 530 struct file * vm_file; /* File we map to (can be NULL). */ 531 void * vm_private_data; /* was vm_pte (shared mem) */ 532 533 #ifdef CONFIG_ANON_VMA_NAME 534 /* 535 * For private and shared anonymous mappings, a pointer to a null 536 * terminated string containing the name given to the vma, or NULL if 537 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 538 */ 539 struct anon_vma_name *anon_name; 540 #endif 541 #ifdef CONFIG_SWAP 542 atomic_long_t swap_readahead_info; 543 #endif 544 #ifndef CONFIG_MMU 545 struct vm_region *vm_region; /* NOMMU mapping region */ 546 #endif 547 #ifdef CONFIG_NUMA 548 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 549 #endif 550 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 551 } __randomize_layout; 552 553 struct kioctx_table; 554 struct mm_struct { 555 struct { 556 struct maple_tree mm_mt; 557 #ifdef CONFIG_MMU 558 unsigned long (*get_unmapped_area) (struct file *filp, 559 unsigned long addr, unsigned long len, 560 unsigned long pgoff, unsigned long flags); 561 #endif 562 unsigned long mmap_base; /* base of mmap area */ 563 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 564 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 565 /* Base addresses for compatible mmap() */ 566 unsigned long mmap_compat_base; 567 unsigned long mmap_compat_legacy_base; 568 #endif 569 unsigned long task_size; /* size of task vm space */ 570 pgd_t * pgd; 571 572 #ifdef CONFIG_MEMBARRIER 573 /** 574 * @membarrier_state: Flags controlling membarrier behavior. 575 * 576 * This field is close to @pgd to hopefully fit in the same 577 * cache-line, which needs to be touched by switch_mm(). 578 */ 579 atomic_t membarrier_state; 580 #endif 581 582 /** 583 * @mm_users: The number of users including userspace. 584 * 585 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 586 * drops to 0 (i.e. when the task exits and there are no other 587 * temporary reference holders), we also release a reference on 588 * @mm_count (which may then free the &struct mm_struct if 589 * @mm_count also drops to 0). 590 */ 591 atomic_t mm_users; 592 593 /** 594 * @mm_count: The number of references to &struct mm_struct 595 * (@mm_users count as 1). 596 * 597 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 598 * &struct mm_struct is freed. 599 */ 600 atomic_t mm_count; 601 #ifdef CONFIG_SCHED_MM_CID 602 /** 603 * @cid_lock: Protect cid bitmap updates vs lookups. 604 * 605 * Prevent situations where updates to the cid bitmap happen 606 * concurrently with lookups. Those can lead to situations 607 * where a lookup cannot find a free bit simply because it was 608 * unlucky enough to load, non-atomically, bitmap words as they 609 * were being concurrently updated by the updaters. 610 */ 611 raw_spinlock_t cid_lock; 612 #endif 613 #ifdef CONFIG_MMU 614 atomic_long_t pgtables_bytes; /* size of all page tables */ 615 #endif 616 int map_count; /* number of VMAs */ 617 618 spinlock_t page_table_lock; /* Protects page tables and some 619 * counters 620 */ 621 /* 622 * With some kernel config, the current mmap_lock's offset 623 * inside 'mm_struct' is at 0x120, which is very optimal, as 624 * its two hot fields 'count' and 'owner' sit in 2 different 625 * cachelines, and when mmap_lock is highly contended, both 626 * of the 2 fields will be accessed frequently, current layout 627 * will help to reduce cache bouncing. 628 * 629 * So please be careful with adding new fields before 630 * mmap_lock, which can easily push the 2 fields into one 631 * cacheline. 632 */ 633 struct rw_semaphore mmap_lock; 634 635 struct list_head mmlist; /* List of maybe swapped mm's. These 636 * are globally strung together off 637 * init_mm.mmlist, and are protected 638 * by mmlist_lock 639 */ 640 641 642 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 643 unsigned long hiwater_vm; /* High-water virtual memory usage */ 644 645 unsigned long total_vm; /* Total pages mapped */ 646 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 647 atomic64_t pinned_vm; /* Refcount permanently increased */ 648 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 649 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 650 unsigned long stack_vm; /* VM_STACK */ 651 unsigned long def_flags; 652 653 /** 654 * @write_protect_seq: Locked when any thread is write 655 * protecting pages mapped by this mm to enforce a later COW, 656 * for instance during page table copying for fork(). 