1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 #include <linux/percpu_counter.h> 22 23 #include <asm/mmu.h> 24 25 #ifndef AT_VECTOR_SIZE_ARCH 26 #define AT_VECTOR_SIZE_ARCH 0 27 #endif 28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30 #define INIT_PASID 0 31 32 struct address_space; 33 struct mem_cgroup; 34 35 /* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70 #else 71 #define _struct_page_alignment __aligned(sizeof(unsigned long)) 72 #endif 73 74 struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 atomic_long_t pp_ref_count; 129 }; 130 struct { /* Tail pages of compound page */ 131 unsigned long compound_head; /* Bit zero is set */ 132 }; 133 struct { /* ZONE_DEVICE pages */ 134 /** @pgmap: Points to the hosting device page map. */ 135 struct dev_pagemap *pgmap; 136 void *zone_device_data; 137 /* 138 * ZONE_DEVICE private pages are counted as being 139 * mapped so the next 3 words hold the mapping, index, 140 * and private fields from the source anonymous or 141 * page cache page while the page is migrated to device 142 * private memory. 143 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 144 * use the mapping, index, and private fields when 145 * pmem backed DAX files are mapped. 146 */ 147 }; 148 149 /** @rcu_head: You can use this to free a page by RCU. */ 150 struct rcu_head rcu_head; 151 }; 152 153 union { /* This union is 4 bytes in size. */ 154 /* 155 * If the page can be mapped to userspace, encodes the number 156 * of times this page is referenced by a page table. 157 */ 158 atomic_t _mapcount; 159 160 /* 161 * If the page is neither PageSlab nor mappable to userspace, 162 * the value stored here may help determine what this page 163 * is used for. See page-flags.h for a list of page types 164 * which are currently stored here. 165 */ 166 unsigned int page_type; 167 }; 168 169 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 170 atomic_t _refcount; 171 172 #ifdef CONFIG_MEMCG 173 unsigned long memcg_data; 174 #endif 175 176 /* 177 * On machines where all RAM is mapped into kernel address space, 178 * we can simply calculate the virtual address. On machines with 179 * highmem some memory is mapped into kernel virtual memory 180 * dynamically, so we need a place to store that address. 181 * Note that this field could be 16 bits on x86 ... ;) 182 * 183 * Architectures with slow multiplication can define 184 * WANT_PAGE_VIRTUAL in asm/page.h 185 */ 186 #if defined(WANT_PAGE_VIRTUAL) 187 void *virtual; /* Kernel virtual address (NULL if 188 not kmapped, ie. highmem) */ 189 #endif /* WANT_PAGE_VIRTUAL */ 190 191 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 192 int _last_cpupid; 193 #endif 194 195 #ifdef CONFIG_KMSAN 196 /* 197 * KMSAN metadata for this page: 198 * - shadow page: every bit indicates whether the corresponding 199 * bit of the original page is initialized (0) or not (1); 200 * - origin page: every 4 bytes contain an id of the stack trace 201 * where the uninitialized value was created. 202 */ 203 struct page *kmsan_shadow; 204 struct page *kmsan_origin; 205 #endif 206 } _struct_page_alignment; 207 208 /* 209 * struct encoded_page - a nonexistent type marking this pointer 210 * 211 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 212 * with the low bits of the pointer indicating extra context-dependent 213 * information. Not super-common, but happens in mmu_gather and mlock 214 * handling, and this acts as a type system check on that use. 215 * 216 * We only really have two guaranteed bits in general, although you could 217 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 218 * for more. 219 * 220 * Use the supplied helper functions to endcode/decode the pointer and bits. 221 */ 222 struct encoded_page; 223 #define ENCODE_PAGE_BITS 3ul 224 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 225 { 226 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 227 return (struct encoded_page *)(flags | (unsigned long)page); 228 } 229 230 static inline unsigned long encoded_page_flags(struct encoded_page *page) 231 { 232 return ENCODE_PAGE_BITS & (unsigned long)page; 233 } 234 235 static inline struct page *encoded_page_ptr(struct encoded_page *page) 236 { 237 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 238 } 239 240 /* 241 * A swap entry has to fit into a "unsigned long", as the entry is hidden 242 * in the "index" field of the swapper address space. 243 */ 244 typedef struct { 245 unsigned long val; 246 } swp_entry_t; 247 248 /** 249 * struct folio - Represents a contiguous set of bytes. 250 * @flags: Identical to the page flags. 251 * @lru: Least Recently Used list; tracks how recently this folio was used. 252 * @mlock_count: Number of times this folio has been pinned by mlock(). 253 * @mapping: The file this page belongs to, or refers to the anon_vma for 254 * anonymous memory. 255 * @index: Offset within the file, in units of pages. For anonymous memory, 256 * this is the index from the beginning of the mmap. 257 * @private: Filesystem per-folio data (see folio_attach_private()). 258 * @swap: Used for swp_entry_t if folio_test_swapcache(). 259 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 260 * find out how many times this folio is mapped by userspace. 261 * @_refcount: Do not access this member directly. Use folio_ref_count() 262 * to find how many references there are to this folio. 263 * @memcg_data: Memory Control Group data. 264 * @virtual: Virtual address in the kernel direct map. 265 * @_last_cpupid: IDs of last CPU and last process that accessed the folio. 