1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/list.h> 9 #include <linux/spinlock.h> 10 #include <linux/rbtree.h> 11 #include <linux/rwsem.h> 12 #include <linux/completion.h> 13 #include <linux/cpumask.h> 14 #include <linux/uprobes.h> 15 #include <linux/page-flags-layout.h> 16 #include <linux/workqueue.h> 17 18 #include <asm/mmu.h> 19 20 #ifndef AT_VECTOR_SIZE_ARCH 21 #define AT_VECTOR_SIZE_ARCH 0 22 #endif 23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 typedef int vm_fault_t; 26 27 struct address_space; 28 struct mem_cgroup; 29 struct hmm; 30 31 /* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * If you allocate the page using alloc_pages(), you can use some of the 39 * space in struct page for your own purposes. The five words in the main 40 * union are available, except for bit 0 of the first word which must be 41 * kept clear. Many users use this word to store a pointer to an object 42 * which is guaranteed to be aligned. If you use the same storage as 43 * page->mapping, you must restore it to NULL before freeing the page. 44 * 45 * If your page will not be mapped to userspace, you can also use the four 46 * bytes in the mapcount union, but you must call page_mapcount_reset() 47 * before freeing it. 48 * 49 * If you want to use the refcount field, it must be used in such a way 50 * that other CPUs temporarily incrementing and then decrementing the 51 * refcount does not cause problems. On receiving the page from 52 * alloc_pages(), the refcount will be positive. 53 * 54 * If you allocate pages of order > 0, you can use some of the fields 55 * in each subpage, but you may need to restore some of their values 56 * afterwards. 57 * 58 * SLUB uses cmpxchg_double() to atomically update its freelist and 59 * counters. That requires that freelist & counters be adjacent and 60 * double-word aligned. We align all struct pages to double-word 61 * boundaries, and ensure that 'freelist' is aligned within the 62 * struct. 63 */ 64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 65 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 66 #else 67 #define _struct_page_alignment 68 #endif 69 70 struct page { 71 unsigned long flags; /* Atomic flags, some possibly 72 * updated asynchronously */ 73 /* 74 * Five words (20/40 bytes) are available in this union. 75 * WARNING: bit 0 of the first word is used for PageTail(). That 76 * means the other users of this union MUST NOT use the bit to 77 * avoid collision and false-positive PageTail(). 78 */ 79 union { 80 struct { /* Page cache and anonymous pages */ 81 /** 82 * @lru: Pageout list, eg. active_list protected by 83 * zone_lru_lock. Sometimes used as a generic list 84 * by the page owner. 85 */ 86 struct list_head lru; 87 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 88 struct address_space *mapping; 89 pgoff_t index; /* Our offset within mapping. */ 90 /** 91 * @private: Mapping-private opaque data. 92 * Usually used for buffer_heads if PagePrivate. 93 * Used for swp_entry_t if PageSwapCache. 94 * Indicates order in the buddy system if PageBuddy. 95 */ 96 unsigned long private; 97 }; 98 struct { /* page_pool used by netstack */ 99 /** 100 * @dma_addr: might require a 64-bit value even on 101 * 32-bit architectures. 102 */ 103 dma_addr_t dma_addr; 104 }; 105 struct { /* slab, slob and slub */ 106 union { 107 struct list_head slab_list; /* uses lru */ 108 struct { /* Partial pages */ 109 struct page *next; 110 #ifdef CONFIG_64BIT 111 int pages; /* Nr of pages left */ 112 int pobjects; /* Approximate count */ 113 #else 114 short int pages; 115 short int pobjects; 116 #endif 117 }; 118 }; 119 struct kmem_cache *slab_cache; /* not slob */ 120 /* Double-word boundary */ 121 void *freelist; /* first free object */ 122 union { 123 void *s_mem; /* slab: first object */ 124 unsigned long counters; /* SLUB */ 125 struct { /* SLUB */ 126 unsigned inuse:16; 127 unsigned objects:15; 128 unsigned frozen:1; 129 }; 130 }; 131 }; 132 struct { /* Tail pages of compound page */ 133 unsigned long compound_head; /* Bit zero is set */ 134 135 /* First tail page only */ 136 unsigned char compound_dtor; 137 unsigned char compound_order; 138 atomic_t compound_mapcount; 