xref: /linux-6.15/include/linux/mm_types.h (revision c819e2cf)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17 
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22 
23 struct address_space;
24 struct mem_cgroup;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * The objects in struct page are organized in double word blocks in
39  * order to allows us to use atomic double word operations on portions
40  * of struct page. That is currently only used by slub but the arrangement
41  * allows the use of atomic double word operations on the flags/mapping
42  * and lru list pointers also.
43  */
44 struct page {
45 	/* First double word block */
46 	unsigned long flags;		/* Atomic flags, some possibly
47 					 * updated asynchronously */
48 	union {
49 		struct address_space *mapping;	/* If low bit clear, points to
50 						 * inode address_space, or NULL.
51 						 * If page mapped as anonymous
52 						 * memory, low bit is set, and
53 						 * it points to anon_vma object:
54 						 * see PAGE_MAPPING_ANON below.
55 						 */
56 		void *s_mem;			/* slab first object */
57 	};
58 
59 	/* Second double word */
60 	struct {
61 		union {
62 			pgoff_t index;		/* Our offset within mapping. */
63 			void *freelist;		/* sl[aou]b first free object */
64 			bool pfmemalloc;	/* If set by the page allocator,
65 						 * ALLOC_NO_WATERMARKS was set
66 						 * and the low watermark was not
67 						 * met implying that the system
68 						 * is under some pressure. The
69 						 * caller should try ensure
70 						 * this page is only used to
71 						 * free other pages.
72 						 */
73 		};
74 
75 		union {
76 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
77 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
78 			/* Used for cmpxchg_double in slub */
79 			unsigned long counters;
80 #else
81 			/*
82 			 * Keep _count separate from slub cmpxchg_double data.
83 			 * As the rest of the double word is protected by
84 			 * slab_lock but _count is not.
85 			 */
86 			unsigned counters;
87 #endif
88 
89 			struct {
90 
91 				union {
92 					/*
93 					 * Count of ptes mapped in
94 					 * mms, to show when page is
95 					 * mapped & limit reverse map
96 					 * searches.
97 					 *
98 					 * Used also for tail pages
99 					 * refcounting instead of
100 					 * _count. Tail pages cannot
101 					 * be mapped and keeping the
102 					 * tail page _count zero at
103 					 * all times guarantees
104 					 * get_page_unless_zero() will
105 					 * never succeed on tail
106 					 * pages.
107 					 */
108 					atomic_t _mapcount;
109 
110 					struct { /* SLUB */
111 						unsigned inuse:16;
112 						unsigned objects:15;
113 						unsigned frozen:1;
114 					};
115 					int units;	/* SLOB */
116 				};
117 				atomic_t _count;		/* Usage count, see below. */
118 			};
119 			unsigned int active;	/* SLAB */
120 		};
121 	};
122 
123 	/* Third double word block */
124 	union {
125 		struct list_head lru;	/* Pageout list, eg. active_list
126 					 * protected by zone->lru_lock !
127 					 * Can be used as a generic list
128 					 * by the page owner.
129 					 */
130 		struct {		/* slub per cpu partial pages */
131 			struct page *next;	/* Next partial slab */
132 #ifdef CONFIG_64BIT
133 			int pages;	/* Nr of partial slabs left */
134 			int pobjects;	/* Approximate # of objects */
135 #else
136 			short int pages;
137 			short int pobjects;
138 #endif
139 		};
140 
141 		struct slab *slab_page; /* slab fields */
142 		struct rcu_head rcu_head;	/* Used by SLAB
143 						 * when destroying via RCU
144 						 */
145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
146 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 #endif
148 	};
149 
150 	/* Remainder is not double word aligned */
151 	union {
152 		unsigned long private;		/* Mapping-private opaque data:
153 					 	 * usually used for buffer_heads
154 						 * if PagePrivate set; used for
155 						 * swp_entry_t if PageSwapCache;
156 						 * indicates order in the buddy
157 						 * system if PG_buddy is set.
