xref: /linux-6.15/include/linux/mm_types.h (revision bb66fc67)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/page-debug-flags.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 
24 struct address_space;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * The objects in struct page are organized in double word blocks in
39  * order to allows us to use atomic double word operations on portions
40  * of struct page. That is currently only used by slub but the arrangement
41  * allows the use of atomic double word operations on the flags/mapping
42  * and lru list pointers also.
43  */
44 struct page {
45 	/* First double word block */
46 	unsigned long flags;		/* Atomic flags, some possibly
47 					 * updated asynchronously */
48 	union {
49 		struct address_space *mapping;	/* If low bit clear, points to
50 						 * inode address_space, or NULL.
51 						 * If page mapped as anonymous
52 						 * memory, low bit is set, and
53 						 * it points to anon_vma object:
54 						 * see PAGE_MAPPING_ANON below.
55 						 */
56 		void *s_mem;			/* slab first object */
57 	};
58 
59 	/* Second double word */
60 	struct {
61 		union {
62 			pgoff_t index;		/* Our offset within mapping. */
63 			void *freelist;		/* sl[aou]b first free object */
64 			bool pfmemalloc;	/* If set by the page allocator,
65 						 * ALLOC_NO_WATERMARKS was set
66 						 * and the low watermark was not
67 						 * met implying that the system
68 						 * is under some pressure. The
69 						 * caller should try ensure
70 						 * this page is only used to
71 						 * free other pages.
72 						 */
73 		};
74 
75 		union {
76 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
77 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
78 			/* Used for cmpxchg_double in slub */
79 			unsigned long counters;
80 #else
81 			/*
82 			 * Keep _count separate from slub cmpxchg_double data.
83 			 * As the rest of the double word is protected by
84 			 * slab_lock but _count is not.
85 			 */
86 			unsigned counters;
87 #endif
88 
89 			struct {
90 
91 				union {
92 					/*
93 					 * Count of ptes mapped in
94 					 * mms, to show when page is
95 					 * mapped & limit reverse map
96 					 * searches.
97 					 *
98 					 * Used also for tail pages
99 					 * refcounting instead of
100 					 * _count. Tail pages cannot
101 					 * be mapped and keeping the
102 					 * tail page _count zero at
103 					 * all times guarantees
104 					 * get_page_unless_zero() will
105 					 * never succeed on tail
106 					 * pages.
107 					 */
108 					atomic_t _mapcount;
109 
110 					struct { /* SLUB */
111 						unsigned inuse:16;
112 						unsigned objects:15;
113 						unsigned frozen:1;
114 					};
115 					int units;	/* SLOB */
116 				};
117 				atomic_t _count;		/* Usage count, see below. */
118 			};
119 			unsigned int active;	/* SLAB */
120 		};
121 	};
122 
123 	/* Third double word block */
124 	union {
125 		struct list_head lru;	/* Pageout list, eg. active_list
126 					 * protected by zone->lru_lock !
127 					 * Can be used as a generic list
128 					 * by the page owner.
129 					 */
130 		struct {		/* slub per cpu partial pages */
131 			struct page *next;	/* Next partial slab */
132 #ifdef CONFIG_64BIT
133 			int pages;	/* Nr of partial slabs left */
134 			int pobjects;	/* Approximate # of objects */
135 #else
136 			short int pages;
137 			short int pobjects;
138 #endif
139 		};
140 
141 		struct slab *slab_page; /* slab fields */
142 		struct rcu_head rcu_head;	/* Used by SLAB
143 						 * when destroying via RCU
144 						 */
145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
146 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 #endif
148 	};
149 
150 	/* Remainder is not double word aligned */
151 	union {
152 		unsigned long private;		/* Mapping-private opaque data:
153 					 	 * usually used for buffer_heads
154 						 * if PagePrivate set; used for
155 						 * swp_entry_t if PageSwapCache;
156 						 * indicates order in the buddy
157 						 * system if PG_buddy is set.
158 						 */
159 #if USE_SPLIT_PTE_PTLOCKS
160 #if ALLOC_SPLIT_PTLOCKS
161 		spinlock_t *ptl;
162 #else
163 		spinlock_t ptl;
164 #endif
165 #endif
166 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
167 		struct page *first_page;	/* Compound tail pages */
168 	};
169 
170 	/*
171 	 * On machines where all RAM is mapped into kernel address space,
172 	 * we can simply calculate the virtual address. On machines with
173 	 * highmem some memory is mapped into kernel virtual memory
174 	 * dynamically, so we need a place to store that address.
