1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 #include <linux/percpu_counter.h> 22 23 #include <asm/mmu.h> 24 25 #ifndef AT_VECTOR_SIZE_ARCH 26 #define AT_VECTOR_SIZE_ARCH 0 27 #endif 28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30 #define INIT_PASID 0 31 32 struct address_space; 33 struct mem_cgroup; 34 35 /* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70 #else 71 #define _struct_page_alignment __aligned(sizeof(unsigned long)) 72 #endif 73 74 struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 atomic_long_t pp_frag_count; 129 }; 130 struct { /* Tail pages of compound page */ 131 unsigned long compound_head; /* Bit zero is set */ 132 }; 133 struct { /* ZONE_DEVICE pages */ 134 /** @pgmap: Points to the hosting device page map. */ 135 struct dev_pagemap *pgmap; 136 void *zone_device_data; 137 /* 138 * ZONE_DEVICE private pages are counted as being 139 * mapped so the next 3 words hold the mapping, index, 140 * and private fields from the source anonymous or 141 * page cache page while the page is migrated to device 142 * private memory. 143 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 144 * use the mapping, index, and private fields when 145 * pmem backed DAX files are mapped. 146 */ 147 }; 148 149 /** @rcu_head: You can use this to free a page by RCU. */ 150 struct rcu_head rcu_head; 151 }; 152 153 union { /* This union is 4 bytes in size. */ 154 /* 155 * If the page can be mapped to userspace, encodes the number 156 * of times this page is referenced by a page table. 157 */ 158 atomic_t _mapcount; 159 160 /* 161 * If the page is neither PageSlab nor mappable to userspace, 162 * the value stored here may help determine what this page 163 * is used for. See page-flags.h for a list of page types 164 * which are currently stored here. 165 */ 166 unsigned int page_type; 167 }; 168 169 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 170 atomic_t _refcount; 171 172 #ifdef CONFIG_MEMCG 173 unsigned long memcg_data; 174 #endif 175 176 /* 177 * On machines where all RAM is mapped into kernel address space, 178 * we can simply calculate the virtual address. On machines with 179 * highmem some memory is mapped into kernel virtual memory 180 * dynamically, so we need a place to store that address. 181 * Note that this field could be 16 bits on x86 ... ;) 182 * 183 * Architectures with slow multiplication can define 184 * WANT_PAGE_VIRTUAL in asm/page.h 185 */ 186 #if defined(WANT_PAGE_VIRTUAL) 187 void *virtual; /* Kernel virtual address (NULL if 188 not kmapped, ie. highmem) */ 189 #endif /* WANT_PAGE_VIRTUAL */ 190 191 #ifdef CONFIG_KMSAN 192 /* 193 * KMSAN metadata for this page: 194 * - shadow page: every bit indicates whether the corresponding 195 * bit of the original page is initialized (0) or not (1); 196 * - origin page: every 4 bytes contain an id of the stack trace 197 * where the uninitialized value was created. 198 */ 199 struct page *kmsan_shadow; 200 struct page *kmsan_origin; 201 #endif 202 203 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 204 int _last_cpupid; 205 #endif 206 } _struct_page_alignment; 207 208 /* 209 * struct encoded_page - a nonexistent type marking this pointer 210 * 211 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 212 * with the low bits of the pointer indicating extra context-dependent 213 * information. Not super-common, but happens in mmu_gather and mlock 214 * handling, and this acts as a type system check on that use. 215 * 216 * We only really have two guaranteed bits in general, although you could 217 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 218 * for more. 219 * 220 * Use the supplied helper functions to endcode/decode the pointer and bits. 221 */ 222 struct encoded_page; 223 #define ENCODE_PAGE_BITS 3ul 224 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 225 { 226 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 227 return (struct encoded_page *)(flags | (unsigned long)page); 228 } 229 230 static inline unsigned long encoded_page_flags(struct encoded_page *page) 231 { 232 return ENCODE_PAGE_BITS & (unsigned long)page; 233 } 234 235 static inline struct page *encoded_page_ptr(struct encoded_page *page) 236 { 237 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 238 } 239 240 /* 241 * A swap entry has to fit into a "unsigned long", as the entry is hidden 242 * in the "index" field of the swapper address space. 243 */ 244 typedef struct { 245 unsigned long val; 246 } swp_entry_t; 247 248 /** 249 * struct folio - Represents a contiguous set of bytes. 250 * @flags: Identical to the page flags. 251 * @lru: Least Recently Used list; tracks how recently this folio was used. 252 * @mlock_count: Number of times this folio has been pinned by mlock(). 253 * @mapping: The file this page belongs to, or refers to the anon_vma for 254 * anonymous memory. 255 * @index: Offset within the file, in units of pages. For anonymous memory, 256 * this is the index from the beginning of the mmap. 257 * @private: Filesystem per-folio data (see folio_attach_private()). 258 * @swap: Used for swp_entry_t if folio_test_swapcache(). 259 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 260 * find out how many times this folio is mapped by userspace. 