139 }; 140 struct { /* Second tail page of compound page */ 141 unsigned long _compound_pad_1; /* compound_head */ 142 unsigned long _compound_pad_2; 143 struct list_head deferred_list; 144 }; 145 struct { /* Page table pages */ 146 unsigned long _pt_pad_1; /* compound_head */ 147 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 148 unsigned long _pt_pad_2; /* mapping */ 149 union { 150 struct mm_struct *pt_mm; /* x86 pgds only */ 151 atomic_t pt_frag_refcount; /* powerpc */ 152 }; 153 #if ALLOC_SPLIT_PTLOCKS 154 spinlock_t *ptl; 155 #else 156 spinlock_t ptl; 157 #endif 158 }; 159 struct { /* ZONE_DEVICE pages */ 160 /** @pgmap: Points to the hosting device page map. */ 161 struct dev_pagemap *pgmap; 162 unsigned long hmm_data; 163 unsigned long _zd_pad_1; /* uses mapping */ 164 }; 165 166 /** @rcu_head: You can use this to free a page by RCU. */ 167 struct rcu_head rcu_head; 168 }; 169 170 union { /* This union is 4 bytes in size. */ 171 /* 172 * If the page can be mapped to userspace, encodes the number 173 * of times this page is referenced by a page table. 174 */ 175 atomic_t _mapcount; 176 177 /* 178 * If the page is neither PageSlab nor mappable to userspace, 179 * the value stored here may help determine what this page 180 * is used for. See page-flags.h for a list of page types 181 * which are currently stored here. 182 */ 183 unsigned int page_type; 184 185 unsigned int active; /* SLAB */ 186 int units; /* SLOB */ 187 }; 188 189 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 190 atomic_t _refcount; 191 192 #ifdef CONFIG_MEMCG 193 struct mem_cgroup *mem_cgroup; 194 #endif 195 196 /* 197 * On machines where all RAM is mapped into kernel address space, 198 * we can simply calculate the virtual address. On machines with 199 * highmem some memory is mapped into kernel virtual memory 200 * dynamically, so we need a place to store that address. 201 * Note that this field could be 16 bits on x86 ... ;) 202 * 203 * Architectures with slow multiplication can define 204 * WANT_PAGE_VIRTUAL in asm/page.h 205 */ 206 #if defined(WANT_PAGE_VIRTUAL) 207 void *virtual; /* Kernel virtual address (NULL if 208 not kmapped, ie. highmem) */ 209 #endif /* WANT_PAGE_VIRTUAL */ 210 211 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 212 int _last_cpupid; 213 #endif 214 } _struct_page_alignment; 215 216 /* 217 * Used for sizing the vmemmap region on some architectures 218 */ 219 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 220 221 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 222 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 223 224 struct page_frag_cache { 225 void * va; 226 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 227 __u16 offset; 228 __u16 size; 229 #else 230 __u32 offset; 231 #endif 232 /* we maintain a pagecount bias, so that we dont dirty cache line 233 * containing page->_refcount every time we allocate a fragment. 234 */ 235 unsigned int pagecnt_bias; 236 bool pfmemalloc; 237 }; 238 239 typedef unsigned long vm_flags_t; 240 241 /* 242 * A region containing a mapping of a non-memory backed file under NOMMU 243 * conditions. These are held in a global tree and are pinned by the VMAs that 244 * map parts of them. 245 */ 246 struct vm_region { 247 struct rb_node vm_rb; /* link in global region tree */ 248 vm_flags_t vm_flags; /* VMA vm_flags */ 249 unsigned long vm_start; /* start address of region */ 250 unsigned long vm_end; /* region initialised to here */ 251 unsigned long vm_top; /* region allocated to here */ 252 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 253 struct file *vm_file; /* the backing file or NULL */ 254 255 int vm_usage; /* region usage count (access under nommu_region_sem) */ 256 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 257 * this region */ 258 }; 259 260 #ifdef CONFIG_USERFAULTFD 261 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 262 struct vm_userfaultfd_ctx { 263 struct userfaultfd_ctx *ctx; 264 }; 265 #else /* CONFIG_USERFAULTFD */ 266 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 267 struct vm_userfaultfd_ctx {}; 268 #endif /* CONFIG_USERFAULTFD */ 269 270 /* 271 * This struct defines a memory VMM memory area. There is one of these 272 * per VM-area/task. A VM area is any part of the process virtual memory 273 * space that has a special rule for the page-fault handlers (ie a shared 274 * library, the executable area etc). 