xref: /linux-6.15/include/linux/mm_types.h (revision bfada5a7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * If your page will not be mapped to userspace, you can also use the four
50  * bytes in the mapcount union, but you must call page_mapcount_reset()
51  * before freeing it.
52  *
53  * If you want to use the refcount field, it must be used in such a way
54  * that other CPUs temporarily incrementing and then decrementing the
55  * refcount does not cause problems.  On receiving the page from
56  * alloc_pages(), the refcount will be positive.
57  *
58  * If you allocate pages of order > 0, you can use some of the fields
59  * in each subpage, but you may need to restore some of their values
60  * afterwards.
61  *
62  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63  * That requires that freelist & counters in struct slab be adjacent and
64  * double-word aligned. Because struct slab currently just reinterprets the
65  * bits of struct page, we align all struct pages to double-word boundaries,
66  * and ensure that 'freelist' is aligned within struct slab.
67  */
68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
70 #else
71 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
72 #endif
73 
74 struct page {
75 	unsigned long flags;		/* Atomic flags, some possibly
76 					 * updated asynchronously */
77 	/*
78 	 * Five words (20/40 bytes) are available in this union.
79 	 * WARNING: bit 0 of the first word is used for PageTail(). That
80 	 * means the other users of this union MUST NOT use the bit to
81 	 * avoid collision and false-positive PageTail().
82 	 */
83 	union {
84 		struct {	/* Page cache and anonymous pages */
85 			/**
86 			 * @lru: Pageout list, eg. active_list protected by
87 			 * lruvec->lru_lock.  Sometimes used as a generic list
88 			 * by the page owner.
89 			 */
90 			union {
91 				struct list_head lru;
92 
93 				/* Or, for the Unevictable "LRU list" slot */
94 				struct {
95 					/* Always even, to negate PageTail */
96 					void *__filler;
97 					/* Count page's or folio's mlocks */
98 					unsigned int mlock_count;
99 				};
100 
101 				/* Or, free page */
102 				struct list_head buddy_list;
103 				struct list_head pcp_list;
104 			};
105 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
106 			struct address_space *mapping;
107 			union {
108 				pgoff_t index;		/* Our offset within mapping. */
109 				unsigned long share;	/* share count for fsdax */
110 			};
111 			/**
112 			 * @private: Mapping-private opaque data.
113 			 * Usually used for buffer_heads if PagePrivate.
114 			 * Used for swp_entry_t if PageSwapCache.
115 			 * Indicates order in the buddy system if PageBuddy.
116 			 */
117 			unsigned long private;
118 		};
119 		struct {	/* page_pool used by netstack */
120 			/**
121 			 * @pp_magic: magic value to avoid recycling non
122 			 * page_pool allocated pages.
123 			 */
124 			unsigned long pp_magic;
125 			struct page_pool *pp;
126 			unsigned long _pp_mapping_pad;
127 			unsigned long dma_addr;
128 			atomic_long_t pp_frag_count;
129 		};
130 		struct {	/* Tail pages of compound page */
131 			unsigned long compound_head;	/* Bit zero is set */
132 		};
133 		struct {	/* ZONE_DEVICE pages */
134 			/** @pgmap: Points to the hosting device page map. */
135 			struct dev_pagemap *pgmap;
136 			void *zone_device_data;
137 			/*
138 			 * ZONE_DEVICE private pages are counted as being
139 			 * mapped so the next 3 words hold the mapping, index,
140 			 * and private fields from the source anonymous or
141 			 * page cache page while the page is migrated to device
142 			 * private memory.
143 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
144 			 * use the mapping, index, and private fields when
145 			 * pmem backed DAX files are mapped.
146 			 */
147 		};
148 
149 		/** @rcu_head: You can use this to free a page by RCU. */
150 		struct rcu_head rcu_head;
151 	};
152 
153 	union {		/* This union is 4 bytes in size. */
154 		/*
155 		 * If the page can be mapped to userspace, encodes the number
156 		 * of times this page is referenced by a page table.
157 		 */
158 		atomic_t _mapcount;
159 
160 		/*
161 		 * If the page is neither PageSlab nor mappable to userspace,
162 		 * the value stored here may help determine what this page
163 		 * is used for.  See page-flags.h for a list of page types
164 		 * which are currently stored here.
165 		 */
166 		unsigned int page_type;
167 	};
168 
169 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
170 	atomic_t _refcount;
171 
172 #ifdef CONFIG_MEMCG
173 	unsigned long memcg_data;
174 #endif
175 
176 	/*
177 	 * On machines where all RAM is mapped into kernel address space,
178 	 * we can simply calculate the virtual address. On machines with
179 	 * highmem some memory is mapped into kernel virtual memory
180 	 * dynamically, so we need a place to store that address.
181 	 * Note that this field could be 16 bits on x86 ... ;)
182 	 *
183 	 * Architectures with slow multiplication can define
184 	 * WANT_PAGE_VIRTUAL in asm/page.h
185 	 */
186 #if defined(WANT_PAGE_VIRTUAL)
187 	void *virtual;			/* Kernel virtual address (NULL if
188 					   not kmapped, ie. highmem) */
189 #endif /* WANT_PAGE_VIRTUAL */
190 
191 #ifdef CONFIG_KMSAN
192 	/*
193 	 * KMSAN metadata for this page:
194 	 *  - shadow page: every bit indicates whether the corresponding
195 	 *    bit of the original page is initialized (0) or not (1);
196 	 *  - origin page: every 4 bytes contain an id of the stack trace
197 	 *    where the uninitialized value was created.