266 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 267 * @_nr_pages_mapped: Do not use directly, call folio_mapcount(). 268 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 269 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 270 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 271 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 272 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 273 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 274 * @_deferred_list: Folios to be split under memory pressure. 275 * 276 * A folio is a physically, virtually and logically contiguous set 277 * of bytes. It is a power-of-two in size, and it is aligned to that 278 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 279 * in the page cache, it is at a file offset which is a multiple of that 280 * power-of-two. It may be mapped into userspace at an address which is 281 * at an arbitrary page offset, but its kernel virtual address is aligned 282 * to its size. 283 */ 284 struct folio { 285 /* private: don't document the anon union */ 286 union { 287 struct { 288 /* public: */ 289 unsigned long flags; 290 union { 291 struct list_head lru; 292 /* private: avoid cluttering the output */ 293 struct { 294 void *__filler; 295 /* public: */ 296 unsigned int mlock_count; 297 /* private: */ 298 }; 299 /* public: */ 300 }; 301 struct address_space *mapping; 302 pgoff_t index; 303 union { 304 void *private; 305 swp_entry_t swap; 306 }; 307 atomic_t _mapcount; 308 atomic_t _refcount; 309 #ifdef CONFIG_MEMCG 310 unsigned long memcg_data; 311 #endif 312 #if defined(WANT_PAGE_VIRTUAL) 313 void *virtual; 314 #endif 315 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 316 int _last_cpupid; 317 #endif 318 /* private: the union with struct page is transitional */ 319 }; 320 struct page page; 321 }; 322 union { 323 struct { 324 unsigned long _flags_1; 325 unsigned long _head_1; 326 unsigned long _folio_avail; 327 /* public: */ 328 atomic_t _entire_mapcount; 329 atomic_t _nr_pages_mapped; 330 atomic_t _pincount; 331 #ifdef CONFIG_64BIT 332 unsigned int _folio_nr_pages; 333 #endif 334 /* private: the union with struct page is transitional */ 335 }; 336 struct page __page_1; 337 }; 338 union { 339 struct { 340 unsigned long _flags_2; 341 unsigned long _head_2; 342 /* public: */ 343 void *_hugetlb_subpool; 344 void *_hugetlb_cgroup; 345 void *_hugetlb_cgroup_rsvd; 346 void *_hugetlb_hwpoison; 347 /* private: the union with struct page is transitional */ 348 }; 349 struct { 350 unsigned long _flags_2a; 351 unsigned long _head_2a; 352 /* public: */ 353 struct list_head _deferred_list; 354 /* private: the union with struct page is transitional */ 355 }; 356 struct page __page_2; 357 }; 358 }; 359 360 #define FOLIO_MATCH(pg, fl) \ 361 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 362 FOLIO_MATCH(flags, flags); 363 FOLIO_MATCH(lru, lru); 364 FOLIO_MATCH(mapping, mapping); 365 FOLIO_MATCH(compound_head, lru); 366 FOLIO_MATCH(index, index); 367 FOLIO_MATCH(private, private); 368 FOLIO_MATCH(_mapcount, _mapcount); 369 FOLIO_MATCH(_refcount, _refcount); 370 #ifdef CONFIG_MEMCG 371 FOLIO_MATCH(memcg_data, memcg_data); 372 #endif 373 #if defined(WANT_PAGE_VIRTUAL) 374 FOLIO_MATCH(virtual, virtual); 375 #endif 376 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 377 FOLIO_MATCH(_last_cpupid, _last_cpupid); 378 #endif 379 #undef FOLIO_MATCH 380 #define FOLIO_MATCH(pg, fl) \ 381 static_assert(offsetof(struct folio, fl) == \ 382 offsetof(struct page, pg) + sizeof(struct page)) 383 FOLIO_MATCH(flags, _flags_1); 384 FOLIO_MATCH(compound_head, _head_1); 385 #undef FOLIO_MATCH 386 #define FOLIO_MATCH(pg, fl) \ 387 static_assert(offsetof(struct folio, fl) == \ 388 offsetof(struct page, pg) + 2 * sizeof(struct page)) 389 FOLIO_MATCH(flags, _flags_2); 390 FOLIO_MATCH(compound_head, _head_2); 391 FOLIO_MATCH(flags, _flags_2a); 392 FOLIO_MATCH(compound_head, _head_2a); 393 #undef FOLIO_MATCH 394 395 /** 396 * struct ptdesc - Memory descriptor for page tables. 397 * @__page_flags: Same as page flags. Unused for page tables. 398 * @pt_rcu_head: For freeing page table pages. 399 * @pt_list: List of used page tables. Used for s390 and x86. 400 * @_pt_pad_1: Padding that aliases with page's compound head. 401 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 402 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 403 * @pt_mm: Used for x86 pgds. 404 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only. 405 * @_pt_pad_2: Padding to ensure proper alignment. 406 * @ptl: Lock for the page table. 407 * @__page_type: Same as page->page_type. Unused for page tables. 408 * @__page_refcount: Same as page refcount. 409 * @pt_memcg_data: Memcg data. Tracked for page tables here. 410 * 411 * This struct overlays struct page for now. Do not modify without a good 412 * understanding of the issues. 