261 * @_refcount: Do not access this member directly. Use folio_ref_count() 262 * to find how many references there are to this folio. 263 * @memcg_data: Memory Control Group data. 264 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 265 * @_nr_pages_mapped: Do not use directly, call folio_mapcount(). 266 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 267 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 268 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 269 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 270 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 271 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 272 * @_deferred_list: Folios to be split under memory pressure. 273 * 274 * A folio is a physically, virtually and logically contiguous set 275 * of bytes. It is a power-of-two in size, and it is aligned to that 276 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 277 * in the page cache, it is at a file offset which is a multiple of that 278 * power-of-two. It may be mapped into userspace at an address which is 279 * at an arbitrary page offset, but its kernel virtual address is aligned 280 * to its size. 281 */ 282 struct folio { 283 /* private: don't document the anon union */ 284 union { 285 struct { 286 /* public: */ 287 unsigned long flags; 288 union { 289 struct list_head lru; 290 /* private: avoid cluttering the output */ 291 struct { 292 void *__filler; 293 /* public: */ 294 unsigned int mlock_count; 295 /* private: */ 296 }; 297 /* public: */ 298 }; 299 struct address_space *mapping; 300 pgoff_t index; 301 union { 302 void *private; 303 swp_entry_t swap; 304 }; 305 atomic_t _mapcount; 306 atomic_t _refcount; 307 #ifdef CONFIG_MEMCG 308 unsigned long memcg_data; 309 #endif 310 /* private: the union with struct page is transitional */ 311 }; 312 struct page page; 313 }; 314 union { 315 struct { 316 unsigned long _flags_1; 317 unsigned long _head_1; 318 unsigned long _folio_avail; 319 /* public: */ 320 atomic_t _entire_mapcount; 321 atomic_t _nr_pages_mapped; 322 atomic_t _pincount; 323 #ifdef CONFIG_64BIT 324 unsigned int _folio_nr_pages; 325 #endif 326 /* private: the union with struct page is transitional */ 327 }; 328 struct page __page_1; 329 }; 330 union { 331 struct { 332 unsigned long _flags_2; 333 unsigned long _head_2; 334 /* public: */ 335 void *_hugetlb_subpool; 336 void *_hugetlb_cgroup; 337 void *_hugetlb_cgroup_rsvd; 338 void *_hugetlb_hwpoison; 339 /* private: the union with struct page is transitional */ 340 }; 341 struct { 342 unsigned long _flags_2a; 343 unsigned long _head_2a; 344 /* public: */ 345 struct list_head _deferred_list; 346 /* private: the union with struct page is transitional */ 347 }; 348 struct page __page_2; 349 }; 350 }; 351 352 #define FOLIO_MATCH(pg, fl) \ 353 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 354 FOLIO_MATCH(flags, flags); 355 FOLIO_MATCH(lru, lru); 356 FOLIO_MATCH(mapping, mapping); 357 FOLIO_MATCH(compound_head, lru); 358 FOLIO_MATCH(index, index); 359 FOLIO_MATCH(private, private); 360 FOLIO_MATCH(_mapcount, _mapcount); 361 FOLIO_MATCH(_refcount, _refcount); 362 #ifdef CONFIG_MEMCG 363 FOLIO_MATCH(memcg_data, memcg_data); 364 #endif 365 #undef FOLIO_MATCH 366 #define FOLIO_MATCH(pg, fl) \ 367 static_assert(offsetof(struct folio, fl) == \ 368 offsetof(struct page, pg) + sizeof(struct page)) 369 FOLIO_MATCH(flags, _flags_1); 370 FOLIO_MATCH(compound_head, _head_1); 371 #undef FOLIO_MATCH 372 #define FOLIO_MATCH(pg, fl) \ 373 static_assert(offsetof(struct folio, fl) == \ 374 offsetof(struct page, pg) + 2 * sizeof(struct page)) 375 FOLIO_MATCH(flags, _flags_2); 376 FOLIO_MATCH(compound_head, _head_2); 377 FOLIO_MATCH(flags, _flags_2a); 378 FOLIO_MATCH(compound_head, _head_2a); 379 #undef FOLIO_MATCH 380 381 /** 382 * struct ptdesc - Memory descriptor for page tables. 383 * @__page_flags: Same as page flags. Unused for page tables. 384 * @pt_rcu_head: For freeing page table pages. 385 * @pt_list: List of used page tables. Used for s390 and x86. 386 * @_pt_pad_1: Padding that aliases with page's compound head. 387 * @pmd_huge_pte: Protected by ptdesc->ptl, used for THPs. 388 * @__page_mapping: Aliases with page->mapping. Unused for page tables. 389 * @pt_mm: Used for x86 pgds. 390 * @pt_frag_refcount: For fragmented page table tracking. Powerpc and s390 only. 391 * @_pt_pad_2: Padding to ensure proper alignment. 392 * @ptl: Lock for the page table. 393 * @__page_type: Same as page->page_type. Unused for page tables. 394 * @_refcount: Same as page refcount. Used for s390 page tables. 395 * @pt_memcg_data: Memcg data. Tracked for page tables here. 396 * 397 * This struct overlays struct page for now. Do not modify without a good 398 * understanding of the issues. 