198 	 */
199 	struct page *kmsan_shadow;
200 	struct page *kmsan_origin;
201 #endif
202 
203 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
204 	int _last_cpupid;
205 #endif
206 } _struct_page_alignment;
207 
208 /*
209  * struct encoded_page - a nonexistent type marking this pointer
210  *
211  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
212  * with the low bits of the pointer indicating extra context-dependent
213  * information. Not super-common, but happens in mmu_gather and mlock
214  * handling, and this acts as a type system check on that use.
215  *
216  * We only really have two guaranteed bits in general, although you could
217  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
218  * for more.
219  *
220  * Use the supplied helper functions to endcode/decode the pointer and bits.
221  */
222 struct encoded_page;
223 #define ENCODE_PAGE_BITS 3ul
224 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
225 {
226 	BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
227 	return (struct encoded_page *)(flags | (unsigned long)page);
228 }
229 
230 static inline unsigned long encoded_page_flags(struct encoded_page *page)
231 {
232 	return ENCODE_PAGE_BITS & (unsigned long)page;
233 }
234 
235 static inline struct page *encoded_page_ptr(struct encoded_page *page)
236 {
237 	return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
238 }
239 
240 /*
241  * A swap entry has to fit into a "unsigned long", as the entry is hidden
242  * in the "index" field of the swapper address space.
243  */
244 typedef struct {
245 	unsigned long val;
246 } swp_entry_t;
247 
248 /**
249  * struct folio - Represents a contiguous set of bytes.
250  * @flags: Identical to the page flags.
251  * @lru: Least Recently Used list; tracks how recently this folio was used.
252  * @mlock_count: Number of times this folio has been pinned by mlock().
253  * @mapping: The file this page belongs to, or refers to the anon_vma for
254  *    anonymous memory.
255  * @index: Offset within the file, in units of pages.  For anonymous memory,
256  *    this is the index from the beginning of the mmap.
257  * @private: Filesystem per-folio data (see folio_attach_private()).
258  * @swap: Used for swp_entry_t if folio_test_swapcache().
259  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
260  *    find out how many times this folio is mapped by userspace.
261  * @_refcount: Do not access this member directly.  Use folio_ref_count()
262  *    to find how many references there are to this folio.
263  * @memcg_data: Memory Control Group data.
264  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
265  * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
266  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
267  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
268  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
269  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
270  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
271  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
272  * @_deferred_list: Folios to be split under memory pressure.
273  *
274  * A folio is a physically, virtually and logically contiguous set
275  * of bytes.  It is a power-of-two in size, and it is aligned to that
276  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
277  * in the page cache, it is at a file offset which is a multiple of that
278  * power-of-two.  It may be mapped into userspace at an address which is
279  * at an arbitrary page offset, but its kernel virtual address is aligned
280  * to its size.
281  */
282 struct folio {
283 	/* private: don't document the anon union */
284 	union {
285 		struct {
286 	/* public: */
287 			unsigned long flags;
288 			union {
289 				struct list_head lru;
290 	/* private: avoid cluttering the output */
291 				struct {
292 					void *__filler;
293 	/* public: */
294 					unsigned int mlock_count;
295 	/* private: */
296 				};
297 	/* public: */
298 			};
299 			struct address_space *mapping;
300 			pgoff_t index;
301 			union {
302 				void *private;
303 				swp_entry_t swap;
304 			};
305 			atomic_t _mapcount;
306 			atomic_t _refcount;
307 #ifdef CONFIG_MEMCG
308 			unsigned long memcg_data;
309 #endif
310 	/* private: the union with struct page is transitional */
311 		};
312 		struct page page;
313 	};
314 	union {
315 		struct {
316 			unsigned long _flags_1;
317 			unsigned long _head_1;
318 			unsigned long _folio_avail;
319 	/* public: */
320 			atomic_t _entire_mapcount;
321 			atomic_t _nr_pages_mapped;
322 			atomic_t _pincount;
323 #ifdef CONFIG_64BIT
324 			unsigned int _folio_nr_pages;
325 #endif
326 	/* private: the union with struct page is transitional */
327 		};
328 		struct page __page_1;
329 	};
330 	union {
331 		struct {
332 			unsigned long _flags_2;
333 			unsigned long _head_2;
334 	/* public: */
335 			void *_hugetlb_subpool;
336 			void *_hugetlb_cgroup;
337 			void *_hugetlb_cgroup_rsvd;
338 			void *_hugetlb_hwpoison;
339 	/* private: the union with struct page is transitional */
340 		};
341 		struct {
342 			unsigned long _flags_2a;
343 			unsigned long _head_2a;
344 	/* public: */
345 			struct list_head _deferred_list;
346 	/* private: the union with struct page is transitional */
347 		};
348 		struct page __page_2;
349 	};
350 };
351 
352 #define FOLIO_MATCH(pg, fl)						\
353 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
354 FOLIO_MATCH(flags, flags);
355 FOLIO_MATCH(lru, lru);
356 FOLIO_MATCH(mapping, mapping);
357 FOLIO_MATCH(compound_head, lru);
358 FOLIO_MATCH(index, index);
359 FOLIO_MATCH(private, private);
360 FOLIO_MATCH(_mapcount, _mapcount);
361 FOLIO_MATCH(_refcount, _refcount);
362 #ifdef CONFIG_MEMCG
363 FOLIO_MATCH(memcg_data, memcg_data);
364 #endif
365 #undef FOLIO_MATCH
366 #define FOLIO_MATCH(pg, fl)						\
367 	static_assert(offsetof(struct folio, fl) ==			\
368 			offsetof(struct page, pg) + sizeof(struct page))
369 FOLIO_MATCH(flags, _flags_1);
370 FOLIO_MATCH(compound_head, _head_1);
371 #undef FOLIO_MATCH
372 #define FOLIO_MATCH(pg, fl)						\
373 	static_assert(offsetof(struct folio, fl) ==			\
374 			offsetof(struct page, pg) + 2 * sizeof(struct page))
375 FOLIO_MATCH(flags, _flags_2);
376 FOLIO_MATCH(compound_head, _head_2);
377 FOLIO_MATCH(flags, _flags_2a);
378 FOLIO_MATCH(compound_head, _head_2a);
379 #undef FOLIO_MATCH
380 
381 /**
382  * struct ptdesc -    Memory descriptor for page tables.