657 */ 658 seqcount_t write_protect_seq; 659 660 spinlock_t arg_lock; /* protect the below fields */ 661 662 unsigned long start_code, end_code, start_data, end_data; 663 unsigned long start_brk, brk, start_stack; 664 unsigned long arg_start, arg_end, env_start, env_end; 665 666 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 667 668 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 669 670 struct linux_binfmt *binfmt; 671 672 /* Architecture-specific MM context */ 673 mm_context_t context; 674 675 unsigned long flags; /* Must use atomic bitops to access */ 676 677 #ifdef CONFIG_AIO 678 spinlock_t ioctx_lock; 679 struct kioctx_table __rcu *ioctx_table; 680 #endif 681 #ifdef CONFIG_MEMCG 682 /* 683 * "owner" points to a task that is regarded as the canonical 684 * user/owner of this mm. All of the following must be true in 685 * order for it to be changed: 686 * 687 * current == mm->owner 688 * current->mm != mm 689 * new_owner->mm == mm 690 * new_owner->alloc_lock is held 691 */ 692 struct task_struct __rcu *owner; 693 #endif 694 struct user_namespace *user_ns; 695 696 /* store ref to file /proc/<pid>/exe symlink points to */ 697 struct file __rcu *exe_file; 698 #ifdef CONFIG_MMU_NOTIFIER 699 struct mmu_notifier_subscriptions *notifier_subscriptions; 700 #endif 701 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 702 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 703 #endif 704 #ifdef CONFIG_NUMA_BALANCING 705 /* 706 * numa_next_scan is the next time that PTEs will be remapped 707 * PROT_NONE to trigger NUMA hinting faults; such faults gather 708 * statistics and migrate pages to new nodes if necessary. 709 */ 710 unsigned long numa_next_scan; 711 712 /* Restart point for scanning and remapping PTEs. */ 713 unsigned long numa_scan_offset; 714 715 /* numa_scan_seq prevents two threads remapping PTEs. */ 716 int numa_scan_seq; 717 #endif 718 /* 719 * An operation with batched TLB flushing is going on. Anything 720 * that can move process memory needs to flush the TLB when 721 * moving a PROT_NONE mapped page. 722 */ 723 atomic_t tlb_flush_pending; 724 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 725 /* See flush_tlb_batched_pending() */ 726 atomic_t tlb_flush_batched; 727 #endif 728 struct uprobes_state uprobes_state; 729 #ifdef CONFIG_PREEMPT_RT 730 struct rcu_head delayed_drop; 731 #endif 732 #ifdef CONFIG_HUGETLB_PAGE 733 atomic_long_t hugetlb_usage; 734 #endif 735 struct work_struct async_put_work; 736 737 #ifdef CONFIG_IOMMU_SVA 738 u32 pasid; 739 #endif 740 #ifdef CONFIG_KSM 741 /* 742 * Represent how many pages of this process are involved in KSM 743 * merging. 744 */ 745 unsigned long ksm_merging_pages; 746 /* 747 * Represent how many pages are checked for ksm merging 748 * including merged and not merged. 749 */ 750 unsigned long ksm_rmap_items; 751 #endif 752 #ifdef CONFIG_LRU_GEN 753 struct { 754 /* this mm_struct is on lru_gen_mm_list */ 755 struct list_head list; 756 /* 757 * Set when switching to this mm_struct, as a hint of 758 * whether it has been used since the last time per-node 759 * page table walkers cleared the corresponding bits. 760 */ 761 unsigned long bitmap; 762 #ifdef CONFIG_MEMCG 763 /* points to the memcg of "owner" above */ 764 struct mem_cgroup *memcg; 765 #endif 766 } lru_gen; 767 #endif /* CONFIG_LRU_GEN */ 768 } __randomize_layout; 769 770 /* 771 * The mm_cpumask needs to be at the end of mm_struct, because it 772 * is dynamically sized based on nr_cpu_ids. 773 */ 774 unsigned long cpu_bitmap[]; 775 }; 776 777 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN) 778 extern struct mm_struct init_mm; 779 780 /* Pointer magic because the dynamic array size confuses some compilers. */ 781 static inline void mm_init_cpumask(struct mm_struct *mm) 782 { 783 unsigned long cpu_bitmap = (unsigned long)mm; 784 785 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 786 cpumask_clear((struct cpumask *)cpu_bitmap); 787 } 788 789 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 790 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 791 { 792 return (struct cpumask *)&mm->cpu_bitmap; 793 } 794 795 #ifdef CONFIG_LRU_GEN 796 797 struct lru_gen_mm_list { 798 /* mm_struct list for page table walkers */ 799 struct list_head fifo; 800 /* protects the list above */ 801 spinlock_t lock; 802 }; 803 804 void lru_gen_add_mm(struct mm_struct *mm); 805 void lru_gen_del_mm(struct mm_struct *mm); 806 #ifdef CONFIG_MEMCG 807 void lru_gen_migrate_mm(struct mm_struct *mm); 808 #endif 809 810 static inline void lru_gen_init_mm(struct mm_struct *mm) 811 { 812 INIT_LIST_HEAD(&mm->lru_gen.list); 813 mm->lru_gen.bitmap = 0; 814 #ifdef CONFIG_MEMCG 815 mm->lru_gen.memcg = NULL; 816 #endif 817 } 818 819 static inline void lru_gen_use_mm(struct mm_struct *mm) 820 { 821 /* 822 * When the bitmap is set, page reclaim knows this mm_struct has been 823 * used since the last time it cleared the bitmap. So it might be worth 824 * walking the page tables of this mm_struct to clear the accessed bit. 825 */ 826 WRITE_ONCE(mm->lru_gen.bitmap, -1); 827 } 828 829 #else /* !CONFIG_LRU_GEN */ 830 831 static inline void lru_gen_add_mm(struct mm_struct *mm) 832 { 833 } 834 835 static inline void lru_gen_del_mm(struct mm_struct *mm) 836 { 837 } 838 839 #ifdef CONFIG_MEMCG 840 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 841 { 842 } 843 #endif 844 845 static inline void lru_gen_init_mm(struct mm_struct *mm) 846 { 847 } 848 849 static inline void lru_gen_use_mm(struct mm_struct *mm) 850 { 851 } 852 853 #endif /* CONFIG_LRU_GEN */ 854 855 struct vma_iterator { 856 struct ma_state mas; 857 }; 858 859 #define VMA_ITERATOR(name, __mm, __addr) \ 860 struct vma_iterator name = { \ 861 .mas = { \ 862 .tree = &(__mm)->mm_mt, \ 863 .index = __addr, \ 864 .node = MAS_START, \ 865 }, \ 866 } 867 868 static inline void vma_iter_init(struct vma_iterator *vmi, 869 struct mm_struct *mm, unsigned long addr) 870 { 871 mas_init(&vmi->mas, &mm->mm_mt, addr); 872 } 873 874 #ifdef CONFIG_SCHED_MM_CID 875 /* Accessor for struct mm_struct's cidmask. */ 876 static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 877 { 878 unsigned long cid_bitmap = (unsigned long)mm; 879 880 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 881 /* Skip cpu_bitmap */ 882 cid_bitmap += cpumask_size(); 883 return (struct cpumask *)cid_bitmap; 884 } 885 886 static inline void mm_init_cid(struct mm_struct *mm) 887 { 888 raw_spin_lock_init(&mm->cid_lock); 889 cpumask_clear(mm_cidmask(mm)); 890 } 891 892 static inline unsigned int mm_cid_size(void) 893 { 894 return cpumask_size(); 895 } 896 #else /* CONFIG_SCHED_MM_CID */ 897 static inline void mm_init_cid(struct mm_struct *mm) { } 898 static inline unsigned int mm_cid_size(void) 899 { 900 return 0; 901 } 902 #endif /* CONFIG_SCHED_MM_CID */ 903 904 struct mmu_gather; 905 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 906 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 907 extern void tlb_finish_mmu(struct mmu_gather *tlb); 908 909 struct vm_fault; 910 911 /** 912 * typedef vm_fault_t - Return type for page fault handlers. 913 * 914 * Page fault handlers return a bitmask of %VM_FAULT values. 915 */ 916 typedef __bitwise unsigned int vm_fault_t; 917 918 /** 919 * enum vm_fault_reason - Page fault handlers return a bitmask of 920 * these values to tell the core VM what happened when handling the 921 * fault. Used to decide whether a process gets delivered SIGBUS or 922 * just gets major/minor fault counters bumped up. 923 * 924 * @VM_FAULT_OOM: Out Of Memory 925 * @VM_FAULT_SIGBUS: Bad access 926 * @VM_FAULT_MAJOR: Page read from storage 927 * @VM_FAULT_HWPOISON: Hit poisoned small page 928 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 929 * in upper bits 930 * @VM_FAULT_SIGSEGV: segmentation fault 931 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 932 * @VM_FAULT_LOCKED: ->fault locked the returned page 933 * @VM_FAULT_RETRY: ->fault blocked, must retry 934 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 935 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 936 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 937 * fsync() to complete (for synchronous page faults 938 * in DAX) 939 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 940 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 941 * 942 */ 943 enum vm_fault_reason { 944 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 945 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 946 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 947 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 948 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 