xref: /linux-6.15/include/linux/mm_types.h (revision bbb03029)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/mm_types_task.h>
5 
6 #include <linux/auxvec.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <linux/workqueue.h>
16 
17 #include <asm/mmu.h>
18 
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 
24 struct address_space;
25 struct mem_cgroup;
26 
27 /*
28  * Each physical page in the system has a struct page associated with
29  * it to keep track of whatever it is we are using the page for at the
30  * moment. Note that we have no way to track which tasks are using
31  * a page, though if it is a pagecache page, rmap structures can tell us
32  * who is mapping it.
33  *
34  * The objects in struct page are organized in double word blocks in
35  * order to allows us to use atomic double word operations on portions
36  * of struct page. That is currently only used by slub but the arrangement
37  * allows the use of atomic double word operations on the flags/mapping
38  * and lru list pointers also.
39  */
40 struct page {
41 	/* First double word block */
42 	unsigned long flags;		/* Atomic flags, some possibly
43 					 * updated asynchronously */
44 	union {
45 		struct address_space *mapping;	/* If low bit clear, points to
46 						 * inode address_space, or NULL.
47 						 * If page mapped as anonymous
48 						 * memory, low bit is set, and
49 						 * it points to anon_vma object:
50 						 * see PAGE_MAPPING_ANON below.
51 						 */
52 		void *s_mem;			/* slab first object */
53 		atomic_t compound_mapcount;	/* first tail page */
54 		/* page_deferred_list().next	 -- second tail page */
55 	};
56 
57 	/* Second double word */
58 	union {
59 		pgoff_t index;		/* Our offset within mapping. */
60 		void *freelist;		/* sl[aou]b first free object */
61 		/* page_deferred_list().prev	-- second tail page */
62 	};
63 
64 	union {
65 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
66 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
67 		/* Used for cmpxchg_double in slub */
68 		unsigned long counters;
69 #else
70 		/*
71 		 * Keep _refcount separate from slub cmpxchg_double data.
72 		 * As the rest of the double word is protected by slab_lock
73 		 * but _refcount is not.
74 		 */
75 		unsigned counters;
76 #endif
77 		struct {
78 
79 			union {
80 				/*
81 				 * Count of ptes mapped in mms, to show when
82 				 * page is mapped & limit reverse map searches.
83 				 *
84 				 * Extra information about page type may be
85 				 * stored here for pages that are never mapped,
86 				 * in which case the value MUST BE <= -2.
87 				 * See page-flags.h for more details.
88 				 */
89 				atomic_t _mapcount;
90 
91 				unsigned int active;		/* SLAB */
92 				struct {			/* SLUB */
93 					unsigned inuse:16;
94 					unsigned objects:15;
95 					unsigned frozen:1;
96 				};
97 				int units;			/* SLOB */
98 			};
99 			/*
100 			 * Usage count, *USE WRAPPER FUNCTION* when manual
101 			 * accounting. See page_ref.h
102 			 */
103 			atomic_t _refcount;
104 		};
105 	};
106 
107 	/*
108 	 * Third double word block
109 	 *
110 	 * WARNING: bit 0 of the first word encode PageTail(). That means
111 	 * the rest users of the storage space MUST NOT use the bit to
112 	 * avoid collision and false-positive PageTail().
113 	 */
114 	union {
115 		struct list_head lru;	/* Pageout list, eg. active_list
116 					 * protected by zone_lru_lock !
117 					 * Can be used as a generic list
118 					 * by the page owner.
119 					 */
120 		struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
121 					    * lru or handled by a slab
122 					    * allocator, this points to the
123 					    * hosting device page map.