383  * @__page_flags:     Same as page flags. Unused for page tables.
384  * @pt_rcu_head:      For freeing page table pages.
385  * @pt_list:          List of used page tables. Used for s390 and x86.
386  * @_pt_pad_1:        Padding that aliases with page's compound head.
387  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
388  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
389  * @pt_mm:            Used for x86 pgds.
390  * @pt_frag_refcount: For fragmented page table tracking. Powerpc and s390 only.
391  * @_pt_pad_2:        Padding to ensure proper alignment.
392  * @ptl:              Lock for the page table.
393  * @__page_type:      Same as page->page_type. Unused for page tables.
394  * @_refcount:        Same as page refcount. Used for s390 page tables.
395  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
396  *
397  * This struct overlays struct page for now. Do not modify without a good
398  * understanding of the issues.
399  */
400 struct ptdesc {
401 	unsigned long __page_flags;
402 
403 	union {
404 		struct rcu_head pt_rcu_head;
405 		struct list_head pt_list;
406 		struct {
407 			unsigned long _pt_pad_1;
408 			pgtable_t pmd_huge_pte;
409 		};
410 	};
411 	unsigned long __page_mapping;
412 
413 	union {
414 		struct mm_struct *pt_mm;
415 		atomic_t pt_frag_refcount;
416 	};
417 
418 	union {
419 		unsigned long _pt_pad_2;
420 #if ALLOC_SPLIT_PTLOCKS
421 		spinlock_t *ptl;
422 #else
423 		spinlock_t ptl;
424 #endif
425 	};
426 	unsigned int __page_type;
427 	atomic_t _refcount;
428 #ifdef CONFIG_MEMCG
429 	unsigned long pt_memcg_data;
430 #endif
431 };
432 
433 #define TABLE_MATCH(pg, pt)						\
434 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
435 TABLE_MATCH(flags, __page_flags);
436 TABLE_MATCH(compound_head, pt_list);
437 TABLE_MATCH(compound_head, _pt_pad_1);
438 TABLE_MATCH(mapping, __page_mapping);
439 TABLE_MATCH(rcu_head, pt_rcu_head);
440 TABLE_MATCH(page_type, __page_type);
441 TABLE_MATCH(_refcount, _refcount);
442 #ifdef CONFIG_MEMCG
443 TABLE_MATCH(memcg_data, pt_memcg_data);
444 #endif
445 #undef TABLE_MATCH
446 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
447 
448 #define ptdesc_page(pt)			(_Generic((pt),			\
449 	const struct ptdesc *:		(const struct page *)(pt),	\
450 	struct ptdesc *:		(struct page *)(pt)))
451 
452 #define ptdesc_folio(pt)		(_Generic((pt),			\
453 	const struct ptdesc *:		(const struct folio *)(pt),	\
454 	struct ptdesc *:		(struct folio *)(pt)))
455 
456 #define page_ptdesc(p)			(_Generic((p),			\
457 	const struct page *:		(const struct ptdesc *)(p),	\
458 	struct page *:			(struct ptdesc *)(p)))
459 
460 /*
461  * Used for sizing the vmemmap region on some architectures
462  */
463 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
464 
465 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
466 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
467 
468 /*
469  * page_private can be used on tail pages.  However, PagePrivate is only
470  * checked by the VM on the head page.  So page_private on the tail pages
471  * should be used for data that's ancillary to the head page (eg attaching
472  * buffer heads to tail pages after attaching buffer heads to the head page)
473  */
474 #define page_private(page)		((page)->private)
475 
476 static inline void set_page_private(struct page *page, unsigned long private)
477 {
478 	page->private = private;
479 }
480 
481 static inline void *folio_get_private(struct folio *folio)
482 {
483 	return folio->private;
484 }
485 
486 struct page_frag_cache {
487 	void * va;
488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
489 	__u16 offset;
490 	__u16 size;
491 #else
492 	__u32 offset;
493 #endif
494 	/* we maintain a pagecount bias, so that we dont dirty cache line
495 	 * containing page->_refcount every time we allocate a fragment.
496 	 */
497 	unsigned int		pagecnt_bias;
498 	bool pfmemalloc;
499 };
500 
501 typedef unsigned long vm_flags_t;
502 
503 /*
504  * A region containing a mapping of a non-memory backed file under NOMMU
505  * conditions.  These are held in a global tree and are pinned by the VMAs that
506  * map parts of them.