413 */ 414 struct ptdesc { 415 unsigned long __page_flags; 416 417 union { 418 struct rcu_head pt_rcu_head; 419 struct list_head pt_list; 420 struct { 421 unsigned long _pt_pad_1; 422 pgtable_t pmd_huge_pte; 423 }; 424 }; 425 unsigned long __page_mapping; 426 427 union { 428 struct mm_struct *pt_mm; 429 atomic_t pt_frag_refcount; 430 }; 431 432 union { 433 unsigned long _pt_pad_2; 434 #if ALLOC_SPLIT_PTLOCKS 435 spinlock_t *ptl; 436 #else 437 spinlock_t ptl; 438 #endif 439 }; 440 unsigned int __page_type; 441 atomic_t __page_refcount; 442 #ifdef CONFIG_MEMCG 443 unsigned long pt_memcg_data; 444 #endif 445 }; 446 447 #define TABLE_MATCH(pg, pt) \ 448 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 449 TABLE_MATCH(flags, __page_flags); 450 TABLE_MATCH(compound_head, pt_list); 451 TABLE_MATCH(compound_head, _pt_pad_1); 452 TABLE_MATCH(mapping, __page_mapping); 453 TABLE_MATCH(rcu_head, pt_rcu_head); 454 TABLE_MATCH(page_type, __page_type); 455 TABLE_MATCH(_refcount, __page_refcount); 456 #ifdef CONFIG_MEMCG 457 TABLE_MATCH(memcg_data, pt_memcg_data); 458 #endif 459 #undef TABLE_MATCH 460 static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 461 462 #define ptdesc_page(pt) (_Generic((pt), \ 463 const struct ptdesc *: (const struct page *)(pt), \ 464 struct ptdesc *: (struct page *)(pt))) 465 466 #define ptdesc_folio(pt) (_Generic((pt), \ 467 const struct ptdesc *: (const struct folio *)(pt), \ 468 struct ptdesc *: (struct folio *)(pt))) 469 470 #define page_ptdesc(p) (_Generic((p), \ 471 const struct page *: (const struct ptdesc *)(p), \ 472 struct page *: (struct ptdesc *)(p))) 473 474 /* 475 * Used for sizing the vmemmap region on some architectures 476 */ 477 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 478 479 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 480 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 481 482 /* 483 * page_private can be used on tail pages. However, PagePrivate is only 484 * checked by the VM on the head page. So page_private on the tail pages 485 * should be used for data that's ancillary to the head page (eg attaching 486 * buffer heads to tail pages after attaching buffer heads to the head page) 487 */ 488 #define page_private(page) ((page)->private) 489 490 static inline void set_page_private(struct page *page, unsigned long private) 491 { 492 page->private = private; 493 } 494 495 static inline void *folio_get_private(struct folio *folio) 496 { 497 return folio->private; 498 } 499 500 struct page_frag_cache { 501 void * va; 502 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 503 __u16 offset; 504 __u16 size; 505 #else 506 __u32 offset; 507 #endif 508 /* we maintain a pagecount bias, so that we dont dirty cache line 509 * containing page->_refcount every time we allocate a fragment. 510 */ 511 unsigned int pagecnt_bias; 512 bool pfmemalloc; 513 }; 514 515 typedef unsigned long vm_flags_t; 516 517 /* 518 * A region containing a mapping of a non-memory backed file under NOMMU 519 * conditions. These are held in a global tree and are pinned by the VMAs that 520 * map parts of them. 521 */ 522 struct vm_region { 523 struct rb_node vm_rb; /* link in global region tree */ 524 vm_flags_t vm_flags; /* VMA vm_flags */ 525 unsigned long vm_start; /* start address of region */ 526 unsigned long vm_end; /* region initialised to here */ 527 unsigned long vm_top; /* region allocated to here */ 528 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 529 struct file *vm_file; /* the backing file or NULL */ 530 531 int vm_usage; /* region usage count (access under nommu_region_sem) */ 532 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 533 * this region */ 534 }; 535 536 #ifdef CONFIG_USERFAULTFD 537 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 538 struct vm_userfaultfd_ctx { 539 struct userfaultfd_ctx *ctx; 540 }; 541 #else /* CONFIG_USERFAULTFD */ 542 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 543 struct vm_userfaultfd_ctx {}; 544 #endif /* CONFIG_USERFAULTFD */ 545 546 struct anon_vma_name { 547 struct kref kref; 548 /* The name needs to be at the end because it is dynamically sized. */ 549 char name[]; 550 }; 551 552 #ifdef CONFIG_ANON_VMA_NAME 553 /* 554 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 555 * either keep holding the lock while using the returned pointer or it should 556 * raise anon_vma_name refcount before releasing the lock. 557 */ 558 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 559 struct anon_vma_name *anon_vma_name_alloc(const char *name); 560 void anon_vma_name_free(struct kref *kref); 561 #else /* CONFIG_ANON_VMA_NAME */ 562 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 563 { 564 return NULL; 565 } 566 567 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 568 { 569 return NULL; 570 } 571 #endif 572 573 struct vma_lock { 574 struct rw_semaphore lock; 575 }; 576 577 struct vma_numab_state { 578 /* 579 * Initialised as time in 'jiffies' after which VMA 580 * should be scanned. Delays first scan of new VMA by at 581 * least sysctl_numa_balancing_scan_delay: 582 */ 583 unsigned long next_scan; 584 585 /* 586 * Time in jiffies when pids_active[] is reset to 587 * detect phase change behaviour: 588 */ 589 unsigned long pids_active_reset; 590 591 /* 592 * Approximate tracking of PIDs that trapped a NUMA hinting 593 * fault. May produce false positives due to hash collisions. 594 * 595 * [0] Previous PID tracking 596 * [1] Current PID tracking 597 * 598 * Window moves after next_pid_reset has expired approximately 599 * every VMA_PID_RESET_PERIOD jiffies: 600 */ 601 unsigned long pids_active[2]; 602 603 /* MM scan sequence ID when scan first started after VMA creation */ 604 int start_scan_seq; 605 606 /* 607 * MM scan sequence ID when the VMA was last completely scanned. 608 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 609 */ 610 int prev_scan_seq; 611 }; 612 613 /* 614 * This struct describes a virtual memory area. There is one of these 615 * per VM-area/task. A VM area is any part of the process virtual memory 616 * space that has a special rule for the page-fault handlers (ie a shared 617 * library, the executable area etc). 