275 */ 276 struct vm_area_struct { 277 /* The first cache line has the info for VMA tree walking. */ 278 279 unsigned long vm_start; /* Our start address within vm_mm. */ 280 unsigned long vm_end; /* The first byte after our end address 281 within vm_mm. */ 282 283 /* linked list of VM areas per task, sorted by address */ 284 struct vm_area_struct *vm_next, *vm_prev; 285 286 struct rb_node vm_rb; 287 288 /* 289 * Largest free memory gap in bytes to the left of this VMA. 290 * Either between this VMA and vma->vm_prev, or between one of the 291 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 292 * get_unmapped_area find a free area of the right size. 293 */ 294 unsigned long rb_subtree_gap; 295 296 /* Second cache line starts here. */ 297 298 struct mm_struct *vm_mm; /* The address space we belong to. */ 299 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 300 unsigned long vm_flags; /* Flags, see mm.h. */ 301 302 /* 303 * For areas with an address space and backing store, 304 * linkage into the address_space->i_mmap interval tree. 305 */ 306 struct { 307 struct rb_node rb; 308 unsigned long rb_subtree_last; 309 } shared; 310 311 /* 312 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 313 * list, after a COW of one of the file pages. A MAP_SHARED vma 314 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 315 * or brk vma (with NULL file) can only be in an anon_vma list. 316 */ 317 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 318 * page_table_lock */ 319 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 320 321 /* Function pointers to deal with this struct. */ 322 const struct vm_operations_struct *vm_ops; 323 324 /* Information about our backing store: */ 325 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 326 units */ 327 struct file * vm_file; /* File we map to (can be NULL). */ 328 void * vm_private_data; /* was vm_pte (shared mem) */ 329 330 atomic_long_t swap_readahead_info; 331 #ifndef CONFIG_MMU 332 struct vm_region *vm_region; /* NOMMU mapping region */ 333 #endif 334 #ifdef CONFIG_NUMA 335 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 336 #endif 337 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 338 } __randomize_layout; 339 340 struct core_thread { 341 struct task_struct *task; 342 struct core_thread *next; 343 }; 344 345 struct core_state { 346 atomic_t nr_threads; 347 struct core_thread dumper; 348 struct completion startup; 349 }; 350 351 struct kioctx_table; 352 struct mm_struct { 353 struct { 354 struct vm_area_struct *mmap; /* list of VMAs */ 355 struct rb_root mm_rb; 356 u64 vmacache_seqnum; /* per-thread vmacache */ 357 #ifdef CONFIG_MMU 358 unsigned long (*get_unmapped_area) (struct file *filp, 359 unsigned long addr, unsigned long len, 360 unsigned long pgoff, unsigned long flags); 361 #endif 362 unsigned long mmap_base; /* base of mmap area */ 363 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 364 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 365 /* Base adresses for compatible mmap() */ 366 unsigned long mmap_compat_base; 367 unsigned long mmap_compat_legacy_base; 368 #endif 369 unsigned long task_size; /* size of task vm space */ 370 unsigned long highest_vm_end; /* highest vma end address */ 371 pgd_t * pgd; 372 373 /** 374 * @mm_users: The number of users including userspace. 375 * 376 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 377 * drops to 0 (i.e. when the task exits and there are no other 378 * temporary reference holders), we also release a reference on 379 * @mm_count (which may then free the &struct mm_struct if 380 * @mm_count also drops to 0). 381 */ 382 atomic_t mm_users; 383 384 /** 385 * @mm_count: The number of references to &struct mm_struct 386 * (@mm_users count as 1). 387 * 388 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 389 * &struct mm_struct is freed. 