507  */
508 struct vm_region {
509 	struct rb_node	vm_rb;		/* link in global region tree */
510 	vm_flags_t	vm_flags;	/* VMA vm_flags */
511 	unsigned long	vm_start;	/* start address of region */
512 	unsigned long	vm_end;		/* region initialised to here */
513 	unsigned long	vm_top;		/* region allocated to here */
514 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
515 	struct file	*vm_file;	/* the backing file or NULL */
516 
517 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
518 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
519 						* this region */
520 };
521 
522 #ifdef CONFIG_USERFAULTFD
523 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
524 struct vm_userfaultfd_ctx {
525 	struct userfaultfd_ctx *ctx;
526 };
527 #else /* CONFIG_USERFAULTFD */
528 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
529 struct vm_userfaultfd_ctx {};
530 #endif /* CONFIG_USERFAULTFD */
531 
532 struct anon_vma_name {
533 	struct kref kref;
534 	/* The name needs to be at the end because it is dynamically sized. */
535 	char name[];
536 };
537 
538 struct vma_lock {
539 	struct rw_semaphore lock;
540 };
541 
542 struct vma_numab_state {
543 	/*
544 	 * Initialised as time in 'jiffies' after which VMA
545 	 * should be scanned.  Delays first scan of new VMA by at
546 	 * least sysctl_numa_balancing_scan_delay:
547 	 */
548 	unsigned long next_scan;
549 
550 	/*
551 	 * Time in jiffies when pids_active[] is reset to
552 	 * detect phase change behaviour:
553 	 */
554 	unsigned long pids_active_reset;
555 
556 	/*
557 	 * Approximate tracking of PIDs that trapped a NUMA hinting
558 	 * fault. May produce false positives due to hash collisions.
559 	 *
560 	 *   [0] Previous PID tracking
561 	 *   [1] Current PID tracking
562 	 *
563 	 * Window moves after next_pid_reset has expired approximately
564 	 * every VMA_PID_RESET_PERIOD jiffies:
565 	 */
566 	unsigned long pids_active[2];
567 
568 	/*
569 	 * MM scan sequence ID when the VMA was last completely scanned.
570 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
571 	 */
572 	int prev_scan_seq;
573 };
574 
575 /*
576  * This struct describes a virtual memory area. There is one of these
577  * per VM-area/task. A VM area is any part of the process virtual memory
578  * space that has a special rule for the page-fault handlers (ie a shared
579  * library, the executable area etc).
580  */
581 struct vm_area_struct {
582 	/* The first cache line has the info for VMA tree walking. */
583 
584 	union {
585 		struct {
586 			/* VMA covers [vm_start; vm_end) addresses within mm */
587 			unsigned long vm_start;
588 			unsigned long vm_end;
589 		};
590 #ifdef CONFIG_PER_VMA_LOCK
591 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
592 #endif
593 	};
594 
595 	struct mm_struct *vm_mm;	/* The address space we belong to. */
596 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
597 
598 	/*
599 	 * Flags, see mm.h.
600 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
601 	 */
602 	union {
603 		const vm_flags_t vm_flags;
604 		vm_flags_t __private __vm_flags;
605 	};
606 
607 #ifdef CONFIG_PER_VMA_LOCK
608 	/*
609 	 * Can only be written (using WRITE_ONCE()) while holding both:
610 	 *  - mmap_lock (in write mode)
611 	 *  - vm_lock->lock (in write mode)
612 	 * Can be read reliably while holding one of:
613 	 *  - mmap_lock (in read or write mode)
614 	 *  - vm_lock->lock (in read or write mode)
615 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
616 	 * while holding nothing (except RCU to keep the VMA struct allocated).
617 	 *
618 	 * This sequence counter is explicitly allowed to overflow; sequence
619 	 * counter reuse can only lead to occasional unnecessary use of the
620 	 * slowpath.
621 	 */
622 	int vm_lock_seq;
623 	struct vma_lock *vm_lock;
624 
625 	/* Flag to indicate areas detached from the mm->mm_mt tree */
626 	bool detached;
627 #endif
628 
629 	/*
630 	 * For areas with an address space and backing store,
631 	 * linkage into the address_space->i_mmap interval tree.
632 	 *
633 	 */
634 	struct {
635 		struct rb_node rb;
636 		unsigned long rb_subtree_last;
637 	} shared;
638 
639 	/*
640 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
641 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
642 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
643 	 * or brk vma (with NULL file) can only be in an anon_vma list.
644 	 */
645 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
646 					  * page_table_lock */
647 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
648 
649 	/* Function pointers to deal with this struct. */
650 	const struct vm_operations_struct *vm_ops;
651 
652 	/* Information about our backing store: */
653 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
654 					   units */
655 	struct file * vm_file;		/* File we map to (can be NULL). */
656 	void * vm_private_data;		/* was vm_pte (shared mem) */
657 
658 #ifdef CONFIG_ANON_VMA_NAME
659 	/*
660 	 * For private and shared anonymous mappings, a pointer to a null
661 	 * terminated string containing the name given to the vma, or NULL if
662 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
663 	 */
664 	struct anon_vma_name *anon_name;
665 #endif
666 #ifdef CONFIG_SWAP
667 	atomic_long_t swap_readahead_info;
668 #endif
669 #ifndef CONFIG_MMU
670 	struct vm_region *vm_region;	/* NOMMU mapping region */
671 #endif
672 #ifdef CONFIG_NUMA
673 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
674 #endif
675 #ifdef CONFIG_NUMA_BALANCING
676 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
677 #endif
678 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
679 } __randomize_layout;
680 
681 #ifdef CONFIG_SCHED_MM_CID
682 struct mm_cid {
683 	u64 time;
684 	int cid;
685 };
686 #endif
687 
688 struct kioctx_table;
689 struct mm_struct {
690 	struct {
691 		/*
692 		 * Fields which are often written to are placed in a separate
693 		 * cache line.
694 		 */
695 		struct {
696 			/**
697 			 * @mm_count: The number of references to &struct
698 			 * mm_struct (@mm_users count as 1).
699 			 *
700 			 * Use mmgrab()/mmdrop() to modify. When this drops to
701 			 * 0, the &struct mm_struct is freed.