124 					    */
125 		struct {		/* slub per cpu partial pages */
126 			struct page *next;	/* Next partial slab */
127 #ifdef CONFIG_64BIT
128 			int pages;	/* Nr of partial slabs left */
129 			int pobjects;	/* Approximate # of objects */
130 #else
131 			short int pages;
132 			short int pobjects;
133 #endif
134 		};
135 
136 		struct rcu_head rcu_head;	/* Used by SLAB
137 						 * when destroying via RCU
138 						 */
139 		/* Tail pages of compound page */
140 		struct {
141 			unsigned long compound_head; /* If bit zero is set */
142 
143 			/* First tail page only */
144 #ifdef CONFIG_64BIT
145 			/*
146 			 * On 64 bit system we have enough space in struct page
147 			 * to encode compound_dtor and compound_order with
148 			 * unsigned int. It can help compiler generate better or
149 			 * smaller code on some archtectures.
150 			 */
151 			unsigned int compound_dtor;
152 			unsigned int compound_order;
153 #else
154 			unsigned short int compound_dtor;
155 			unsigned short int compound_order;
156 #endif
157 		};
158 
159 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
160 		struct {
161 			unsigned long __pad;	/* do not overlay pmd_huge_pte
162 						 * with compound_head to avoid
163 						 * possible bit 0 collision.
164 						 */
165 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
166 		};
167 #endif
168 	};
169 
170 	/* Remainder is not double word aligned */
171 	union {
172 		unsigned long private;		/* Mapping-private opaque data:
173 					 	 * usually used for buffer_heads
174 						 * if PagePrivate set; used for
175 						 * swp_entry_t if PageSwapCache;
176 						 * indicates order in the buddy
177 						 * system if PG_buddy is set.
178 						 */
179 #if USE_SPLIT_PTE_PTLOCKS
180 #if ALLOC_SPLIT_PTLOCKS
181 		spinlock_t *ptl;
182 #else
183 		spinlock_t ptl;
184 #endif
185 #endif
186 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
187 	};
188 
189 #ifdef CONFIG_MEMCG
190 	struct mem_cgroup *mem_cgroup;
191 #endif
192 
193 	/*
194 	 * On machines where all RAM is mapped into kernel address space,
195 	 * we can simply calculate the virtual address. On machines with
196 	 * highmem some memory is mapped into kernel virtual memory
197 	 * dynamically, so we need a place to store that address.
198 	 * Note that this field could be 16 bits on x86 ... ;)
199 	 *
200 	 * Architectures with slow multiplication can define
201 	 * WANT_PAGE_VIRTUAL in asm/page.h
202 	 */
203 #if defined(WANT_PAGE_VIRTUAL)
204 	void *virtual;			/* Kernel virtual address (NULL if
205 					   not kmapped, ie. highmem) */
206 #endif /* WANT_PAGE_VIRTUAL */
207 
208 #ifdef CONFIG_KMEMCHECK
209 	/*
210 	 * kmemcheck wants to track the status of each byte in a page; this
211 	 * is a pointer to such a status block. NULL if not tracked.
212 	 */
213 	void *shadow;
214 #endif
215 
216 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
217 	int _last_cpupid;
218 #endif
219 }
220 /*
221  * The struct page can be forced to be double word aligned so that atomic ops
222  * on double words work. The SLUB allocator can make use of such a feature.
223  */
224 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
225 	__aligned(2 * sizeof(unsigned long))
226 #endif
227 ;
228 
229 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
230 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
231 
232 struct page_frag_cache {
233 	void * va;
234 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
235 	__u16 offset;
236 	__u16 size;
237 #else
238 	__u32 offset;
239 #endif
240 	/* we maintain a pagecount bias, so that we dont dirty cache line
241 	 * containing page->_refcount every time we allocate a fragment.
242 	 */
243 	unsigned int		pagecnt_bias;
244 	bool pfmemalloc;
245 };
246 
247 typedef unsigned long vm_flags_t;
248 
249 /*
250  * A region containing a mapping of a non-memory backed file under NOMMU
251  * conditions.  These are held in a global tree and are pinned by the VMAs that
252  * map parts of them.