175 	 * Note that this field could be 16 bits on x86 ... ;)
176 	 *
177 	 * Architectures with slow multiplication can define
178 	 * WANT_PAGE_VIRTUAL in asm/page.h
179 	 */
180 #if defined(WANT_PAGE_VIRTUAL)
181 	void *virtual;			/* Kernel virtual address (NULL if
182 					   not kmapped, ie. highmem) */
183 #endif /* WANT_PAGE_VIRTUAL */
184 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
185 	unsigned long debug_flags;	/* Use atomic bitops on this */
186 #endif
187 
188 #ifdef CONFIG_KMEMCHECK
189 	/*
190 	 * kmemcheck wants to track the status of each byte in a page; this
191 	 * is a pointer to such a status block. NULL if not tracked.
192 	 */
193 	void *shadow;
194 #endif
195 
196 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
197 	int _last_cpupid;
198 #endif
199 }
200 /*
201  * The struct page can be forced to be double word aligned so that atomic ops
202  * on double words work. The SLUB allocator can make use of such a feature.
203  */
204 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
205 	__aligned(2 * sizeof(unsigned long))
206 #endif
207 ;
208 
209 struct page_frag {
210 	struct page *page;
211 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
212 	__u32 offset;
213 	__u32 size;
214 #else
215 	__u16 offset;
216 	__u16 size;
217 #endif
218 };
219 
220 typedef unsigned long __nocast vm_flags_t;
221 
222 /*
223  * A region containing a mapping of a non-memory backed file under NOMMU
224  * conditions.  These are held in a global tree and are pinned by the VMAs that
225  * map parts of them.
226  */
227 struct vm_region {
228 	struct rb_node	vm_rb;		/* link in global region tree */
229 	vm_flags_t	vm_flags;	/* VMA vm_flags */
230 	unsigned long	vm_start;	/* start address of region */
231 	unsigned long	vm_end;		/* region initialised to here */
232 	unsigned long	vm_top;		/* region allocated to here */
233 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
234 	struct file	*vm_file;	/* the backing file or NULL */
235 
236 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
237 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
238 						* this region */
239 };
240 
241 /*
242  * This struct defines a memory VMM memory area. There is one of these
243  * per VM-area/task.  A VM area is any part of the process virtual memory
244  * space that has a special rule for the page-fault handlers (ie a shared
245  * library, the executable area etc).
246  */
247 struct vm_area_struct {
248 	/* The first cache line has the info for VMA tree walking. */
249 
250 	unsigned long vm_start;		/* Our start address within vm_mm. */
251 	unsigned long vm_end;		/* The first byte after our end address
252 					   within vm_mm. */
253 
254 	/* linked list of VM areas per task, sorted by address */
255 	struct vm_area_struct *vm_next, *vm_prev;
256 
257 	struct rb_node vm_rb;
258 
259 	/*
260 	 * Largest free memory gap in bytes to the left of this VMA.
261 	 * Either between this VMA and vma->vm_prev, or between one of the
262 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
263 	 * get_unmapped_area find a free area of the right size.
264 	 */
265 	unsigned long rb_subtree_gap;
266 
267 	/* Second cache line starts here. */
268 
269 	struct mm_struct *vm_mm;	/* The address space we belong to. */
270 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
271 	unsigned long vm_flags;		/* Flags, see mm.h. */
272 
273 	/*
274 	 * For areas with an address space and backing store,
275 	 * linkage into the address_space->i_mmap interval tree, or
276 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
277 	 */
278 	union {
279 		struct {
280 			struct rb_node rb;
281 			unsigned long rb_subtree_last;
282 		} linear;
283 		struct list_head nonlinear;
284 	} shared;
285 
286 	/*
287 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
288 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
289 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
290 	 * or brk vma (with NULL file) can only be in an anon_vma list.