399 */ 400 struct ptdesc { 401 unsigned long __page_flags; 402 403 union { 404 struct rcu_head pt_rcu_head; 405 struct list_head pt_list; 406 struct { 407 unsigned long _pt_pad_1; 408 pgtable_t pmd_huge_pte; 409 }; 410 }; 411 unsigned long __page_mapping; 412 413 union { 414 struct mm_struct *pt_mm; 415 atomic_t pt_frag_refcount; 416 }; 417 418 union { 419 unsigned long _pt_pad_2; 420 #if ALLOC_SPLIT_PTLOCKS 421 spinlock_t *ptl; 422 #else 423 spinlock_t ptl; 424 #endif 425 }; 426 unsigned int __page_type; 427 atomic_t _refcount; 428 #ifdef CONFIG_MEMCG 429 unsigned long pt_memcg_data; 430 #endif 431 }; 432 433 #define TABLE_MATCH(pg, pt) \ 434 static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt)) 435 TABLE_MATCH(flags, __page_flags); 436 TABLE_MATCH(compound_head, pt_list); 437 TABLE_MATCH(compound_head, _pt_pad_1); 438 TABLE_MATCH(mapping, __page_mapping); 439 TABLE_MATCH(rcu_head, pt_rcu_head); 440 TABLE_MATCH(page_type, __page_type); 441 TABLE_MATCH(_refcount, _refcount); 442 #ifdef CONFIG_MEMCG 443 TABLE_MATCH(memcg_data, pt_memcg_data); 444 #endif 445 #undef TABLE_MATCH 446 static_assert(sizeof(struct ptdesc) <= sizeof(struct page)); 447 448 #define ptdesc_page(pt) (_Generic((pt), \ 449 const struct ptdesc *: (const struct page *)(pt), \ 450 struct ptdesc *: (struct page *)(pt))) 451 452 #define ptdesc_folio(pt) (_Generic((pt), \ 453 const struct ptdesc *: (const struct folio *)(pt), \ 454 struct ptdesc *: (struct folio *)(pt))) 455 456 #define page_ptdesc(p) (_Generic((p), \ 457 const struct page *: (const struct ptdesc *)(p), \ 458 struct page *: (struct ptdesc *)(p))) 459 460 /* 461 * Used for sizing the vmemmap region on some architectures 462 */ 463 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 464 465 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 466 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 467 468 /* 469 * page_private can be used on tail pages. However, PagePrivate is only 470 * checked by the VM on the head page. So page_private on the tail pages 471 * should be used for data that's ancillary to the head page (eg attaching 472 * buffer heads to tail pages after attaching buffer heads to the head page) 473 */ 474 #define page_private(page) ((page)->private) 475 476 static inline void set_page_private(struct page *page, unsigned long private) 477 { 478 page->private = private; 479 } 480 481 static inline void *folio_get_private(struct folio *folio) 482 { 483 return folio->private; 484 } 485 486 struct page_frag_cache { 487 void * va; 488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 489 __u16 offset; 490 __u16 size; 491 #else 492 __u32 offset; 493 #endif 494 /* we maintain a pagecount bias, so that we dont dirty cache line 495 * containing page->_refcount every time we allocate a fragment. 496 */ 497 unsigned int pagecnt_bias; 498 bool pfmemalloc; 499 }; 500 501 typedef unsigned long vm_flags_t; 502 503 /* 504 * A region containing a mapping of a non-memory backed file under NOMMU 505 * conditions. These are held in a global tree and are pinned by the VMAs that 506 * map parts of them. 507 */ 508 struct vm_region { 509 struct rb_node vm_rb; /* link in global region tree */ 510 vm_flags_t vm_flags; /* VMA vm_flags */ 511 unsigned long vm_start; /* start address of region */ 512 unsigned long vm_end; /* region initialised to here */ 513 unsigned long vm_top; /* region allocated to here */ 514 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 515 struct file *vm_file; /* the backing file or NULL */ 516 517 int vm_usage; /* region usage count (access under nommu_region_sem) */ 518 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 519 * this region */ 520 }; 521 522 #ifdef CONFIG_USERFAULTFD 523 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 524 struct vm_userfaultfd_ctx { 525 struct userfaultfd_ctx *ctx; 526 }; 527 #else /* CONFIG_USERFAULTFD */ 528 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 529 struct vm_userfaultfd_ctx {}; 530 #endif /* CONFIG_USERFAULTFD */ 531 532 struct anon_vma_name { 533 struct kref kref; 534 /* The name needs to be at the end because it is dynamically sized. */ 535 char name[]; 536 }; 537 538 struct vma_lock { 539 struct rw_semaphore lock; 540 }; 541 542 struct vma_numab_state { 543 /* 544 * Initialised as time in 'jiffies' after which VMA 545 * should be scanned. Delays first scan of new VMA by at 546 * least sysctl_numa_balancing_scan_delay: 547 */ 548 unsigned long next_scan; 549 550 /* 551 * Time in jiffies when pids_active[] is reset to 552 * detect phase change behaviour: 553 */ 554 unsigned long pids_active_reset; 555 556 /* 557 * Approximate tracking of PIDs that trapped a NUMA hinting 558 * fault. May produce false positives due to hash collisions. 559 * 560 * [0] Previous PID tracking 561 * [1] Current PID tracking 562 * 563 * Window moves after next_pid_reset has expired approximately 564 * every VMA_PID_RESET_PERIOD jiffies: 565 */ 566 unsigned long pids_active[2]; 567 568 /* 569 * MM scan sequence ID when the VMA was last completely scanned. 570 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq 571 */ 572 int prev_scan_seq; 573 }; 574 575 /* 576 * This struct describes a virtual memory area. There is one of these 577 * per VM-area/task. A VM area is any part of the process virtual memory 578 * space that has a special rule for the page-fault handlers (ie a shared 579 * library, the executable area etc). 