253  */
254 struct vm_region {
255 	struct rb_node	vm_rb;		/* link in global region tree */
256 	vm_flags_t	vm_flags;	/* VMA vm_flags */
257 	unsigned long	vm_start;	/* start address of region */
258 	unsigned long	vm_end;		/* region initialised to here */
259 	unsigned long	vm_top;		/* region allocated to here */
260 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
261 	struct file	*vm_file;	/* the backing file or NULL */
262 
263 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
264 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
265 						* this region */
266 };
267 
268 #ifdef CONFIG_USERFAULTFD
269 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
270 struct vm_userfaultfd_ctx {
271 	struct userfaultfd_ctx *ctx;
272 };
273 #else /* CONFIG_USERFAULTFD */
274 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
275 struct vm_userfaultfd_ctx {};
276 #endif /* CONFIG_USERFAULTFD */
277 
278 /*
279  * This struct defines a memory VMM memory area. There is one of these
280  * per VM-area/task.  A VM area is any part of the process virtual memory
281  * space that has a special rule for the page-fault handlers (ie a shared
282  * library, the executable area etc).
283  */
284 struct vm_area_struct {
285 	/* The first cache line has the info for VMA tree walking. */
286 
287 	unsigned long vm_start;		/* Our start address within vm_mm. */
288 	unsigned long vm_end;		/* The first byte after our end address
289 					   within vm_mm. */
290 
291 	/* linked list of VM areas per task, sorted by address */
292 	struct vm_area_struct *vm_next, *vm_prev;
293 
294 	struct rb_node vm_rb;
295 
296 	/*
297 	 * Largest free memory gap in bytes to the left of this VMA.
298 	 * Either between this VMA and vma->vm_prev, or between one of the
299 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
300 	 * get_unmapped_area find a free area of the right size.
301 	 */
302 	unsigned long rb_subtree_gap;
303 
304 	/* Second cache line starts here. */
305 
306 	struct mm_struct *vm_mm;	/* The address space we belong to. */
307 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
308 	unsigned long vm_flags;		/* Flags, see mm.h. */
309 
310 	/*
311 	 * For areas with an address space and backing store,
312 	 * linkage into the address_space->i_mmap interval tree.
313 	 */
314 	struct {
315 		struct rb_node rb;
316 		unsigned long rb_subtree_last;
317 	} shared;
318 
319 	/*
320 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
321 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
322 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
323 	 * or brk vma (with NULL file) can only be in an anon_vma list.
324 	 */
325 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
326 					  * page_table_lock */
327 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
328 
329 	/* Function pointers to deal with this struct. */
330 	const struct vm_operations_struct *vm_ops;
331 
332 	/* Information about our backing store: */
333 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
334 					   units */
335 	struct file * vm_file;		/* File we map to (can be NULL). */
336 	void * vm_private_data;		/* was vm_pte (shared mem) */
337 
338 #ifndef CONFIG_MMU
339 	struct vm_region *vm_region;	/* NOMMU mapping region */
340 #endif
341 #ifdef CONFIG_NUMA
342 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
343 #endif
344 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
345 } __randomize_layout;
346 
347 struct core_thread {
348 	struct task_struct *task;
349 	struct core_thread *next;
350 };
351 
352 struct core_state {
353 	atomic_t nr_threads;
354 	struct core_thread dumper;
355 	struct completion startup;
356 };
357 
358 struct kioctx_table;
359 struct mm_struct {
360 	struct vm_area_struct *mmap;		/* list of VMAs */
361 	struct rb_root mm_rb;
362 	u32 vmacache_seqnum;                   /* per-thread vmacache */
363 #ifdef CONFIG_MMU
364 	unsigned long (*get_unmapped_area) (struct file *filp,
365 				unsigned long addr, unsigned long len,
366 				unsigned long pgoff, unsigned long flags);
367 #endif
368 	unsigned long mmap_base;		/* base of mmap area */
369 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
370 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
371 	/* Base adresses for compatible mmap() */
372 	unsigned long mmap_compat_base;
373 	unsigned long mmap_compat_legacy_base;
374 #endif
375 	unsigned long task_size;		/* size of task vm space */
376 	unsigned long highest_vm_end;		/* highest vma end address */
377 	pgd_t * pgd;
378 
379 	/**
380 	 * @mm_users: The number of users including userspace.