949 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 950 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 951 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 952 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 953 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 954 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 955 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 956 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 957 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 958 }; 959 960 /* Encode hstate index for a hwpoisoned large page */ 961 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 962 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 963 964 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 965 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 966 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 967 968 #define VM_FAULT_RESULT_TRACE \ 969 { VM_FAULT_OOM, "OOM" }, \ 970 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 971 { VM_FAULT_MAJOR, "MAJOR" }, \ 972 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 973 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 974 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 975 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 976 { VM_FAULT_LOCKED, "LOCKED" }, \ 977 { VM_FAULT_RETRY, "RETRY" }, \ 978 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 979 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 980 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 981 982 struct vm_special_mapping { 983 const char *name; /* The name, e.g. "[vdso]". */ 984 985 /* 986 * If .fault is not provided, this points to a 987 * NULL-terminated array of pages that back the special mapping. 988 * 989 * This must not be NULL unless .fault is provided. 990 */ 991 struct page **pages; 992 993 /* 994 * If non-NULL, then this is called to resolve page faults 995 * on the special mapping. If used, .pages is not checked. 996 */ 997 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 998 struct vm_area_struct *vma, 999 struct vm_fault *vmf); 1000 1001 int (*mremap)(const struct vm_special_mapping *sm, 1002 struct vm_area_struct *new_vma); 1003 }; 1004 1005 enum tlb_flush_reason { 1006 TLB_FLUSH_ON_TASK_SWITCH, 1007 TLB_REMOTE_SHOOTDOWN, 1008 TLB_LOCAL_SHOOTDOWN, 1009 TLB_LOCAL_MM_SHOOTDOWN, 1010 TLB_REMOTE_SEND_IPI, 1011 NR_TLB_FLUSH_REASONS, 1012 }; 1013 1014 /* 1015 * A swap entry has to fit into a "unsigned long", as the entry is hidden 1016 * in the "index" field of the swapper address space. 1017 */ 1018 typedef struct { 1019 unsigned long val; 1020 } swp_entry_t; 1021 1022 /** 1023 * enum fault_flag - Fault flag definitions. 1024 * @FAULT_FLAG_WRITE: Fault was a write fault. 1025 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1026 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1027 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1028 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1029 * @FAULT_FLAG_TRIED: The fault has been tried once. 1030 * @FAULT_FLAG_USER: The fault originated in userspace. 1031 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1032 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1033 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1034 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1035 * COW mapping, making sure that an exclusive anon page is 1036 * mapped after the fault. 1037 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1038 * We should only access orig_pte if this flag set. 1039 * 1040 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1041 * whether we would allow page faults to retry by specifying these two 1042 * fault flags correctly. Currently there can be three legal combinations: 1043 * 1044 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1045 * this is the first try 1046 * 1047 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1048 * we've already tried at least once 1049 * 1050 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1051 * 1052 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1053 * be used. Note that page faults can be allowed to retry for multiple times, 1054 * in which case we'll have an initial fault with flags (a) then later on 1055 * continuous faults with flags (b). We should always try to detect pending 1056 * signals before a retry to make sure the continuous page faults can still be 1057 * interrupted if necessary. 