618 */ 619 struct vm_area_struct { 620 /* The first cache line has the info for VMA tree walking. */ 621 622 union { 623 struct { 624 /* VMA covers [vm_start; vm_end) addresses within mm */ 625 unsigned long vm_start; 626 unsigned long vm_end; 627 }; 628 #ifdef CONFIG_PER_VMA_LOCK 629 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 630 #endif 631 }; 632 633 struct mm_struct *vm_mm; /* The address space we belong to. */ 634 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 635 636 /* 637 * Flags, see mm.h. 638 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 639 */ 640 union { 641 const vm_flags_t vm_flags; 642 vm_flags_t __private __vm_flags; 643 }; 644 645 #ifdef CONFIG_PER_VMA_LOCK 646 /* 647 * Can only be written (using WRITE_ONCE()) while holding both: 648 * - mmap_lock (in write mode) 649 * - vm_lock->lock (in write mode) 650 * Can be read reliably while holding one of: 651 * - mmap_lock (in read or write mode) 652 * - vm_lock->lock (in read or write mode) 653 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 654 * while holding nothing (except RCU to keep the VMA struct allocated). 655 * 656 * This sequence counter is explicitly allowed to overflow; sequence 657 * counter reuse can only lead to occasional unnecessary use of the 658 * slowpath. 659 */ 660 int vm_lock_seq; 661 struct vma_lock *vm_lock; 662 663 /* Flag to indicate areas detached from the mm->mm_mt tree */ 664 bool detached; 665 #endif 666 667 /* 668 * For areas with an address space and backing store, 669 * linkage into the address_space->i_mmap interval tree. 670 * 671 */ 672 struct { 673 struct rb_node rb; 674 unsigned long rb_subtree_last; 675 } shared; 676 677 /* 678 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 679 * list, after a COW of one of the file pages. A MAP_SHARED vma 680 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 681 * or brk vma (with NULL file) can only be in an anon_vma list. 682 */ 683 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 684 * page_table_lock */ 685 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 686 687 /* Function pointers to deal with this struct. */ 688 const struct vm_operations_struct *vm_ops; 689 690 /* Information about our backing store: */ 691 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 692 units */ 693 struct file * vm_file; /* File we map to (can be NULL). */ 694 void * vm_private_data; /* was vm_pte (shared mem) */ 695 696 #ifdef CONFIG_ANON_VMA_NAME 697 /* 698 * For private and shared anonymous mappings, a pointer to a null 699 * terminated string containing the name given to the vma, or NULL if 700 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 701 */ 702 struct anon_vma_name *anon_name; 703 #endif 704 #ifdef CONFIG_SWAP 705 atomic_long_t swap_readahead_info; 706 #endif 707 #ifndef CONFIG_MMU 708 struct vm_region *vm_region; /* NOMMU mapping region */ 709 #endif 710 #ifdef CONFIG_NUMA 711 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 712 #endif 713 #ifdef CONFIG_NUMA_BALANCING 714 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 715 #endif 716 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 717 } __randomize_layout; 718 719 #ifdef CONFIG_NUMA 720 #define vma_policy(vma) ((vma)->vm_policy) 721 #else 722 #define vma_policy(vma) NULL 723 #endif 724 725 #ifdef CONFIG_SCHED_MM_CID 726 struct mm_cid { 727 u64 time; 728 int cid; 729 }; 730 #endif 731 732 struct kioctx_table; 733 struct mm_struct { 734 struct { 735 /* 736 * Fields which are often written to are placed in a separate 737 * cache line. 738 */ 739 struct { 740 /** 741 * @mm_count: The number of references to &struct 742 * mm_struct (@mm_users count as 1). 743 * 744 * Use mmgrab()/mmdrop() to modify. When this drops to 745 * 0, the &struct mm_struct is freed. 746 */ 747 atomic_t mm_count; 748 } ____cacheline_aligned_in_smp; 749 750 struct maple_tree mm_mt; 751 #ifdef CONFIG_MMU 752 unsigned long (*get_unmapped_area) (struct file *filp, 753 unsigned long addr, unsigned long len, 754 unsigned long pgoff, unsigned long flags); 755 #endif 756 unsigned long mmap_base; /* base of mmap area */ 757 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 758 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 759 /* Base addresses for compatible mmap() */ 760 unsigned long mmap_compat_base; 761 unsigned long mmap_compat_legacy_base; 762 #endif 763 unsigned long task_size; /* size of task vm space */ 764 pgd_t * pgd; 765 766 #ifdef CONFIG_MEMBARRIER 767 /** 768 * @membarrier_state: Flags controlling membarrier behavior. 769 * 770 * This field is close to @pgd to hopefully fit in the same 771 * cache-line, which needs to be touched by switch_mm(). 772 */ 773 atomic_t membarrier_state; 774 #endif 775 776 /** 777 * @mm_users: The number of users including userspace. 778 * 779 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 780 * drops to 0 (i.e. when the task exits and there are no other 781 * temporary reference holders), we also release a reference on 782 * @mm_count (which may then free the &struct mm_struct if 783 * @mm_count also drops to 0). 784 */ 785 atomic_t mm_users; 786 787 #ifdef CONFIG_SCHED_MM_CID 788 /** 789 * @pcpu_cid: Per-cpu current cid. 790 * 791 * Keep track of the currently allocated mm_cid for each cpu. 792 * The per-cpu mm_cid values are serialized by their respective 793 * runqueue locks. 