390 */ 391 atomic_t mm_count; 392 393 #ifdef CONFIG_MMU 394 atomic_long_t pgtables_bytes; /* PTE page table pages */ 395 #endif 396 int map_count; /* number of VMAs */ 397 398 spinlock_t page_table_lock; /* Protects page tables and some 399 * counters 400 */ 401 struct rw_semaphore mmap_sem; 402 403 struct list_head mmlist; /* List of maybe swapped mm's. These 404 * are globally strung together off 405 * init_mm.mmlist, and are protected 406 * by mmlist_lock 407 */ 408 409 410 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 411 unsigned long hiwater_vm; /* High-water virtual memory usage */ 412 413 unsigned long total_vm; /* Total pages mapped */ 414 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 415 unsigned long pinned_vm; /* Refcount permanently increased */ 416 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 417 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 418 unsigned long stack_vm; /* VM_STACK */ 419 unsigned long def_flags; 420 421 spinlock_t arg_lock; /* protect the below fields */ 422 unsigned long start_code, end_code, start_data, end_data; 423 unsigned long start_brk, brk, start_stack; 424 unsigned long arg_start, arg_end, env_start, env_end; 425 426 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 427 428 /* 429 * Special counters, in some configurations protected by the 430 * page_table_lock, in other configurations by being atomic. 431 */ 432 struct mm_rss_stat rss_stat; 433 434 struct linux_binfmt *binfmt; 435 436 /* Architecture-specific MM context */ 437 mm_context_t context; 438 439 unsigned long flags; /* Must use atomic bitops to access */ 440 441 struct core_state *core_state; /* coredumping support */ 442 #ifdef CONFIG_MEMBARRIER 443 atomic_t membarrier_state; 444 #endif 445 #ifdef CONFIG_AIO 446 spinlock_t ioctx_lock; 447 struct kioctx_table __rcu *ioctx_table; 448 #endif 449 #ifdef CONFIG_MEMCG 450 /* 451 * "owner" points to a task that is regarded as the canonical 452 * user/owner of this mm. All of the following must be true in 453 * order for it to be changed: 454 * 455 * current == mm->owner 456 * current->mm != mm 457 * new_owner->mm == mm 458 * new_owner->alloc_lock is held 459 */ 460 struct task_struct __rcu *owner; 461 #endif 462 struct user_namespace *user_ns; 463 464 /* store ref to file /proc/<pid>/exe symlink points to */ 465 struct file __rcu *exe_file; 466 #ifdef CONFIG_MMU_NOTIFIER 467 struct mmu_notifier_mm *mmu_notifier_mm; 468 #endif 469 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 470 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 471 #endif 472 #ifdef CONFIG_NUMA_BALANCING 473 /* 474 * numa_next_scan is the next time that the PTEs will be marked 475 * pte_numa. NUMA hinting faults will gather statistics and 476 * migrate pages to new nodes if necessary. 477 */ 478 unsigned long numa_next_scan; 479 480 /* Restart point for scanning and setting pte_numa */ 481 unsigned long numa_scan_offset; 482 483 /* numa_scan_seq prevents two threads setting pte_numa */ 484 int numa_scan_seq; 485 #endif 486 /* 487 * An operation with batched TLB flushing is going on. Anything 488 * that can move process memory needs to flush the TLB when 489 * moving a PROT_NONE or PROT_NUMA mapped page. 490 */ 491 atomic_t tlb_flush_pending; 492 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 493 /* See flush_tlb_batched_pending() */ 494 bool tlb_flush_batched; 495 #endif 496 struct uprobes_state uprobes_state; 497 #ifdef CONFIG_HUGETLB_PAGE 498 atomic_long_t hugetlb_usage; 499 #endif 500 struct work_struct async_put_work; 501 502 #if IS_ENABLED(CONFIG_HMM) 503 /* HMM needs to track a few things per mm */ 504 struct hmm *hmm; 505 #endif 506 } __randomize_layout; 507 508 /* 509 * The mm_cpumask needs to be at the end of mm_struct, because it 510 * is dynamically sized based on nr_cpu_ids. 511 */ 512 unsigned long cpu_bitmap[]; 513 }; 514 515 extern struct mm_struct init_mm; 516 517 /* Pointer magic because the dynamic array size confuses some compilers. */ 518 static inline void mm_init_cpumask(struct mm_struct *mm) 519 { 520 unsigned long cpu_bitmap = (unsigned long)mm; 521 522 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 523 cpumask_clear((struct cpumask *)cpu_bitmap); 524 } 525 526 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 