1058 * 1059 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1060 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1061 * applied to mappings that are not COW mappings. 1062 */ 1063 enum fault_flag { 1064 FAULT_FLAG_WRITE = 1 << 0, 1065 FAULT_FLAG_MKWRITE = 1 << 1, 1066 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1067 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1068 FAULT_FLAG_KILLABLE = 1 << 4, 1069 FAULT_FLAG_TRIED = 1 << 5, 1070 FAULT_FLAG_USER = 1 << 6, 1071 FAULT_FLAG_REMOTE = 1 << 7, 1072 FAULT_FLAG_INSTRUCTION = 1 << 8, 1073 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1074 FAULT_FLAG_UNSHARE = 1 << 10, 1075 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1076 }; 1077 1078 typedef unsigned int __bitwise zap_flags_t; 1079 1080 /* 1081 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1082 * other. Here is what they mean, and how to use them: 1083 * 1084 * 1085 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1086 * lifetime enforced by the filesystem and we need guarantees that longterm 1087 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1088 * the filesystem. Ideas for this coordination include revoking the longterm 1089 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1090 * added after the problem with filesystems was found FS DAX VMAs are 1091 * specifically failed. Filesystem pages are still subject to bugs and use of 1092 * FOLL_LONGTERM should be avoided on those pages. 1093 * 1094 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1095 * that region. And so, CMA attempts to migrate the page before pinning, when 1096 * FOLL_LONGTERM is specified. 1097 * 1098 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1099 * but an additional pin counting system) will be invoked. This is intended for 1100 * anything that gets a page reference and then touches page data (for example, 1101 * Direct IO). This lets the filesystem know that some non-file-system entity is 1102 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1103 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1104 * a call to unpin_user_page(). 1105 * 1106 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1107 * and separate refcounting mechanisms, however, and that means that each has 1108 * its own acquire and release mechanisms: 1109 * 1110 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1111 * 1112 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1113 * 1114 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1115 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1116 * calls applied to them, and that's perfectly OK. This is a constraint on the 1117 * callers, not on the pages.) 1118 * 1119 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1120 * directly by the caller. That's in order to help avoid mismatches when 1121 * releasing pages: get_user_pages*() pages must be released via put_page(), 1122 * while pin_user_pages*() pages must be released via unpin_user_page(). 1123 * 1124 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1125 */ 1126 1127 enum { 1128 /* check pte is writable */ 1129 FOLL_WRITE = 1 << 0, 1130 /* do get_page on page */ 1131 FOLL_GET = 1 << 1, 1132 /* give error on hole if it would be zero */ 1133 FOLL_DUMP = 1 << 2, 1134 /* get_user_pages read/write w/o permission */ 1135 FOLL_FORCE = 1 << 3, 1136 /* 1137 * if a disk transfer is needed, start the IO and return without waiting 1138 * upon it 1139 */ 1140 FOLL_NOWAIT = 1 << 4, 1141 /* do not fault in pages */ 1142 FOLL_NOFAULT = 1 << 5, 1143 /* check page is hwpoisoned */ 1144 FOLL_HWPOISON = 1 << 6, 1145 /* don't do file mappings */ 1146 FOLL_ANON = 1 << 7, 1147 /* 1148 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1149 * time period _often_ under userspace control. This is in contrast to 1150 * iov_iter_get_pages(), whose usages are transient. 1151 */ 1152 FOLL_LONGTERM = 1 << 8, 1153 /* split huge pmd before returning */ 1154 FOLL_SPLIT_PMD = 1 << 9, 1155 /* allow returning PCI P2PDMA pages */ 1156 FOLL_PCI_P2PDMA = 1 << 10, 1157 /* allow interrupts from generic signals */ 1158 FOLL_INTERRUPTIBLE = 1 << 11, 1159 1160 /* See also internal only FOLL flags in mm/internal.h */ 1161 }; 1162 1163 #endif /* _LINUX_MM_TYPES_H */ 1164