580 */ 581 struct vm_area_struct { 582 /* The first cache line has the info for VMA tree walking. */ 583 584 union { 585 struct { 586 /* VMA covers [vm_start; vm_end) addresses within mm */ 587 unsigned long vm_start; 588 unsigned long vm_end; 589 }; 590 #ifdef CONFIG_PER_VMA_LOCK 591 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 592 #endif 593 }; 594 595 struct mm_struct *vm_mm; /* The address space we belong to. */ 596 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 597 598 /* 599 * Flags, see mm.h. 600 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 601 */ 602 union { 603 const vm_flags_t vm_flags; 604 vm_flags_t __private __vm_flags; 605 }; 606 607 #ifdef CONFIG_PER_VMA_LOCK 608 /* 609 * Can only be written (using WRITE_ONCE()) while holding both: 610 * - mmap_lock (in write mode) 611 * - vm_lock->lock (in write mode) 612 * Can be read reliably while holding one of: 613 * - mmap_lock (in read or write mode) 614 * - vm_lock->lock (in read or write mode) 615 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 616 * while holding nothing (except RCU to keep the VMA struct allocated). 617 * 618 * This sequence counter is explicitly allowed to overflow; sequence 619 * counter reuse can only lead to occasional unnecessary use of the 620 * slowpath. 621 */ 622 int vm_lock_seq; 623 struct vma_lock *vm_lock; 624 625 /* Flag to indicate areas detached from the mm->mm_mt tree */ 626 bool detached; 627 #endif 628 629 /* 630 * For areas with an address space and backing store, 631 * linkage into the address_space->i_mmap interval tree. 632 * 633 */ 634 struct { 635 struct rb_node rb; 636 unsigned long rb_subtree_last; 637 } shared; 638 639 /* 640 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 641 * list, after a COW of one of the file pages. A MAP_SHARED vma 642 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 643 * or brk vma (with NULL file) can only be in an anon_vma list. 644 */ 645 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 646 * page_table_lock */ 647 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 648 649 /* Function pointers to deal with this struct. */ 650 const struct vm_operations_struct *vm_ops; 651 652 /* Information about our backing store: */ 653 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 654 units */ 655 struct file * vm_file; /* File we map to (can be NULL). */ 656 void * vm_private_data; /* was vm_pte (shared mem) */ 657 658 #ifdef CONFIG_ANON_VMA_NAME 659 /* 660 * For private and shared anonymous mappings, a pointer to a null 661 * terminated string containing the name given to the vma, or NULL if 662 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 663 */ 664 struct anon_vma_name *anon_name; 665 #endif 666 #ifdef CONFIG_SWAP 667 atomic_long_t swap_readahead_info; 668 #endif 669 #ifndef CONFIG_MMU 670 struct vm_region *vm_region; /* NOMMU mapping region */ 671 #endif 672 #ifdef CONFIG_NUMA 673 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 674 #endif 675 #ifdef CONFIG_NUMA_BALANCING 676 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 677 #endif 678 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 679 } __randomize_layout; 680 681 #ifdef CONFIG_SCHED_MM_CID 682 struct mm_cid { 683 u64 time; 684 int cid; 685 }; 686 #endif 687 688 struct kioctx_table; 689 struct mm_struct { 690 struct { 691 /* 692 * Fields which are often written to are placed in a separate 693 * cache line. 694 */ 695 struct { 696 /** 697 * @mm_count: The number of references to &struct 698 * mm_struct (@mm_users count as 1). 699 * 700 * Use mmgrab()/mmdrop() to modify. When this drops to 701 * 0, the &struct mm_struct is freed. 702 */ 703 atomic_t mm_count; 704 } ____cacheline_aligned_in_smp; 705 706 struct maple_tree mm_mt; 707 #ifdef CONFIG_MMU 708 unsigned long (*get_unmapped_area) (struct file *filp, 709 unsigned long addr, unsigned long len, 710 unsigned long pgoff, unsigned long flags); 711 #endif 712 unsigned long mmap_base; /* base of mmap area */ 713 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 714 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 715 /* Base addresses for compatible mmap() */ 716 unsigned long mmap_compat_base; 717 unsigned long mmap_compat_legacy_base; 718 #endif 719 unsigned long task_size; /* size of task vm space */ 720 pgd_t * pgd; 721 722 #ifdef CONFIG_MEMBARRIER 723 /** 724 * @membarrier_state: Flags controlling membarrier behavior. 725 * 726 * This field is close to @pgd to hopefully fit in the same 727 * cache-line, which needs to be touched by switch_mm(). 728 */ 729 atomic_t membarrier_state; 730 #endif 731 732 /** 733 * @mm_users: The number of users including userspace. 734 * 735 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 736 * drops to 0 (i.e. when the task exits and there are no other 737 * temporary reference holders), we also release a reference on 738 * @mm_count (which may then free the &struct mm_struct if 739 * @mm_count also drops to 0). 740 */ 741 atomic_t mm_users; 742 743 #ifdef CONFIG_SCHED_MM_CID 744 /** 745 * @pcpu_cid: Per-cpu current cid. 746 * 747 * Keep track of the currently allocated mm_cid for each cpu. 748 * The per-cpu mm_cid values are serialized by their respective 749 * runqueue locks. 750 */ 751 struct mm_cid __percpu *pcpu_cid; 752 /* 753 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 754 * 755 * When the next mm_cid scan is due (in jiffies). 756 */ 757 unsigned long mm_cid_next_scan; 758 #endif 759 #ifdef CONFIG_MMU 760 atomic_long_t pgtables_bytes; /* size of all page tables */ 761 #endif 762 int map_count; /* number of VMAs */ 763 764 spinlock_t page_table_lock; /* Protects page tables and some 765 * counters 766 */ 767 /* 768 * With some kernel config, the current mmap_lock's offset 769 * inside 'mm_struct' is at 0x120, which is very optimal, as 770 * its two hot fields 'count' and 'owner' sit in 2 different 771 * cachelines, and when mmap_lock is highly contended, both 772 * of the 2 fields will be accessed frequently, current layout 773 * will help to reduce cache bouncing. 