702 			 */
703 			atomic_t mm_count;
704 		} ____cacheline_aligned_in_smp;
705 
706 		struct maple_tree mm_mt;
707 #ifdef CONFIG_MMU
708 		unsigned long (*get_unmapped_area) (struct file *filp,
709 				unsigned long addr, unsigned long len,
710 				unsigned long pgoff, unsigned long flags);
711 #endif
712 		unsigned long mmap_base;	/* base of mmap area */
713 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
714 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
715 		/* Base addresses for compatible mmap() */
716 		unsigned long mmap_compat_base;
717 		unsigned long mmap_compat_legacy_base;
718 #endif
719 		unsigned long task_size;	/* size of task vm space */
720 		pgd_t * pgd;
721 
722 #ifdef CONFIG_MEMBARRIER
723 		/**
724 		 * @membarrier_state: Flags controlling membarrier behavior.
725 		 *
726 		 * This field is close to @pgd to hopefully fit in the same
727 		 * cache-line, which needs to be touched by switch_mm().
728 		 */
729 		atomic_t membarrier_state;
730 #endif
731 
732 		/**
733 		 * @mm_users: The number of users including userspace.
734 		 *
735 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
736 		 * drops to 0 (i.e. when the task exits and there are no other
737 		 * temporary reference holders), we also release a reference on
738 		 * @mm_count (which may then free the &struct mm_struct if
739 		 * @mm_count also drops to 0).
740 		 */
741 		atomic_t mm_users;
742 
743 #ifdef CONFIG_SCHED_MM_CID
744 		/**
745 		 * @pcpu_cid: Per-cpu current cid.
746 		 *
747 		 * Keep track of the currently allocated mm_cid for each cpu.
748 		 * The per-cpu mm_cid values are serialized by their respective
749 		 * runqueue locks.
750 		 */
751 		struct mm_cid __percpu *pcpu_cid;
752 		/*
753 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
754 		 *
755 		 * When the next mm_cid scan is due (in jiffies).
756 		 */
757 		unsigned long mm_cid_next_scan;
758 #endif
759 #ifdef CONFIG_MMU
760 		atomic_long_t pgtables_bytes;	/* size of all page tables */
761 #endif
762 		int map_count;			/* number of VMAs */
763 
764 		spinlock_t page_table_lock; /* Protects page tables and some
765 					     * counters
766 					     */
767 		/*
768 		 * With some kernel config, the current mmap_lock's offset
769 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
770 		 * its two hot fields 'count' and 'owner' sit in 2 different
771 		 * cachelines,  and when mmap_lock is highly contended, both
772 		 * of the 2 fields will be accessed frequently, current layout
773 		 * will help to reduce cache bouncing.
774 		 *
775 		 * So please be careful with adding new fields before
776 		 * mmap_lock, which can easily push the 2 fields into one
777 		 * cacheline.
778 		 */
779 		struct rw_semaphore mmap_lock;
780 
781 		struct list_head mmlist; /* List of maybe swapped mm's.	These
782 					  * are globally strung together off
783 					  * init_mm.mmlist, and are protected
784 					  * by mmlist_lock
785 					  */
786 #ifdef CONFIG_PER_VMA_LOCK
787 		/*
788 		 * This field has lock-like semantics, meaning it is sometimes
789 		 * accessed with ACQUIRE/RELEASE semantics.
790 		 * Roughly speaking, incrementing the sequence number is
791 		 * equivalent to releasing locks on VMAs; reading the sequence
792 		 * number can be part of taking a read lock on a VMA.
793 		 *
794 		 * Can be modified under write mmap_lock using RELEASE
795 		 * semantics.
796 		 * Can be read with no other protection when holding write
797 		 * mmap_lock.
798 		 * Can be read with ACQUIRE semantics if not holding write
799 		 * mmap_lock.
800 		 */
801 		int mm_lock_seq;
802 #endif
803 
804 
805 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
806 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
807 
808 		unsigned long total_vm;	   /* Total pages mapped */
809 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
810 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
811 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
812 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
813 		unsigned long stack_vm;	   /* VM_STACK */
814 		unsigned long def_flags;
815 
816 		/**
817 		 * @write_protect_seq: Locked when any thread is write
818 		 * protecting pages mapped by this mm to enforce a later COW,
819 		 * for instance during page table copying for fork().
820 		 */
821 		seqcount_t write_protect_seq;
822 
823 		spinlock_t arg_lock; /* protect the below fields */
824 
825 		unsigned long start_code, end_code, start_data, end_data;
826 		unsigned long start_brk, brk, start_stack;
827 		unsigned long arg_start, arg_end, env_start, env_end;
828 
829 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
830 
831 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
832 
833 		struct linux_binfmt *binfmt;
834 
835 		/* Architecture-specific MM context */
836 		mm_context_t context;
837 
838 		unsigned long flags; /* Must use atomic bitops to access */
839 
840 #ifdef CONFIG_AIO
841 		spinlock_t			ioctx_lock;
842 		struct kioctx_table __rcu	*ioctx_table;
843 #endif
844 #ifdef CONFIG_MEMCG
845 		/*
846 		 * "owner" points to a task that is regarded as the canonical
847 		 * user/owner of this mm. All of the following must be true in
848 		 * order for it to be changed:
849 		 *
850 		 * current == mm->owner
851 		 * current->mm != mm
852 		 * new_owner->mm == mm
853 		 * new_owner->alloc_lock is held
854 		 */
855 		struct task_struct __rcu *owner;
856 #endif
857 		struct user_namespace *user_ns;
858 
859 		/* store ref to file /proc/<pid>/exe symlink points to */
860 		struct file __rcu *exe_file;
861 #ifdef CONFIG_MMU_NOTIFIER
862 		struct mmu_notifier_subscriptions *notifier_subscriptions;
863 #endif
864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
865 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
866 #endif
867 #ifdef CONFIG_NUMA_BALANCING
868 		/*
869 		 * numa_next_scan is the next time that PTEs will be remapped
870 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
871 		 * statistics and migrate pages to new nodes if necessary.