527 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 528 { 529 return (struct cpumask *)&mm->cpu_bitmap; 530 } 531 532 struct mmu_gather; 533 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 534 unsigned long start, unsigned long end); 535 extern void tlb_finish_mmu(struct mmu_gather *tlb, 536 unsigned long start, unsigned long end); 537 538 static inline void init_tlb_flush_pending(struct mm_struct *mm) 539 { 540 atomic_set(&mm->tlb_flush_pending, 0); 541 } 542 543 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 544 { 545 atomic_inc(&mm->tlb_flush_pending); 546 /* 547 * The only time this value is relevant is when there are indeed pages 548 * to flush. And we'll only flush pages after changing them, which 549 * requires the PTL. 550 * 551 * So the ordering here is: 552 * 553 * atomic_inc(&mm->tlb_flush_pending); 554 * spin_lock(&ptl); 555 * ... 556 * set_pte_at(); 557 * spin_unlock(&ptl); 558 * 559 * spin_lock(&ptl) 560 * mm_tlb_flush_pending(); 561 * .... 562 * spin_unlock(&ptl); 563 * 564 * flush_tlb_range(); 565 * atomic_dec(&mm->tlb_flush_pending); 566 * 567 * Where the increment if constrained by the PTL unlock, it thus 568 * ensures that the increment is visible if the PTE modification is 569 * visible. After all, if there is no PTE modification, nobody cares 570 * about TLB flushes either. 571 * 572 * This very much relies on users (mm_tlb_flush_pending() and 573 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 574 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 575 * locks (PPC) the unlock of one doesn't order against the lock of 576 * another PTL. 577 * 578 * The decrement is ordered by the flush_tlb_range(), such that 579 * mm_tlb_flush_pending() will not return false unless all flushes have 580 * completed. 581 */ 582 } 583 584 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 585 { 586 /* 587 * See inc_tlb_flush_pending(). 588 * 589 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 590 * not order against TLB invalidate completion, which is what we need. 591 * 592 * Therefore we must rely on tlb_flush_*() to guarantee order. 593 */ 594 atomic_dec(&mm->tlb_flush_pending); 595 } 596 597 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 598 { 599 /* 600 * Must be called after having acquired the PTL; orders against that 601 * PTLs release and therefore ensures that if we observe the modified 602 * PTE we must also observe the increment from inc_tlb_flush_pending(). 603 * 604 * That is, it only guarantees to return true if there is a flush 605 * pending for _this_ PTL. 606 */ 607 return atomic_read(&mm->tlb_flush_pending); 608 } 609 610 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 611 { 612 /* 613 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 614 * for which there is a TLB flush pending in order to guarantee 615 * we've seen both that PTE modification and the increment. 616 * 617 * (no requirement on actually still holding the PTL, that is irrelevant) 618 */ 619 return atomic_read(&mm->tlb_flush_pending) > 1; 620 } 621 622 struct vm_fault; 623 624 struct vm_special_mapping { 625 const char *name; /* The name, e.g. "[vdso]". */ 626 627 /* 628 * If .fault is not provided, this points to a 629 * NULL-terminated array of pages that back the special mapping. 630 * 631 * This must not be NULL unless .fault is provided. 632 */ 633 struct page **pages; 634 635 /* 636 * If non-NULL, then this is called to resolve page faults 637 * on the special mapping. If used, .pages is not checked. 638 */ 639 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 640 struct vm_area_struct *vma, 641 struct vm_fault *vmf); 642 643 int (*mremap)(const struct vm_special_mapping *sm, 644 struct vm_area_struct *new_vma); 645 }; 646 647 enum tlb_flush_reason { 648 TLB_FLUSH_ON_TASK_SWITCH, 649 TLB_REMOTE_SHOOTDOWN, 650 TLB_LOCAL_SHOOTDOWN, 651 TLB_LOCAL_MM_SHOOTDOWN, 652 TLB_REMOTE_SEND_IPI, 653 NR_TLB_FLUSH_REASONS, 654 }; 655 656 /* 657 * A swap entry has to fit into a "unsigned long", as the entry is hidden 658 * in the "index" field of the swapper address space. 659 */ 660 typedef struct { 661 unsigned long val; 662 } swp_entry_t; 663 664 #endif /* _LINUX_MM_TYPES_H */ 665