774 * 775 * So please be careful with adding new fields before 776 * mmap_lock, which can easily push the 2 fields into one 777 * cacheline. 778 */ 779 struct rw_semaphore mmap_lock; 780 781 struct list_head mmlist; /* List of maybe swapped mm's. These 782 * are globally strung together off 783 * init_mm.mmlist, and are protected 784 * by mmlist_lock 785 */ 786 #ifdef CONFIG_PER_VMA_LOCK 787 /* 788 * This field has lock-like semantics, meaning it is sometimes 789 * accessed with ACQUIRE/RELEASE semantics. 790 * Roughly speaking, incrementing the sequence number is 791 * equivalent to releasing locks on VMAs; reading the sequence 792 * number can be part of taking a read lock on a VMA. 793 * 794 * Can be modified under write mmap_lock using RELEASE 795 * semantics. 796 * Can be read with no other protection when holding write 797 * mmap_lock. 798 * Can be read with ACQUIRE semantics if not holding write 799 * mmap_lock. 800 */ 801 int mm_lock_seq; 802 #endif 803 804 805 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 806 unsigned long hiwater_vm; /* High-water virtual memory usage */ 807 808 unsigned long total_vm; /* Total pages mapped */ 809 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 810 atomic64_t pinned_vm; /* Refcount permanently increased */ 811 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 812 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 813 unsigned long stack_vm; /* VM_STACK */ 814 unsigned long def_flags; 815 816 /** 817 * @write_protect_seq: Locked when any thread is write 818 * protecting pages mapped by this mm to enforce a later COW, 819 * for instance during page table copying for fork(). 820 */ 821 seqcount_t write_protect_seq; 822 823 spinlock_t arg_lock; /* protect the below fields */ 824 825 unsigned long start_code, end_code, start_data, end_data; 826 unsigned long start_brk, brk, start_stack; 827 unsigned long arg_start, arg_end, env_start, env_end; 828 829 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 830 831 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 832 833 struct linux_binfmt *binfmt; 834 835 /* Architecture-specific MM context */ 836 mm_context_t context; 837 838 unsigned long flags; /* Must use atomic bitops to access */ 839 840 #ifdef CONFIG_AIO 841 spinlock_t ioctx_lock; 842 struct kioctx_table __rcu *ioctx_table; 843 #endif 844 #ifdef CONFIG_MEMCG 845 /* 846 * "owner" points to a task that is regarded as the canonical 847 * user/owner of this mm. All of the following must be true in 848 * order for it to be changed: 849 * 850 * current == mm->owner 851 * current->mm != mm 852 * new_owner->mm == mm 853 * new_owner->alloc_lock is held 854 */ 855 struct task_struct __rcu *owner; 856 #endif 857 struct user_namespace *user_ns; 858 859 /* store ref to file /proc/<pid>/exe symlink points to */ 860 struct file __rcu *exe_file; 861 #ifdef CONFIG_MMU_NOTIFIER 862 struct mmu_notifier_subscriptions *notifier_subscriptions; 863 #endif 864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 865 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 866 #endif 867 #ifdef CONFIG_NUMA_BALANCING 868 /* 869 * numa_next_scan is the next time that PTEs will be remapped 870 * PROT_NONE to trigger NUMA hinting faults; such faults gather 871 * statistics and migrate pages to new nodes if necessary. 872 */ 873 unsigned long numa_next_scan; 874 875 /* Restart point for scanning and remapping PTEs. */ 876 unsigned long numa_scan_offset; 877 878 /* numa_scan_seq prevents two threads remapping PTEs. */ 879 int numa_scan_seq; 880 #endif 881 /* 882 * An operation with batched TLB flushing is going on. Anything 883 * that can move process memory needs to flush the TLB when 884 * moving a PROT_NONE mapped page. 885 */ 886 atomic_t tlb_flush_pending; 887 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 888 /* See flush_tlb_batched_pending() */ 889 atomic_t tlb_flush_batched; 890 #endif 891 struct uprobes_state uprobes_state; 892 #ifdef CONFIG_PREEMPT_RT 893 struct rcu_head delayed_drop; 894 #endif 895 #ifdef CONFIG_HUGETLB_PAGE 896 atomic_long_t hugetlb_usage; 897 #endif 898 struct work_struct async_put_work; 899 900 #ifdef CONFIG_IOMMU_SVA 901 u32 pasid; 902 #endif 903 #ifdef CONFIG_KSM 904 /* 905 * Represent how many pages of this process are involved in KSM 906 * merging (not including ksm_zero_pages). 907 */ 908 unsigned long ksm_merging_pages; 909 /* 910 * Represent how many pages are checked for ksm merging 911 * including merged and not merged. 912 */ 913 unsigned long ksm_rmap_items; 914 /* 915 * Represent how many empty pages are merged with kernel zero 916 * pages when enabling KSM use_zero_pages. 