381 	 *
382 	 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
383 	 * to 0 (i.e. when the task exits and there are no other temporary
384 	 * reference holders), we also release a reference on @mm_count
385 	 * (which may then free the &struct mm_struct if @mm_count also
386 	 * drops to 0).
387 	 */
388 	atomic_t mm_users;
389 
390 	/**
391 	 * @mm_count: The number of references to &struct mm_struct
392 	 * (@mm_users count as 1).
393 	 *
394 	 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
395 	 * &struct mm_struct is freed.
396 	 */
397 	atomic_t mm_count;
398 
399 	atomic_long_t nr_ptes;			/* PTE page table pages */
400 #if CONFIG_PGTABLE_LEVELS > 2
401 	atomic_long_t nr_pmds;			/* PMD page table pages */
402 #endif
403 	int map_count;				/* number of VMAs */
404 
405 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
406 	struct rw_semaphore mmap_sem;
407 
408 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
409 						 * together off init_mm.mmlist, and are protected
410 						 * by mmlist_lock
411 						 */
412 
413 
414 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
415 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
416 
417 	unsigned long total_vm;		/* Total pages mapped */
418 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
419 	unsigned long pinned_vm;	/* Refcount permanently increased */
420 	unsigned long data_vm;		/* VM_WRITE & ~VM_SHARED & ~VM_STACK */
421 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE & ~VM_STACK */
422 	unsigned long stack_vm;		/* VM_STACK */
423 	unsigned long def_flags;
424 	unsigned long start_code, end_code, start_data, end_data;
425 	unsigned long start_brk, brk, start_stack;
426 	unsigned long arg_start, arg_end, env_start, env_end;
427 
428 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
429 
430 	/*
431 	 * Special counters, in some configurations protected by the
432 	 * page_table_lock, in other configurations by being atomic.
433 	 */
434 	struct mm_rss_stat rss_stat;
435 
436 	struct linux_binfmt *binfmt;
437 
438 	cpumask_var_t cpu_vm_mask_var;
439 
440 	/* Architecture-specific MM context */
441 	mm_context_t context;
442 
443 	unsigned long flags; /* Must use atomic bitops to access the bits */
444 
445 	struct core_state *core_state; /* coredumping support */
446 #ifdef CONFIG_AIO
447 	spinlock_t			ioctx_lock;
448 	struct kioctx_table __rcu	*ioctx_table;
449 #endif
450 #ifdef CONFIG_MEMCG
451 	/*
452 	 * "owner" points to a task that is regarded as the canonical
453 	 * user/owner of this mm. All of the following must be true in
454 	 * order for it to be changed:
455 	 *
456 	 * current == mm->owner
457 	 * current->mm != mm
458 	 * new_owner->mm == mm
459 	 * new_owner->alloc_lock is held
460 	 */
461 	struct task_struct __rcu *owner;
462 #endif
463 	struct user_namespace *user_ns;
464 
465 	/* store ref to file /proc/<pid>/exe symlink points to */
466 	struct file __rcu *exe_file;
467 #ifdef CONFIG_MMU_NOTIFIER
468 	struct mmu_notifier_mm *mmu_notifier_mm;
469 #endif
470 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
471 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
472 #endif
473 #ifdef CONFIG_CPUMASK_OFFSTACK
474 	struct cpumask cpumask_allocation;
475 #endif
476 #ifdef CONFIG_NUMA_BALANCING
477 	/*
478 	 * numa_next_scan is the next time that the PTEs will be marked
479 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
480 	 * pages to new nodes if necessary.