794 */ 795 struct mm_cid __percpu *pcpu_cid; 796 /* 797 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 798 * 799 * When the next mm_cid scan is due (in jiffies). 800 */ 801 unsigned long mm_cid_next_scan; 802 #endif 803 #ifdef CONFIG_MMU 804 atomic_long_t pgtables_bytes; /* size of all page tables */ 805 #endif 806 int map_count; /* number of VMAs */ 807 808 spinlock_t page_table_lock; /* Protects page tables and some 809 * counters 810 */ 811 /* 812 * With some kernel config, the current mmap_lock's offset 813 * inside 'mm_struct' is at 0x120, which is very optimal, as 814 * its two hot fields 'count' and 'owner' sit in 2 different 815 * cachelines, and when mmap_lock is highly contended, both 816 * of the 2 fields will be accessed frequently, current layout 817 * will help to reduce cache bouncing. 818 * 819 * So please be careful with adding new fields before 820 * mmap_lock, which can easily push the 2 fields into one 821 * cacheline. 822 */ 823 struct rw_semaphore mmap_lock; 824 825 struct list_head mmlist; /* List of maybe swapped mm's. These 826 * are globally strung together off 827 * init_mm.mmlist, and are protected 828 * by mmlist_lock 829 */ 830 #ifdef CONFIG_PER_VMA_LOCK 831 /* 832 * This field has lock-like semantics, meaning it is sometimes 833 * accessed with ACQUIRE/RELEASE semantics. 834 * Roughly speaking, incrementing the sequence number is 835 * equivalent to releasing locks on VMAs; reading the sequence 836 * number can be part of taking a read lock on a VMA. 837 * 838 * Can be modified under write mmap_lock using RELEASE 839 * semantics. 840 * Can be read with no other protection when holding write 841 * mmap_lock. 842 * Can be read with ACQUIRE semantics if not holding write 843 * mmap_lock. 844 */ 845 int mm_lock_seq; 846 #endif 847 848 849 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 850 unsigned long hiwater_vm; /* High-water virtual memory usage */ 851 852 unsigned long total_vm; /* Total pages mapped */ 853 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 854 atomic64_t pinned_vm; /* Refcount permanently increased */ 855 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 856 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 857 unsigned long stack_vm; /* VM_STACK */ 858 unsigned long def_flags; 859 860 /** 861 * @write_protect_seq: Locked when any thread is write 862 * protecting pages mapped by this mm to enforce a later COW, 863 * for instance during page table copying for fork(). 864 */ 865 seqcount_t write_protect_seq; 866 867 spinlock_t arg_lock; /* protect the below fields */ 868 869 unsigned long start_code, end_code, start_data, end_data; 870 unsigned long start_brk, brk, start_stack; 871 unsigned long arg_start, arg_end, env_start, env_end; 872 873 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 874 875 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 876 877 struct linux_binfmt *binfmt; 878 879 /* Architecture-specific MM context */ 880 mm_context_t context; 881 882 unsigned long flags; /* Must use atomic bitops to access */ 883 884 #ifdef CONFIG_AIO 885 spinlock_t ioctx_lock; 886 struct kioctx_table __rcu *ioctx_table; 887 #endif 888 #ifdef CONFIG_MEMCG 889 /* 890 * "owner" points to a task that is regarded as the canonical 891 * user/owner of this mm. All of the following must be true in 892 * order for it to be changed: 893 * 894 * current == mm->owner 895 * current->mm != mm 896 * new_owner->mm == mm 897 * new_owner->alloc_lock is held 898 */ 899 struct task_struct __rcu *owner; 900 #endif 901 struct user_namespace *user_ns; 902 903 /* store ref to file /proc/<pid>/exe symlink points to */ 904 struct file __rcu *exe_file; 905 #ifdef CONFIG_MMU_NOTIFIER 906 struct mmu_notifier_subscriptions *notifier_subscriptions; 907 #endif 908 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 909 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 910 #endif 911 #ifdef CONFIG_NUMA_BALANCING 912 /* 913 * numa_next_scan is the next time that PTEs will be remapped 914 * PROT_NONE to trigger NUMA hinting faults; such faults gather 915 * statistics and migrate pages to new nodes if necessary. 916 */ 917 unsigned long numa_next_scan; 918 919 /* Restart point for scanning and remapping PTEs. */ 920 unsigned long numa_scan_offset; 921 922 /* numa_scan_seq prevents two threads remapping PTEs. */ 923 int numa_scan_seq; 924 #endif 925 /* 926 * An operation with batched TLB flushing is going on. Anything 927 * that can move process memory needs to flush the TLB when 928 * moving a PROT_NONE mapped page. 929 */ 930 atomic_t tlb_flush_pending; 931 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 932 /* See flush_tlb_batched_pending() */ 933 atomic_t tlb_flush_batched; 934 #endif 935 struct uprobes_state uprobes_state; 936 #ifdef CONFIG_PREEMPT_RT 937 struct rcu_head delayed_drop; 938 #endif 939 #ifdef CONFIG_HUGETLB_PAGE 940 atomic_long_t hugetlb_usage; 941 #endif 942 struct work_struct async_put_work; 943 944 #ifdef CONFIG_IOMMU_SVA 945 u32 pasid; 946 #endif 947 #ifdef CONFIG_KSM 948 /* 949 * Represent how many pages of this process are involved in KSM 950 * merging (not including ksm_zero_pages). 951 */ 952 unsigned long ksm_merging_pages; 953 /* 954 * Represent how many pages are checked for ksm merging 955 * including merged and not merged. 956 */ 957 unsigned long ksm_rmap_items; 958 /* 959 * Represent how many empty pages are merged with kernel zero 960 * pages when enabling KSM use_zero_pages. 