917 */ 918 unsigned long ksm_zero_pages; 919 #endif /* CONFIG_KSM */ 920 #ifdef CONFIG_LRU_GEN 921 struct { 922 /* this mm_struct is on lru_gen_mm_list */ 923 struct list_head list; 924 /* 925 * Set when switching to this mm_struct, as a hint of 926 * whether it has been used since the last time per-node 927 * page table walkers cleared the corresponding bits. 928 */ 929 unsigned long bitmap; 930 #ifdef CONFIG_MEMCG 931 /* points to the memcg of "owner" above */ 932 struct mem_cgroup *memcg; 933 #endif 934 } lru_gen; 935 #endif /* CONFIG_LRU_GEN */ 936 } __randomize_layout; 937 938 /* 939 * The mm_cpumask needs to be at the end of mm_struct, because it 940 * is dynamically sized based on nr_cpu_ids. 941 */ 942 unsigned long cpu_bitmap[]; 943 }; 944 945 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 946 MT_FLAGS_USE_RCU) 947 extern struct mm_struct init_mm; 948 949 /* Pointer magic because the dynamic array size confuses some compilers. */ 950 static inline void mm_init_cpumask(struct mm_struct *mm) 951 { 952 unsigned long cpu_bitmap = (unsigned long)mm; 953 954 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 955 cpumask_clear((struct cpumask *)cpu_bitmap); 956 } 957 958 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 959 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 960 { 961 return (struct cpumask *)&mm->cpu_bitmap; 962 } 963 964 #ifdef CONFIG_LRU_GEN 965 966 struct lru_gen_mm_list { 967 /* mm_struct list for page table walkers */ 968 struct list_head fifo; 969 /* protects the list above */ 970 spinlock_t lock; 971 }; 972 973 void lru_gen_add_mm(struct mm_struct *mm); 974 void lru_gen_del_mm(struct mm_struct *mm); 975 #ifdef CONFIG_MEMCG 976 void lru_gen_migrate_mm(struct mm_struct *mm); 977 #endif 978 979 static inline void lru_gen_init_mm(struct mm_struct *mm) 980 { 981 INIT_LIST_HEAD(&mm->lru_gen.list); 982 mm->lru_gen.bitmap = 0; 983 #ifdef CONFIG_MEMCG 984 mm->lru_gen.memcg = NULL; 985 #endif 986 } 987 988 static inline void lru_gen_use_mm(struct mm_struct *mm) 989 { 990 /* 991 * When the bitmap is set, page reclaim knows this mm_struct has been 992 * used since the last time it cleared the bitmap. So it might be worth 993 * walking the page tables of this mm_struct to clear the accessed bit. 994 */ 995 WRITE_ONCE(mm->lru_gen.bitmap, -1); 996 } 997 998 #else /* !CONFIG_LRU_GEN */ 999 1000 static inline void lru_gen_add_mm(struct mm_struct *mm) 1001 { 1002 } 1003 1004 static inline void lru_gen_del_mm(struct mm_struct *mm) 1005 { 1006 } 1007 1008 #ifdef CONFIG_MEMCG 1009 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 1010 { 1011 } 1012 #endif 1013 1014 static inline void lru_gen_init_mm(struct mm_struct *mm) 1015 { 1016 } 1017 1018 static inline void lru_gen_use_mm(struct mm_struct *mm) 1019 { 1020 } 1021 1022 #endif /* CONFIG_LRU_GEN */ 1023 1024 struct vma_iterator { 1025 struct ma_state mas; 1026 }; 1027 1028 #define VMA_ITERATOR(name, __mm, __addr) \ 1029 struct vma_iterator name = { \ 1030 .mas = { \ 1031 .tree = &(__mm)->mm_mt, \ 1032 .index = __addr, \ 1033 .node = MAS_START, \ 1034 }, \ 1035 } 1036 1037 static inline void vma_iter_init(struct vma_iterator *vmi, 1038 struct mm_struct *mm, unsigned long addr) 1039 { 1040 mas_init(&vmi->mas, &mm->mm_mt, addr); 1041 } 1042 1043 #ifdef CONFIG_SCHED_MM_CID 1044 1045 enum mm_cid_state { 1046 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 1047 MM_CID_LAZY_PUT = (1U << 31), 1048 }; 1049 1050 static inline bool mm_cid_is_unset(int cid) 1051 { 1052 return cid == MM_CID_UNSET; 1053 } 1054 1055 static inline bool mm_cid_is_lazy_put(int cid) 1056 { 1057 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 1058 } 1059 1060 static inline bool mm_cid_is_valid(int cid) 1061 { 1062 return !(cid & MM_CID_LAZY_PUT); 1063 } 1064 1065 static inline int mm_cid_set_lazy_put(int cid) 1066 { 1067 return cid | MM_CID_LAZY_PUT; 1068 } 1069 1070 static inline int mm_cid_clear_lazy_put(int cid) 1071 { 1072 return cid & ~MM_CID_LAZY_PUT; 1073 } 1074 1075 /* Accessor for struct mm_struct's cidmask. */ 1076 static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 1077 { 1078 unsigned long cid_bitmap = (unsigned long)mm; 1079 1080 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 1081 /* Skip cpu_bitmap */ 1082 cid_bitmap += cpumask_size(); 1083 return (struct cpumask *)cid_bitmap; 1084 } 1085 1086 static inline void mm_init_cid(struct mm_struct *mm) 1087 { 1088 int i; 1089 1090 for_each_possible_cpu(i) { 1091 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1092 1093 pcpu_cid->cid = MM_CID_UNSET; 1094 pcpu_cid->time = 0; 1095 } 1096 cpumask_clear(mm_cidmask(mm)); 1097 } 1098 1099 static inline int mm_alloc_cid(struct mm_struct *mm) 1100 { 1101 mm->pcpu_cid = alloc_percpu(struct mm_cid); 1102 if (!mm->pcpu_cid) 1103 return -ENOMEM; 1104 mm_init_cid(mm); 1105 return 0; 1106 } 1107 1108 static inline void mm_destroy_cid(struct mm_struct *mm) 1109 { 1110 free_percpu(mm->pcpu_cid); 1111 mm->pcpu_cid = NULL; 1112 } 1113 1114 static inline unsigned int mm_cid_size(void) 1115 { 1116 return cpumask_size(); 1117 } 1118 #else /* CONFIG_SCHED_MM_CID */ 1119 static inline void mm_init_cid(struct mm_struct *mm) { } 1120 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } 1121 static inline void mm_destroy_cid(struct mm_struct *mm) { } 1122 static inline unsigned int mm_cid_size(void) 1123 { 1124 return 0; 1125 } 1126 #endif /* CONFIG_SCHED_MM_CID */ 1127 1128 struct mmu_gather; 1129 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1130 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1131 extern void tlb_finish_mmu(struct mmu_gather *tlb); 1132 1133 struct vm_fault; 1134 1135 /** 1136 * typedef vm_fault_t - Return type for page fault handlers. 