158 						 */
159 #if USE_SPLIT_PTE_PTLOCKS
160 #if ALLOC_SPLIT_PTLOCKS
161 		spinlock_t *ptl;
162 #else
163 		spinlock_t ptl;
164 #endif
165 #endif
166 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
167 		struct page *first_page;	/* Compound tail pages */
168 	};
169 
170 #ifdef CONFIG_MEMCG
171 	struct mem_cgroup *mem_cgroup;
172 #endif
173 
174 	/*
175 	 * On machines where all RAM is mapped into kernel address space,
176 	 * we can simply calculate the virtual address. On machines with
177 	 * highmem some memory is mapped into kernel virtual memory
178 	 * dynamically, so we need a place to store that address.
179 	 * Note that this field could be 16 bits on x86 ... ;)
180 	 *
181 	 * Architectures with slow multiplication can define
182 	 * WANT_PAGE_VIRTUAL in asm/page.h
183 	 */
184 #if defined(WANT_PAGE_VIRTUAL)
185 	void *virtual;			/* Kernel virtual address (NULL if
186 					   not kmapped, ie. highmem) */
187 #endif /* WANT_PAGE_VIRTUAL */
188 
189 #ifdef CONFIG_KMEMCHECK
190 	/*
191 	 * kmemcheck wants to track the status of each byte in a page; this
192 	 * is a pointer to such a status block. NULL if not tracked.
193 	 */
194 	void *shadow;
195 #endif
196 
197 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
198 	int _last_cpupid;
199 #endif
200 }
201 /*
202  * The struct page can be forced to be double word aligned so that atomic ops
203  * on double words work. The SLUB allocator can make use of such a feature.
204  */
205 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
206 	__aligned(2 * sizeof(unsigned long))
207 #endif
208 ;
209 
210 struct page_frag {
211 	struct page *page;
212 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
213 	__u32 offset;
214 	__u32 size;
215 #else
216 	__u16 offset;
217 	__u16 size;
218 #endif
219 };
220 
221 typedef unsigned long __nocast vm_flags_t;
222 
223 /*
224  * A region containing a mapping of a non-memory backed file under NOMMU
225  * conditions.  These are held in a global tree and are pinned by the VMAs that
226  * map parts of them.
227  */
228 struct vm_region {
229 	struct rb_node	vm_rb;		/* link in global region tree */
230 	vm_flags_t	vm_flags;	/* VMA vm_flags */
231 	unsigned long	vm_start;	/* start address of region */
232 	unsigned long	vm_end;		/* region initialised to here */
233 	unsigned long	vm_top;		/* region allocated to here */
234 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
235 	struct file	*vm_file;	/* the backing file or NULL */
236 
237 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
238 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
239 						* this region */
240 };
241 
242 /*
243  * This struct defines a memory VMM memory area. There is one of these
244  * per VM-area/task.  A VM area is any part of the process virtual memory
245  * space that has a special rule for the page-fault handlers (ie a shared
246  * library, the executable area etc).
247  */
248 struct vm_area_struct {
249 	/* The first cache line has the info for VMA tree walking. */
250 
251 	unsigned long vm_start;		/* Our start address within vm_mm. */
252 	unsigned long vm_end;		/* The first byte after our end address
253 					   within vm_mm. */
254 
255 	/* linked list of VM areas per task, sorted by address */
256 	struct vm_area_struct *vm_next, *vm_prev;
257 
258 	struct rb_node vm_rb;
259 
260 	/*
261 	 * Largest free memory gap in bytes to the left of this VMA.
262 	 * Either between this VMA and vma->vm_prev, or between one of the
263 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
264 	 * get_unmapped_area find a free area of the right size.
265 	 */
266 	unsigned long rb_subtree_gap;
267 
268 	/* Second cache line starts here. */
269 
270 	struct mm_struct *vm_mm;	/* The address space we belong to. */
271 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
272 	unsigned long vm_flags;		/* Flags, see mm.h. */
273 
274 	/*
275 	 * For areas with an address space and backing store,
276 	 * linkage into the address_space->i_mmap interval tree, or
277 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
278 	 */
279 	union {
280 		struct {
281 			struct rb_node rb;
282 			unsigned long rb_subtree_last;
283 		} linear;
284 		struct list_head nonlinear;
285 	} shared;
286 
287 	/*
288 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
289 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
290 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
291 	 * or brk vma (with NULL file) can only be in an anon_vma list.