961 */ 962 unsigned long ksm_zero_pages; 963 #endif /* CONFIG_KSM */ 964 #ifdef CONFIG_LRU_GEN_WALKS_MMU 965 struct { 966 /* this mm_struct is on lru_gen_mm_list */ 967 struct list_head list; 968 /* 969 * Set when switching to this mm_struct, as a hint of 970 * whether it has been used since the last time per-node 971 * page table walkers cleared the corresponding bits. 972 */ 973 unsigned long bitmap; 974 #ifdef CONFIG_MEMCG 975 /* points to the memcg of "owner" above */ 976 struct mem_cgroup *memcg; 977 #endif 978 } lru_gen; 979 #endif /* CONFIG_LRU_GEN_WALKS_MMU */ 980 } __randomize_layout; 981 982 /* 983 * The mm_cpumask needs to be at the end of mm_struct, because it 984 * is dynamically sized based on nr_cpu_ids. 985 */ 986 unsigned long cpu_bitmap[]; 987 }; 988 989 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 990 MT_FLAGS_USE_RCU) 991 extern struct mm_struct init_mm; 992 993 /* Pointer magic because the dynamic array size confuses some compilers. */ 994 static inline void mm_init_cpumask(struct mm_struct *mm) 995 { 996 unsigned long cpu_bitmap = (unsigned long)mm; 997 998 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 999 cpumask_clear((struct cpumask *)cpu_bitmap); 1000 } 1001 1002 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 1003 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 1004 { 1005 return (struct cpumask *)&mm->cpu_bitmap; 1006 } 1007 1008 #ifdef CONFIG_LRU_GEN 1009 1010 struct lru_gen_mm_list { 1011 /* mm_struct list for page table walkers */ 1012 struct list_head fifo; 1013 /* protects the list above */ 1014 spinlock_t lock; 1015 }; 1016 1017 #endif /* CONFIG_LRU_GEN */ 1018 1019 #ifdef CONFIG_LRU_GEN_WALKS_MMU 1020 1021 void lru_gen_add_mm(struct mm_struct *mm); 1022 void lru_gen_del_mm(struct mm_struct *mm); 1023 void lru_gen_migrate_mm(struct mm_struct *mm); 1024 1025 static inline void lru_gen_init_mm(struct mm_struct *mm) 1026 { 1027 INIT_LIST_HEAD(&mm->lru_gen.list); 1028 mm->lru_gen.bitmap = 0; 1029 #ifdef CONFIG_MEMCG 1030 mm->lru_gen.memcg = NULL; 1031 #endif 1032 } 1033 1034 static inline void lru_gen_use_mm(struct mm_struct *mm) 1035 { 1036 /* 1037 * When the bitmap is set, page reclaim knows this mm_struct has been 1038 * used since the last time it cleared the bitmap. So it might be worth 1039 * walking the page tables of this mm_struct to clear the accessed bit. 1040 */ 1041 WRITE_ONCE(mm->lru_gen.bitmap, -1); 1042 } 1043 1044 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 1045 1046 static inline void lru_gen_add_mm(struct mm_struct *mm) 1047 { 1048 } 1049 1050 static inline void lru_gen_del_mm(struct mm_struct *mm) 1051 { 1052 } 1053 1054 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1055 { 1056 } 1057 1058 static inline void lru_gen_init_mm(struct mm_struct *mm) 1059 { 1060 } 1061 1062 static inline void lru_gen_use_mm(struct mm_struct *mm) 1063 { 1064 } 1065 1066 #endif /* CONFIG_LRU_GEN_WALKS_MMU */ 1067 1068 struct vma_iterator { 1069 struct ma_state mas; 1070 }; 1071 1072 #define VMA_ITERATOR(name, __mm, __addr) \ 1073 struct vma_iterator name = { \ 1074 .mas = { \ 1075 .tree = &(__mm)->mm_mt, \ 1076 .index = __addr, \ 1077 .node = NULL, \ 1078 .status = ma_start, \ 1079 }, \ 1080 } 1081 1082 static inline void vma_iter_init(struct vma_iterator *vmi, 1083 struct mm_struct *mm, unsigned long addr) 1084 { 1085 mas_init(&vmi->mas, &mm->mm_mt, addr); 1086 } 1087 1088 #ifdef CONFIG_SCHED_MM_CID 1089 1090 enum mm_cid_state { 1091 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1092 MM_CID_LAZY_PUT = (1U << 31), 1093 }; 1094 1095 static inline bool mm_cid_is_unset(int cid) 1096 { 1097 return cid == MM_CID_UNSET; 1098 } 1099 1100 static inline bool mm_cid_is_lazy_put(int cid) 1101 { 1102 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1103 } 1104 1105 static inline bool mm_cid_is_valid(int cid) 1106 { 1107 return !(cid & MM_CID_LAZY_PUT); 1108 } 1109 1110 static inline int mm_cid_set_lazy_put(int cid) 1111 { 1112 return cid | MM_CID_LAZY_PUT; 1113 } 1114 1115 static inline int mm_cid_clear_lazy_put(int cid) 1116 { 1117 return cid & ~MM_CID_LAZY_PUT; 1118 } 1119 1120 /* Accessor for struct mm_struct's cidmask. */ 1121 static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1122 { 1123 unsigned long cid_bitmap = (unsigned long)mm; 1124 1125 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1126 /* Skip cpu_bitmap */ 1127 cid_bitmap += cpumask_size(); 1128 return (struct cpumask *)cid_bitmap; 1129 } 1130 1131 static inline void mm_init_cid(struct mm_struct *mm) 1132 { 1133 int i; 1134 1135 for_each_possible_cpu(i) { 1136 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1137 1138 pcpu_cid->cid = MM_CID_UNSET; 1139 pcpu_cid->time = 0; 1140 } 1141 cpumask_clear(mm_cidmask(mm)); 1142 } 1143 1144 static inline int mm_alloc_cid(struct mm_struct *mm) 1145 { 1146 mm->pcpu_cid = alloc_percpu(struct mm_cid); 1147 if (!mm->pcpu_cid) 1148 return -ENOMEM; 1149 mm_init_cid(mm); 1150 return 0; 1151 } 1152 1153 static inline void mm_destroy_cid(struct mm_struct *mm) 1154 { 1155 free_percpu(mm->pcpu_cid); 1156 mm->pcpu_cid = NULL; 1157 } 1158 1159 static inline unsigned int mm_cid_size(void) 1160 { 1161 return cpumask_size(); 1162 } 1163 #else /* CONFIG_SCHED_MM_CID */ 1164 static inline void mm_init_cid(struct mm_struct *mm) { } 1165 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } 1166 static inline void mm_destroy_cid(struct mm_struct *mm) { } 1167 static inline unsigned int mm_cid_size(void) 1168 { 1169 return 0; 1170 } 1171 #endif /* CONFIG_SCHED_MM_CID */ 1172 1173 struct mmu_gather; 1174 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1175 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1176 extern void tlb_finish_mmu(struct mmu_gather *tlb); 1177 1178 struct vm_fault; 1179 1180 /** 1181 * typedef vm_fault_t - Return type for page fault handlers. 