872 		 */
873 		unsigned long numa_next_scan;
874 
875 		/* Restart point for scanning and remapping PTEs. */
876 		unsigned long numa_scan_offset;
877 
878 		/* numa_scan_seq prevents two threads remapping PTEs. */
879 		int numa_scan_seq;
880 #endif
881 		/*
882 		 * An operation with batched TLB flushing is going on. Anything
883 		 * that can move process memory needs to flush the TLB when
884 		 * moving a PROT_NONE mapped page.
885 		 */
886 		atomic_t tlb_flush_pending;
887 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
888 		/* See flush_tlb_batched_pending() */
889 		atomic_t tlb_flush_batched;
890 #endif
891 		struct uprobes_state uprobes_state;
892 #ifdef CONFIG_PREEMPT_RT
893 		struct rcu_head delayed_drop;
894 #endif
895 #ifdef CONFIG_HUGETLB_PAGE
896 		atomic_long_t hugetlb_usage;
897 #endif
898 		struct work_struct async_put_work;
899 
900 #ifdef CONFIG_IOMMU_SVA
901 		u32 pasid;
902 #endif
903 #ifdef CONFIG_KSM
904 		/*
905 		 * Represent how many pages of this process are involved in KSM
906 		 * merging (not including ksm_zero_pages).
907 		 */
908 		unsigned long ksm_merging_pages;
909 		/*
910 		 * Represent how many pages are checked for ksm merging
911 		 * including merged and not merged.
912 		 */
913 		unsigned long ksm_rmap_items;
914 		/*
915 		 * Represent how many empty pages are merged with kernel zero
916 		 * pages when enabling KSM use_zero_pages.
917 		 */
918 		unsigned long ksm_zero_pages;
919 #endif /* CONFIG_KSM */
920 #ifdef CONFIG_LRU_GEN
921 		struct {
922 			/* this mm_struct is on lru_gen_mm_list */
923 			struct list_head list;
924 			/*
925 			 * Set when switching to this mm_struct, as a hint of
926 			 * whether it has been used since the last time per-node
927 			 * page table walkers cleared the corresponding bits.
928 			 */
929 			unsigned long bitmap;
930 #ifdef CONFIG_MEMCG
931 			/* points to the memcg of "owner" above */
932 			struct mem_cgroup *memcg;
933 #endif
934 		} lru_gen;
935 #endif /* CONFIG_LRU_GEN */
936 	} __randomize_layout;
937 
938 	/*
939 	 * The mm_cpumask needs to be at the end of mm_struct, because it
940 	 * is dynamically sized based on nr_cpu_ids.
941 	 */
942 	unsigned long cpu_bitmap[];
943 };
944 
945 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
946 			 MT_FLAGS_USE_RCU)
947 extern struct mm_struct init_mm;
948 
949 /* Pointer magic because the dynamic array size confuses some compilers. */
950 static inline void mm_init_cpumask(struct mm_struct *mm)
951 {
952 	unsigned long cpu_bitmap = (unsigned long)mm;
953 
954 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
955 	cpumask_clear((struct cpumask *)cpu_bitmap);
956 }
957 
958 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
959 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
960 {
961 	return (struct cpumask *)&mm->cpu_bitmap;
962 }
963 
964 #ifdef CONFIG_LRU_GEN
965 
966 struct lru_gen_mm_list {
967 	/* mm_struct list for page table walkers */
968 	struct list_head fifo;
969 	/* protects the list above */
970 	spinlock_t lock;
971 };
972 
973 void lru_gen_add_mm(struct mm_struct *mm);
974 void lru_gen_del_mm(struct mm_struct *mm);
975 #ifdef CONFIG_MEMCG
976 void lru_gen_migrate_mm(struct mm_struct *mm);
977 #endif
978 
979 static inline void lru_gen_init_mm(struct mm_struct *mm)
980 {
981 	INIT_LIST_HEAD(&mm->lru_gen.list);
982 	mm->lru_gen.bitmap = 0;
983 #ifdef CONFIG_MEMCG
984 	mm->lru_gen.memcg = NULL;
985 #endif
986 }
987 
988 static inline void lru_gen_use_mm(struct mm_struct *mm)
989 {
990 	/*
991 	 * When the bitmap is set, page reclaim knows this mm_struct has been
992 	 * used since the last time it cleared the bitmap. So it might be worth
993 	 * walking the page tables of this mm_struct to clear the accessed bit.