292 	 */
293 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
294 					  * page_table_lock */
295 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
296 
297 	/* Function pointers to deal with this struct. */
298 	const struct vm_operations_struct *vm_ops;
299 
300 	/* Information about our backing store: */
301 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
302 					   units, *not* PAGE_CACHE_SIZE */
303 	struct file * vm_file;		/* File we map to (can be NULL). */
304 	void * vm_private_data;		/* was vm_pte (shared mem) */
305 
306 #ifndef CONFIG_MMU
307 	struct vm_region *vm_region;	/* NOMMU mapping region */
308 #endif
309 #ifdef CONFIG_NUMA
310 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
311 #endif
312 };
313 
314 struct core_thread {
315 	struct task_struct *task;
316 	struct core_thread *next;
317 };
318 
319 struct core_state {
320 	atomic_t nr_threads;
321 	struct core_thread dumper;
322 	struct completion startup;
323 };
324 
325 enum {
326 	MM_FILEPAGES,
327 	MM_ANONPAGES,
328 	MM_SWAPENTS,
329 	NR_MM_COUNTERS
330 };
331 
332 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
333 #define SPLIT_RSS_COUNTING
334 /* per-thread cached information, */
335 struct task_rss_stat {
336 	int events;	/* for synchronization threshold */
337 	int count[NR_MM_COUNTERS];
338 };
339 #endif /* USE_SPLIT_PTE_PTLOCKS */
340 
341 struct mm_rss_stat {
342 	atomic_long_t count[NR_MM_COUNTERS];
343 };
344 
345 struct kioctx_table;
346 struct mm_struct {
347 	struct vm_area_struct *mmap;		/* list of VMAs */
348 	struct rb_root mm_rb;
349 	u32 vmacache_seqnum;                   /* per-thread vmacache */
350 #ifdef CONFIG_MMU
351 	unsigned long (*get_unmapped_area) (struct file *filp,
352 				unsigned long addr, unsigned long len,
353 				unsigned long pgoff, unsigned long flags);
354 #endif
355 	unsigned long mmap_base;		/* base of mmap area */
356 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
357 	unsigned long task_size;		/* size of task vm space */
358 	unsigned long highest_vm_end;		/* highest vma end address */
359 	pgd_t * pgd;
360 	atomic_t mm_users;			/* How many users with user space? */
361 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
362 	atomic_long_t nr_ptes;			/* Page table pages */
363 	int map_count;				/* number of VMAs */
364 
365 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
366 	struct rw_semaphore mmap_sem;
367 
368 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
369 						 * together off init_mm.mmlist, and are protected
370 						 * by mmlist_lock
371 						 */
372 
373 
374 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
375 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
376 
377 	unsigned long total_vm;		/* Total pages mapped */
378 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
379 	unsigned long pinned_vm;	/* Refcount permanently increased */
380 	unsigned long shared_vm;	/* Shared pages (files) */
381 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
382 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
383 	unsigned long def_flags;
384 	unsigned long start_code, end_code, start_data, end_data;
385 	unsigned long start_brk, brk, start_stack;
386 	unsigned long arg_start, arg_end, env_start, env_end;
387 
388 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
389 
390 	/*
391 	 * Special counters, in some configurations protected by the
392 	 * page_table_lock, in other configurations by being atomic.