1182 * 1183 * Page fault handlers return a bitmask of %VM_FAULT values. 1184 */ 1185 typedef __bitwise unsigned int vm_fault_t; 1186 1187 /** 1188 * enum vm_fault_reason - Page fault handlers return a bitmask of 1189 * these values to tell the core VM what happened when handling the 1190 * fault. Used to decide whether a process gets delivered SIGBUS or 1191 * just gets major/minor fault counters bumped up. 1192 * 1193 * @VM_FAULT_OOM: Out Of Memory 1194 * @VM_FAULT_SIGBUS: Bad access 1195 * @VM_FAULT_MAJOR: Page read from storage 1196 * @VM_FAULT_HWPOISON: Hit poisoned small page 1197 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1198 * in upper bits 1199 * @VM_FAULT_SIGSEGV: segmentation fault 1200 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1201 * @VM_FAULT_LOCKED: ->fault locked the returned page 1202 * @VM_FAULT_RETRY: ->fault blocked, must retry 1203 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1204 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1205 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1206 * fsync() to complete (for synchronous page faults 1207 * in DAX) 1208 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1209 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1210 * 1211 */ 1212 enum vm_fault_reason { 1213 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1214 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1215 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1216 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1217 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1218 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1219 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1220 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1221 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1222 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1223 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1224 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1225 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1226 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1227 }; 1228 1229 /* Encode hstate index for a hwpoisoned large page */ 1230 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1231 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1232 1233 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1234 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1235 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1236 1237 #define VM_FAULT_RESULT_TRACE \ 1238 { VM_FAULT_OOM, "OOM" }, \ 1239 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1240 { VM_FAULT_MAJOR, "MAJOR" }, \ 1241 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1242 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1243 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1244 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1245 { VM_FAULT_LOCKED, "LOCKED" }, \ 1246 { VM_FAULT_RETRY, "RETRY" }, \ 1247 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1248 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1249 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1250 { VM_FAULT_COMPLETED, "COMPLETED" } 1251 1252 struct vm_special_mapping { 1253 const char *name; /* The name, e.g. "[vdso]". */ 1254 1255 /* 1256 * If .fault is not provided, this points to a 1257 * NULL-terminated array of pages that back the special mapping. 1258 * 1259 * This must not be NULL unless .fault is provided. 1260 */ 1261 struct page **pages; 1262 1263 /* 1264 * If non-NULL, then this is called to resolve page faults 1265 * on the special mapping. If used, .pages is not checked. 1266 */ 1267 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1268 struct vm_area_struct *vma, 1269 struct vm_fault *vmf); 1270 1271 int (*mremap)(const struct vm_special_mapping *sm, 1272 struct vm_area_struct *new_vma); 1273 }; 1274 1275 enum tlb_flush_reason { 1276 TLB_FLUSH_ON_TASK_SWITCH, 1277 TLB_REMOTE_SHOOTDOWN, 1278 TLB_LOCAL_SHOOTDOWN, 1279 TLB_LOCAL_MM_SHOOTDOWN, 1280 TLB_REMOTE_SEND_IPI, 1281 NR_TLB_FLUSH_REASONS, 1282 }; 1283 1284 /** 1285 * enum fault_flag - Fault flag definitions. 1286 * @FAULT_FLAG_WRITE: Fault was a write fault. 1287 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1288 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1289 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1290 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1291 * @FAULT_FLAG_TRIED: The fault has been tried once. 1292 * @FAULT_FLAG_USER: The fault originated in userspace. 1293 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1294 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1295 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1296 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1297 * COW mapping, making sure that an exclusive anon page is 1298 * mapped after the fault. 