994 	 */
995 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
996 }
997 
998 #else /* !CONFIG_LRU_GEN */
999 
1000 static inline void lru_gen_add_mm(struct mm_struct *mm)
1001 {
1002 }
1003 
1004 static inline void lru_gen_del_mm(struct mm_struct *mm)
1005 {
1006 }
1007 
1008 #ifdef CONFIG_MEMCG
1009 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1010 {
1011 }
1012 #endif
1013 
1014 static inline void lru_gen_init_mm(struct mm_struct *mm)
1015 {
1016 }
1017 
1018 static inline void lru_gen_use_mm(struct mm_struct *mm)
1019 {
1020 }
1021 
1022 #endif /* CONFIG_LRU_GEN */
1023 
1024 struct vma_iterator {
1025 	struct ma_state mas;
1026 };
1027 
1028 #define VMA_ITERATOR(name, __mm, __addr)				\
1029 	struct vma_iterator name = {					\
1030 		.mas = {						\
1031 			.tree = &(__mm)->mm_mt,				\
1032 			.index = __addr,				\
1033 			.node = MAS_START,				\
1034 		},							\
1035 	}
1036 
1037 static inline void vma_iter_init(struct vma_iterator *vmi,
1038 		struct mm_struct *mm, unsigned long addr)
1039 {
1040 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1041 }
1042 
1043 #ifdef CONFIG_SCHED_MM_CID
1044 
1045 enum mm_cid_state {
1046 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1047 	MM_CID_LAZY_PUT = (1U << 31),
1048 };
1049 
1050 static inline bool mm_cid_is_unset(int cid)
1051 {
1052 	return cid == MM_CID_UNSET;
1053 }
1054 
1055 static inline bool mm_cid_is_lazy_put(int cid)
1056 {
1057 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1058 }
1059 
1060 static inline bool mm_cid_is_valid(int cid)
1061 {
1062 	return !(cid & MM_CID_LAZY_PUT);
1063 }
1064 
1065 static inline int mm_cid_set_lazy_put(int cid)
1066 {
1067 	return cid | MM_CID_LAZY_PUT;
1068 }
1069 
1070 static inline int mm_cid_clear_lazy_put(int cid)
1071 {
1072 	return cid & ~MM_CID_LAZY_PUT;
1073 }
1074 
1075 /* Accessor for struct mm_struct's cidmask. */
1076 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1077 {
1078 	unsigned long cid_bitmap = (unsigned long)mm;
1079 
1080 	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1081 	/* Skip cpu_bitmap */
1082 	cid_bitmap += cpumask_size();
1083 	return (struct cpumask *)cid_bitmap;
1084 }
1085 
1086 static inline void mm_init_cid(struct mm_struct *mm)
1087 {
1088 	int i;
1089 
1090 	for_each_possible_cpu(i) {
1091 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1092 
1093 		pcpu_cid->cid = MM_CID_UNSET;
1094 		pcpu_cid->time = 0;
1095 	}
1096 	cpumask_clear(mm_cidmask(mm));
1097 }
1098 
1099 static inline int mm_alloc_cid(struct mm_struct *mm)
1100 {
1101 	mm->pcpu_cid = alloc_percpu(struct mm_cid);
1102 	if (!mm->pcpu_cid)
1103 		return -ENOMEM;
1104 	mm_init_cid(mm);
1105 	return 0;
1106 }
1107 
1108 static inline void mm_destroy_cid(struct mm_struct *mm)
1109 {
1110 	free_percpu(mm->pcpu_cid);
1111 	mm->pcpu_cid = NULL;
1112 }
1113 
1114 static inline unsigned int mm_cid_size(void)
1115 {
1116 	return cpumask_size();
1117 }
1118 #else /* CONFIG_SCHED_MM_CID */
1119 static inline void mm_init_cid(struct mm_struct *mm) { }
1120 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
1121 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1122 static inline unsigned int mm_cid_size(void)
1123 {
1124 	return 0;
1125 }
1126 #endif /* CONFIG_SCHED_MM_CID */
1127 
1128 struct mmu_gather;
1129 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1130 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1131 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1132 
1133 struct vm_fault;
1134 
1135 /**
1136  * typedef vm_fault_t - Return type for page fault handlers.
1137  *
1138  * Page fault handlers return a bitmask of %VM_FAULT values.
1139  */
1140 typedef __bitwise unsigned int vm_fault_t;
1141 
1142 /**
1143  * enum vm_fault_reason - Page fault handlers return a bitmask of
1144  * these values to tell the core VM what happened when handling the
1145  * fault. Used to decide whether a process gets delivered SIGBUS or
1146  * just gets major/minor fault counters bumped up.
1147  *
1148  * @VM_FAULT_OOM:		Out Of Memory
1149  * @VM_FAULT_SIGBUS:		Bad access
1150  * @VM_FAULT_MAJOR:		Page read from storage
1151  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1152  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1153  *				in upper bits
1154  * @VM_FAULT_SIGSEGV:		segmentation fault
1155  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1156  * @VM_FAULT_LOCKED:		->fault locked the returned page
1157  * @VM_FAULT_RETRY:		->fault blocked, must retry
1158  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1159  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1160  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1161  *				fsync() to complete (for synchronous page faults
1162  *				in DAX)
1163  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1164  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1165  *
1166  */
1167 enum vm_fault_reason {
1168 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1169 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1170 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1171 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1172 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1173 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1174 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1175 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1176 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1177 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1178 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1179 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1180 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1181 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1182 };
1183 
1184 /* Encode hstate index for a hwpoisoned large page */
1185 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1186 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1187 
1188 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1189 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1190 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1191 
1192 #define VM_FAULT_RESULT_TRACE \
1193 	{ VM_FAULT_OOM,                 "OOM" },	\
1194 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1195 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1196 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1197 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1198 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1199 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1200 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1201 	{ VM_FAULT_RETRY,               "RETRY" },	\
1202 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1203 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1204 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1205 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1206 
1207 struct vm_special_mapping {
1208 	const char *name;	/* The name, e.g. "[vdso]". */
1209 
1210 	/*
1211 	 * If .fault is not provided, this points to a
1212 	 * NULL-terminated array of pages that back the special mapping.
1213 	 *
1214 	 * This must not be NULL unless .fault is provided.
1215 	 */
1216 	struct page **pages;
1217 
1218 	/*
1219 	 * If non-NULL, then this is called to resolve page faults
1220 	 * on the special mapping.  If used, .pages is not checked.