1137 * 1138 * Page fault handlers return a bitmask of %VM_FAULT values. 1139 */ 1140 typedef __bitwise unsigned int vm_fault_t; 1141 1142 /** 1143 * enum vm_fault_reason - Page fault handlers return a bitmask of 1144 * these values to tell the core VM what happened when handling the 1145 * fault. Used to decide whether a process gets delivered SIGBUS or 1146 * just gets major/minor fault counters bumped up. 1147 * 1148 * @VM_FAULT_OOM: Out Of Memory 1149 * @VM_FAULT_SIGBUS: Bad access 1150 * @VM_FAULT_MAJOR: Page read from storage 1151 * @VM_FAULT_HWPOISON: Hit poisoned small page 1152 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1153 * in upper bits 1154 * @VM_FAULT_SIGSEGV: segmentation fault 1155 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1156 * @VM_FAULT_LOCKED: ->fault locked the returned page 1157 * @VM_FAULT_RETRY: ->fault blocked, must retry 1158 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1159 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1160 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1161 * fsync() to complete (for synchronous page faults 1162 * in DAX) 1163 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1164 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1165 * 1166 */ 1167 enum vm_fault_reason { 1168 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1169 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1170 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1171 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1172 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1173 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1174 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1175 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1176 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1177 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1178 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1179 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1180 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1181 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1182 }; 1183 1184 /* Encode hstate index for a hwpoisoned large page */ 1185 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1186 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1187 1188 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1189 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1190 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1191 1192 #define VM_FAULT_RESULT_TRACE \ 1193 { VM_FAULT_OOM, "OOM" }, \ 1194 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1195 { VM_FAULT_MAJOR, "MAJOR" }, \ 1196 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1197 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1198 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1199 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1200 { VM_FAULT_LOCKED, "LOCKED" }, \ 1201 { VM_FAULT_RETRY, "RETRY" }, \ 1202 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1203 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1204 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }, \ 1205 { VM_FAULT_COMPLETED, "COMPLETED" } 1206 1207 struct vm_special_mapping { 1208 const char *name; /* The name, e.g. "[vdso]". */ 1209 1210 /* 1211 * If .fault is not provided, this points to a 1212 * NULL-terminated array of pages that back the special mapping. 1213 * 1214 * This must not be NULL unless .fault is provided. 1215 */ 1216 struct page **pages; 1217 1218 /* 1219 * If non-NULL, then this is called to resolve page faults 1220 * on the special mapping. If used, .pages is not checked. 1221 */ 1222 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1223 struct vm_area_struct *vma, 1224 struct vm_fault *vmf); 1225 1226 int (*mremap)(const struct vm_special_mapping *sm, 1227 struct vm_area_struct *new_vma); 1228 }; 1229 1230 enum tlb_flush_reason { 1231 TLB_FLUSH_ON_TASK_SWITCH, 1232 TLB_REMOTE_SHOOTDOWN, 1233 TLB_LOCAL_SHOOTDOWN, 1234 TLB_LOCAL_MM_SHOOTDOWN, 1235 TLB_REMOTE_SEND_IPI, 1236 NR_TLB_FLUSH_REASONS, 1237 }; 1238 1239 /** 1240 * enum fault_flag - Fault flag definitions. 1241 * @FAULT_FLAG_WRITE: Fault was a write fault. 1242 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1243 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1244 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1245 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1246 * @FAULT_FLAG_TRIED: The fault has been tried once. 1247 * @FAULT_FLAG_USER: The fault originated in userspace. 1248 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1249 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1250 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1251 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1252 * COW mapping, making sure that an exclusive anon page is 1253 * mapped after the fault. 