1299 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1300 * We should only access orig_pte if this flag set. 1301 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1302 * 1303 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1304 * whether we would allow page faults to retry by specifying these two 1305 * fault flags correctly. Currently there can be three legal combinations: 1306 * 1307 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1308 * this is the first try 1309 * 1310 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1311 * we've already tried at least once 1312 * 1313 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1314 * 1315 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1316 * be used. Note that page faults can be allowed to retry for multiple times, 1317 * in which case we'll have an initial fault with flags (a) then later on 1318 * continuous faults with flags (b). We should always try to detect pending 1319 * signals before a retry to make sure the continuous page faults can still be 1320 * interrupted if necessary. 1321 * 1322 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1323 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1324 * applied to mappings that are not COW mappings. 1325 */ 1326 enum fault_flag { 1327 FAULT_FLAG_WRITE = 1 << 0, 1328 FAULT_FLAG_MKWRITE = 1 << 1, 1329 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1330 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1331 FAULT_FLAG_KILLABLE = 1 << 4, 1332 FAULT_FLAG_TRIED = 1 << 5, 1333 FAULT_FLAG_USER = 1 << 6, 1334 FAULT_FLAG_REMOTE = 1 << 7, 1335 FAULT_FLAG_INSTRUCTION = 1 << 8, 1336 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1337 FAULT_FLAG_UNSHARE = 1 << 10, 1338 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1339 FAULT_FLAG_VMA_LOCK = 1 << 12, 1340 }; 1341 1342 typedef unsigned int __bitwise zap_flags_t; 1343 1344 /* 1345 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1346 * other. Here is what they mean, and how to use them: 1347 * 1348 * 1349 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1350 * lifetime enforced by the filesystem and we need guarantees that longterm 1351 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1352 * the filesystem. Ideas for this coordination include revoking the longterm 1353 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1354 * added after the problem with filesystems was found FS DAX VMAs are 1355 * specifically failed. Filesystem pages are still subject to bugs and use of 1356 * FOLL_LONGTERM should be avoided on those pages. 1357 * 1358 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1359 * that region. And so, CMA attempts to migrate the page before pinning, when 1360 * FOLL_LONGTERM is specified. 1361 * 1362 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1363 * but an additional pin counting system) will be invoked. This is intended for 1364 * anything that gets a page reference and then touches page data (for example, 1365 * Direct IO). This lets the filesystem know that some non-file-system entity is 1366 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1367 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1368 * a call to unpin_user_page(). 1369 * 1370 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1371 * and separate refcounting mechanisms, however, and that means that each has 1372 * its own acquire and release mechanisms: 1373 * 1374 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1375 * 1376 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1377 * 1378 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1379 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1380 * calls applied to them, and that's perfectly OK. This is a constraint on the 1381 * callers, not on the pages.) 1382 * 1383 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1384 * directly by the caller. That's in order to help avoid mismatches when 1385 * releasing pages: get_user_pages*() pages must be released via put_page(), 1386 * while pin_user_pages*() pages must be released via unpin_user_page(). 1387 * 1388 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1389 */ 1390 1391 enum { 1392 /* check pte is writable */ 1393 FOLL_WRITE = 1 << 0, 1394 /* do get_page on page */ 1395 FOLL_GET = 1 << 1, 1396 /* give error on hole if it would be zero */ 1397 FOLL_DUMP = 1 << 2, 1398 /* get_user_pages read/write w/o permission */ 1399 FOLL_FORCE = 1 << 3, 1400 /* 1401 * if a disk transfer is needed, start the IO and return without waiting 1402 * upon it 1403 */ 1404 FOLL_NOWAIT = 1 << 4, 1405 /* do not fault in pages */ 1406 FOLL_NOFAULT = 1 << 5, 1407 /* check page is hwpoisoned */ 1408 FOLL_HWPOISON = 1 << 6, 1409 /* don't do file mappings */ 1410 FOLL_ANON = 1 << 7, 1411 /* 1412 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1413 * time period _often_ under userspace control. This is in contrast to 1414 * iov_iter_get_pages(), whose usages are transient. 1415 */ 1416 FOLL_LONGTERM = 1 << 8, 1417 /* split huge pmd before returning */ 1418 FOLL_SPLIT_PMD = 1 << 9, 1419 /* allow returning PCI P2PDMA pages */ 1420 FOLL_PCI_P2PDMA = 1 << 10, 1421 /* allow interrupts from generic signals */ 1422 FOLL_INTERRUPTIBLE = 1 << 11, 1423 /* 1424 * Always honor (trigger) NUMA hinting faults. 1425 * 1426 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1427 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1428 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1429 * hinting faults. 1430 */ 1431 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1432 1433 /* See also internal only FOLL flags in mm/internal.h */ 1434 }; 1435 1436 #endif /* _LINUX_MM_TYPES_H */ 1437