481 	 */
482 	unsigned long numa_next_scan;
483 
484 	/* Restart point for scanning and setting pte_numa */
485 	unsigned long numa_scan_offset;
486 
487 	/* numa_scan_seq prevents two threads setting pte_numa */
488 	int numa_scan_seq;
489 #endif
490 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
491 	/*
492 	 * An operation with batched TLB flushing is going on. Anything that
493 	 * can move process memory needs to flush the TLB when moving a
494 	 * PROT_NONE or PROT_NUMA mapped page.
495 	 */
496 	bool tlb_flush_pending;
497 #endif
498 	struct uprobes_state uprobes_state;
499 #ifdef CONFIG_HUGETLB_PAGE
500 	atomic_long_t hugetlb_usage;
501 #endif
502 	struct work_struct async_put_work;
503 } __randomize_layout;
504 
505 extern struct mm_struct init_mm;
506 
507 static inline void mm_init_cpumask(struct mm_struct *mm)
508 {
509 #ifdef CONFIG_CPUMASK_OFFSTACK
510 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
511 #endif
512 	cpumask_clear(mm->cpu_vm_mask_var);
513 }
514 
515 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
516 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
517 {
518 	return mm->cpu_vm_mask_var;
519 }
520 
521 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
522 /*
523  * Memory barriers to keep this state in sync are graciously provided by
524  * the page table locks, outside of which no page table modifications happen.
525  * The barriers below prevent the compiler from re-ordering the instructions
526  * around the memory barriers that are already present in the code.
527  */
528 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
529 {
530 	barrier();
531 	return mm->tlb_flush_pending;
532 }
533 static inline void set_tlb_flush_pending(struct mm_struct *mm)
534 {
535 	mm->tlb_flush_pending = true;
536 
537 	/*
538 	 * Guarantee that the tlb_flush_pending store does not leak into the
539 	 * critical section updating the page tables
540 	 */
541 	smp_mb__before_spinlock();
542 }
543 /* Clearing is done after a TLB flush, which also provides a barrier. */
544 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
545 {
546 	barrier();
547 	mm->tlb_flush_pending = false;
548 }
549 #else
550 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
551 {
552 	return false;
553 }
554 static inline void set_tlb_flush_pending(struct mm_struct *mm)
555 {
556 }
557 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
558 {
559 }
560 #endif
561 
562 struct vm_fault;
563 
564 struct vm_special_mapping {
565 	const char *name;	/* The name, e.g. "[vdso]". */
566 
567 	/*
568 	 * If .fault is not provided, this points to a
569 	 * NULL-terminated array of pages that back the special mapping.
570 	 *
571 	 * This must not be NULL unless .fault is provided.
572 	 */
573 	struct page **pages;
574 
575 	/*
576 	 * If non-NULL, then this is called to resolve page faults
577 	 * on the special mapping.  If used, .pages is not checked.
578 	 */
579 	int (*fault)(const struct vm_special_mapping *sm,
580 		     struct vm_area_struct *vma,
581 		     struct vm_fault *vmf);
582 
583 	int (*mremap)(const struct vm_special_mapping *sm,
584 		     struct vm_area_struct *new_vma);
585 };
586 
587 enum tlb_flush_reason {
588 	TLB_FLUSH_ON_TASK_SWITCH,
589 	TLB_REMOTE_SHOOTDOWN,
590 	TLB_LOCAL_SHOOTDOWN,
591 	TLB_LOCAL_MM_SHOOTDOWN,
592 	TLB_REMOTE_SEND_IPI,
593 	NR_TLB_FLUSH_REASONS,
594 };
595 
596  /*
597   * A swap entry has to fit into a "unsigned long", as the entry is hidden
598   * in the "index" field of the swapper address space.
599   */
600 typedef struct {
601 	unsigned long val;
602 } swp_entry_t;
603 
604 #endif /* _LINUX_MM_TYPES_H */
605