1254 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1255 * We should only access orig_pte if this flag set. 1256 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1257 * 1258 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1259 * whether we would allow page faults to retry by specifying these two 1260 * fault flags correctly. Currently there can be three legal combinations: 1261 * 1262 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1263 * this is the first try 1264 * 1265 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1266 * we've already tried at least once 1267 * 1268 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1269 * 1270 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1271 * be used. Note that page faults can be allowed to retry for multiple times, 1272 * in which case we'll have an initial fault with flags (a) then later on 1273 * continuous faults with flags (b). We should always try to detect pending 1274 * signals before a retry to make sure the continuous page faults can still be 1275 * interrupted if necessary. 1276 * 1277 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1278 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1279 * applied to mappings that are not COW mappings. 1280 */ 1281 enum fault_flag { 1282 FAULT_FLAG_WRITE = 1 << 0, 1283 FAULT_FLAG_MKWRITE = 1 << 1, 1284 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1285 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1286 FAULT_FLAG_KILLABLE = 1 << 4, 1287 FAULT_FLAG_TRIED = 1 << 5, 1288 FAULT_FLAG_USER = 1 << 6, 1289 FAULT_FLAG_REMOTE = 1 << 7, 1290 FAULT_FLAG_INSTRUCTION = 1 << 8, 1291 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1292 FAULT_FLAG_UNSHARE = 1 << 10, 1293 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1294 FAULT_FLAG_VMA_LOCK = 1 << 12, 1295 }; 1296 1297 typedef unsigned int __bitwise zap_flags_t; 1298 1299 /* 1300 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1301 * other. Here is what they mean, and how to use them: 1302 * 1303 * 1304 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1305 * lifetime enforced by the filesystem and we need guarantees that longterm 1306 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1307 * the filesystem. Ideas for this coordination include revoking the longterm 1308 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1309 * added after the problem with filesystems was found FS DAX VMAs are 1310 * specifically failed. Filesystem pages are still subject to bugs and use of 1311 * FOLL_LONGTERM should be avoided on those pages. 1312 * 1313 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1314 * that region. And so, CMA attempts to migrate the page before pinning, when 1315 * FOLL_LONGTERM is specified. 1316 * 1317 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1318 * but an additional pin counting system) will be invoked. This is intended for 1319 * anything that gets a page reference and then touches page data (for example, 1320 * Direct IO). This lets the filesystem know that some non-file-system entity is 1321 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1322 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1323 * a call to unpin_user_page(). 1324 * 1325 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1326 * and separate refcounting mechanisms, however, and that means that each has 1327 * its own acquire and release mechanisms: 1328 * 1329 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1330 * 1331 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1332 * 1333 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1334 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1335 * calls applied to them, and that's perfectly OK. This is a constraint on the 1336 * callers, not on the pages.) 1337 * 1338 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1339 * directly by the caller. That's in order to help avoid mismatches when 1340 * releasing pages: get_user_pages*() pages must be released via put_page(), 1341 * while pin_user_pages*() pages must be released via unpin_user_page(). 1342 * 1343 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1344 */ 1345 1346 enum { 1347 /* check pte is writable */ 1348 FOLL_WRITE = 1 << 0, 1349 /* do get_page on page */ 1350 FOLL_GET = 1 << 1, 1351 /* give error on hole if it would be zero */ 1352 FOLL_DUMP = 1 << 2, 1353 /* get_user_pages read/write w/o permission */ 1354 FOLL_FORCE = 1 << 3, 1355 /* 1356 * if a disk transfer is needed, start the IO and return without waiting 1357 * upon it 1358 */ 1359 FOLL_NOWAIT = 1 << 4, 1360 /* do not fault in pages */ 1361 FOLL_NOFAULT = 1 << 5, 1362 /* check page is hwpoisoned */ 1363 FOLL_HWPOISON = 1 << 6, 1364 /* don't do file mappings */ 1365 FOLL_ANON = 1 << 7, 1366 /* 1367 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1368 * time period _often_ under userspace control. This is in contrast to 1369 * iov_iter_get_pages(), whose usages are transient. 1370 */ 1371 FOLL_LONGTERM = 1 << 8, 1372 /* split huge pmd before returning */ 1373 FOLL_SPLIT_PMD = 1 << 9, 1374 /* allow returning PCI P2PDMA pages */ 1375 FOLL_PCI_P2PDMA = 1 << 10, 1376 /* allow interrupts from generic signals */ 1377 FOLL_INTERRUPTIBLE = 1 << 11, 1378 /* 1379 * Always honor (trigger) NUMA hinting faults. 1380 * 1381 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1382 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1383 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1384 * hinting faults. 1385 */ 1386 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1387 1388 /* See also internal only FOLL flags in mm/internal.h */ 1389 }; 1390 1391 #endif /* _LINUX_MM_TYPES_H */ 1392