1221 	 */
1222 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1223 				struct vm_area_struct *vma,
1224 				struct vm_fault *vmf);
1225 
1226 	int (*mremap)(const struct vm_special_mapping *sm,
1227 		     struct vm_area_struct *new_vma);
1228 };
1229 
1230 enum tlb_flush_reason {
1231 	TLB_FLUSH_ON_TASK_SWITCH,
1232 	TLB_REMOTE_SHOOTDOWN,
1233 	TLB_LOCAL_SHOOTDOWN,
1234 	TLB_LOCAL_MM_SHOOTDOWN,
1235 	TLB_REMOTE_SEND_IPI,
1236 	NR_TLB_FLUSH_REASONS,
1237 };
1238 
1239 /**
1240  * enum fault_flag - Fault flag definitions.
1241  * @FAULT_FLAG_WRITE: Fault was a write fault.
1242  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1243  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1244  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1245  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1246  * @FAULT_FLAG_TRIED: The fault has been tried once.
1247  * @FAULT_FLAG_USER: The fault originated in userspace.
1248  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1249  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1250  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1251  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1252  *                      COW mapping, making sure that an exclusive anon page is
1253  *                      mapped after the fault.
1254  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1255  *                        We should only access orig_pte if this flag set.
1256  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1257  *
1258  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1259  * whether we would allow page faults to retry by specifying these two
1260  * fault flags correctly.  Currently there can be three legal combinations:
1261  *
1262  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1263  *                              this is the first try
1264  *
1265  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1266  *                              we've already tried at least once
1267  *
1268  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1269  *
1270  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1271  * be used.  Note that page faults can be allowed to retry for multiple times,
1272  * in which case we'll have an initial fault with flags (a) then later on
1273  * continuous faults with flags (b).  We should always try to detect pending
1274  * signals before a retry to make sure the continuous page faults can still be
1275  * interrupted if necessary.
1276  *
1277  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1278  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1279  * applied to mappings that are not COW mappings.
1280  */
1281 enum fault_flag {
1282 	FAULT_FLAG_WRITE =		1 << 0,
1283 	FAULT_FLAG_MKWRITE =		1 << 1,
1284 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1285 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1286 	FAULT_FLAG_KILLABLE =		1 << 4,
1287 	FAULT_FLAG_TRIED = 		1 << 5,
1288 	FAULT_FLAG_USER =		1 << 6,
1289 	FAULT_FLAG_REMOTE =		1 << 7,
1290 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1291 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1292 	FAULT_FLAG_UNSHARE =		1 << 10,
1293 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1294 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1295 };
1296 
1297 typedef unsigned int __bitwise zap_flags_t;
1298 
1299 /*
1300  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1301  * other. Here is what they mean, and how to use them:
1302  *
1303  *
1304  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1305  * lifetime enforced by the filesystem and we need guarantees that longterm
1306  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1307  * the filesystem.  Ideas for this coordination include revoking the longterm
1308  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1309  * added after the problem with filesystems was found FS DAX VMAs are
1310  * specifically failed.  Filesystem pages are still subject to bugs and use of
1311  * FOLL_LONGTERM should be avoided on those pages.
1312  *
1313  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1314  * that region.  And so, CMA attempts to migrate the page before pinning, when
1315  * FOLL_LONGTERM is specified.
1316  *
1317  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1318  * but an additional pin counting system) will be invoked. This is intended for
1319  * anything that gets a page reference and then touches page data (for example,
1320  * Direct IO). This lets the filesystem know that some non-file-system entity is
1321  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1322  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1323  * a call to unpin_user_page().
1324  *
1325  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1326  * and separate refcounting mechanisms, however, and that means that each has
1327  * its own acquire and release mechanisms:
1328  *
1329  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1330  *
1331  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1332  *
1333  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1334  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1335  * calls applied to them, and that's perfectly OK. This is a constraint on the
1336  * callers, not on the pages.)
1337  *
1338  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1339  * directly by the caller. That's in order to help avoid mismatches when
1340  * releasing pages: get_user_pages*() pages must be released via put_page(),
1341  * while pin_user_pages*() pages must be released via unpin_user_page().
1342  *
1343  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1344  */
1345 
1346 enum {
1347 	/* check pte is writable */
1348 	FOLL_WRITE = 1 << 0,
1349 	/* do get_page on page */
1350 	FOLL_GET = 1 << 1,
1351 	/* give error on hole if it would be zero */
1352 	FOLL_DUMP = 1 << 2,
1353 	/* get_user_pages read/write w/o permission */
1354 	FOLL_FORCE = 1 << 3,
1355 	/*
1356 	 * if a disk transfer is needed, start the IO and return without waiting
1357 	 * upon it
1358 	 */
1359 	FOLL_NOWAIT = 1 << 4,
1360 	/* do not fault in pages */
1361 	FOLL_NOFAULT = 1 << 5,
1362 	/* check page is hwpoisoned */
1363 	FOLL_HWPOISON = 1 << 6,
1364 	/* don't do file mappings */
1365 	FOLL_ANON = 1 << 7,
1366 	/*
1367 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1368 	 * time period _often_ under userspace control.  This is in contrast to
1369 	 * iov_iter_get_pages(), whose usages are transient.
1370 	 */
1371 	FOLL_LONGTERM = 1 << 8,
1372 	/* split huge pmd before returning */
1373 	FOLL_SPLIT_PMD = 1 << 9,
1374 	/* allow returning PCI P2PDMA pages */
1375 	FOLL_PCI_P2PDMA = 1 << 10,
1376 	/* allow interrupts from generic signals */
1377 	FOLL_INTERRUPTIBLE = 1 << 11,
1378 	/*
1379 	 * Always honor (trigger) NUMA hinting faults.
1380 	 *
1381 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1382 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1383 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1384 	 * hinting faults.
1385 	 */
1386 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1387 
1388 	/* See also internal only FOLL flags in mm/internal.h */
1389 };
1390 
1391 #endif /* _LINUX_MM_TYPES_H */
1392