393 	 */
394 	struct mm_rss_stat rss_stat;
395 
396 	struct linux_binfmt *binfmt;
397 
398 	cpumask_var_t cpu_vm_mask_var;
399 
400 	/* Architecture-specific MM context */
401 	mm_context_t context;
402 
403 	unsigned long flags; /* Must use atomic bitops to access the bits */
404 
405 	struct core_state *core_state; /* coredumping support */
406 #ifdef CONFIG_AIO
407 	spinlock_t			ioctx_lock;
408 	struct kioctx_table __rcu	*ioctx_table;
409 #endif
410 #ifdef CONFIG_MEMCG
411 	/*
412 	 * "owner" points to a task that is regarded as the canonical
413 	 * user/owner of this mm. All of the following must be true in
414 	 * order for it to be changed:
415 	 *
416 	 * current == mm->owner
417 	 * current->mm != mm
418 	 * new_owner->mm == mm
419 	 * new_owner->alloc_lock is held
420 	 */
421 	struct task_struct __rcu *owner;
422 #endif
423 
424 	/* store ref to file /proc/<pid>/exe symlink points to */
425 	struct file *exe_file;
426 #ifdef CONFIG_MMU_NOTIFIER
427 	struct mmu_notifier_mm *mmu_notifier_mm;
428 #endif
429 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
430 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
431 #endif
432 #ifdef CONFIG_CPUMASK_OFFSTACK
433 	struct cpumask cpumask_allocation;
434 #endif
435 #ifdef CONFIG_NUMA_BALANCING
436 	/*
437 	 * numa_next_scan is the next time that the PTEs will be marked
438 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
439 	 * pages to new nodes if necessary.
440 	 */
441 	unsigned long numa_next_scan;
442 
443 	/* Restart point for scanning and setting pte_numa */
444 	unsigned long numa_scan_offset;
445 
446 	/* numa_scan_seq prevents two threads setting pte_numa */
447 	int numa_scan_seq;
448 #endif
449 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
450 	/*
451 	 * An operation with batched TLB flushing is going on. Anything that
452 	 * can move process memory needs to flush the TLB when moving a
453 	 * PROT_NONE or PROT_NUMA mapped page.
454 	 */
455 	bool tlb_flush_pending;
456 #endif
457 	struct uprobes_state uprobes_state;
458 #ifdef CONFIG_X86_INTEL_MPX
459 	/* address of the bounds directory */
460 	void __user *bd_addr;
461 #endif
462 };
463 
464 static inline void mm_init_cpumask(struct mm_struct *mm)
465 {
466 #ifdef CONFIG_CPUMASK_OFFSTACK
467 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
468 #endif
469 	cpumask_clear(mm->cpu_vm_mask_var);
470 }
471 
472 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
473 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
474 {
475 	return mm->cpu_vm_mask_var;
476 }
477 
478 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
479 /*
480  * Memory barriers to keep this state in sync are graciously provided by
481  * the page table locks, outside of which no page table modifications happen.
482  * The barriers below prevent the compiler from re-ordering the instructions
483  * around the memory barriers that are already present in the code.
484  */
485 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
486 {
487 	barrier();
488 	return mm->tlb_flush_pending;
489 }
490 static inline void set_tlb_flush_pending(struct mm_struct *mm)
491 {
492 	mm->tlb_flush_pending = true;
493 
494 	/*
495 	 * Guarantee that the tlb_flush_pending store does not leak into the
496 	 * critical section updating the page tables
497 	 */
498 	smp_mb__before_spinlock();
499 }
500 /* Clearing is done after a TLB flush, which also provides a barrier. */
501 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
502 {
503 	barrier();
504 	mm->tlb_flush_pending = false;
505 }
506 #else
507 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
508 {
509 	return false;
510 }
511 static inline void set_tlb_flush_pending(struct mm_struct *mm)
512 {
513 }
514 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
515 {
516 }
517 #endif
518 
519 struct vm_special_mapping
520 {
521 	const char *name;
522 	struct page **pages;
523 };
524 
525 enum tlb_flush_reason {
526 	TLB_FLUSH_ON_TASK_SWITCH,
527 	TLB_REMOTE_SHOOTDOWN,
528 	TLB_LOCAL_SHOOTDOWN,
529 	TLB_LOCAL_MM_SHOOTDOWN,
530 	NR_TLB_FLUSH_REASONS,
531 };
532 
533  /*
534   * A swap entry has to fit into a "unsigned long", as the entry is hidden
535   * in the "index" field of the swapper address space.
536   */
537 typedef struct {
538 	unsigned long val;
539 } swp_entry_t;
540 
541 #endif /* _LINUX_MM_TYPES_H */
542