291 	 */
292 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
293 					  * page_table_lock */
294 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
295 
296 	/* Function pointers to deal with this struct. */
297 	const struct vm_operations_struct *vm_ops;
298 
299 	/* Information about our backing store: */
300 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
301 					   units, *not* PAGE_CACHE_SIZE */
302 	struct file * vm_file;		/* File we map to (can be NULL). */
303 	void * vm_private_data;		/* was vm_pte (shared mem) */
304 
305 #ifndef CONFIG_MMU
306 	struct vm_region *vm_region;	/* NOMMU mapping region */
307 #endif
308 #ifdef CONFIG_NUMA
309 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
310 #endif
311 };
312 
313 struct core_thread {
314 	struct task_struct *task;
315 	struct core_thread *next;
316 };
317 
318 struct core_state {
319 	atomic_t nr_threads;
320 	struct core_thread dumper;
321 	struct completion startup;
322 };
323 
324 enum {
325 	MM_FILEPAGES,
326 	MM_ANONPAGES,
327 	MM_SWAPENTS,
328 	NR_MM_COUNTERS
329 };
330 
331 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
332 #define SPLIT_RSS_COUNTING
333 /* per-thread cached information, */
334 struct task_rss_stat {
335 	int events;	/* for synchronization threshold */
336 	int count[NR_MM_COUNTERS];
337 };
338 #endif /* USE_SPLIT_PTE_PTLOCKS */
339 
340 struct mm_rss_stat {
341 	atomic_long_t count[NR_MM_COUNTERS];
342 };
343 
344 struct kioctx_table;
345 struct mm_struct {
346 	struct vm_area_struct *mmap;		/* list of VMAs */
347 	struct rb_root mm_rb;
348 	u32 vmacache_seqnum;                   /* per-thread vmacache */
349 #ifdef CONFIG_MMU
350 	unsigned long (*get_unmapped_area) (struct file *filp,
351 				unsigned long addr, unsigned long len,
352 				unsigned long pgoff, unsigned long flags);
353 #endif
354 	unsigned long mmap_base;		/* base of mmap area */
355 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
356 	unsigned long task_size;		/* size of task vm space */
357 	unsigned long highest_vm_end;		/* highest vma end address */
358 	pgd_t * pgd;
359 	atomic_t mm_users;			/* How many users with user space? */
360 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
361 	atomic_long_t nr_ptes;			/* Page table pages */
362 	int map_count;				/* number of VMAs */
363 
364 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
365 	struct rw_semaphore mmap_sem;
366 
367 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
368 						 * together off init_mm.mmlist, and are protected
369 						 * by mmlist_lock
370 						 */
371 
372 
373 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
374 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
375 
376 	unsigned long total_vm;		/* Total pages mapped */
377 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
378 	unsigned long pinned_vm;	/* Refcount permanently increased */
379 	unsigned long shared_vm;	/* Shared pages (files) */
380 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
381 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
382 	unsigned long def_flags;
383 	unsigned long start_code, end_code, start_data, end_data;
384 	unsigned long start_brk, brk, start_stack;
385 	unsigned long arg_start, arg_end, env_start, env_end;
386 
387 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
388 
389 	/*
390 	 * Special counters, in some configurations protected by the
391 	 * page_table_lock, in other configurations by being atomic.
392 	 */
393 	struct mm_rss_stat rss_stat;
394 
395 	struct linux_binfmt *binfmt;
396 
397 	cpumask_var_t cpu_vm_mask_var;
398 
399 	/* Architecture-specific MM context */
400 	mm_context_t context;
401 
402 	unsigned long flags; /* Must use atomic bitops to access the bits */
403 
404 	struct core_state *core_state; /* coredumping support */
405 #ifdef CONFIG_AIO
406 	spinlock_t			ioctx_lock;
407 	struct kioctx_table __rcu	*ioctx_table;
408 #endif
409 #ifdef CONFIG_MM_OWNER
410 	/*
411 	 * "owner" points to a task that is regarded as the canonical
412 	 * user/owner of this mm. All of the following must be true in
413 	 * order for it to be changed:
414 	 *
415 	 * current == mm->owner
416 	 * current->mm != mm
417 	 * new_owner->mm == mm
418 	 * new_owner->alloc_lock is held
419 	 */
420 	struct task_struct __rcu *owner;
421 #endif
422 
423 	/* store ref to file /proc/<pid>/exe symlink points to */
424 	struct file *exe_file;
425 #ifdef CONFIG_MMU_NOTIFIER
426 	struct mmu_notifier_mm *mmu_notifier_mm;
427 #endif
428 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
429 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
430 #endif
431 #ifdef CONFIG_CPUMASK_OFFSTACK
432 	struct cpumask cpumask_allocation;
433 #endif
434 #ifdef CONFIG_NUMA_BALANCING
435 	/*
436 	 * numa_next_scan is the next time that the PTEs will be marked
437 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
438 	 * pages to new nodes if necessary.
439 	 */
440 	unsigned long numa_next_scan;
441 
442 	/* Restart point for scanning and setting pte_numa */
443 	unsigned long numa_scan_offset;
444 
445 	/* numa_scan_seq prevents two threads setting pte_numa */
446 	int numa_scan_seq;
447 #endif
448 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
449 	/*
450 	 * An operation with batched TLB flushing is going on. Anything that
451 	 * can move process memory needs to flush the TLB when moving a
452 	 * PROT_NONE or PROT_NUMA mapped page.
453 	 */
454 	bool tlb_flush_pending;
455 #endif
456 	struct uprobes_state uprobes_state;
457 };
458 
459 static inline void mm_init_cpumask(struct mm_struct *mm)
460 {
461 #ifdef CONFIG_CPUMASK_OFFSTACK
462 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
463 #endif
464 }
465 
466 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
467 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
468 {
469 	return mm->cpu_vm_mask_var;
470 }
471 
472 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
473 /*
474  * Memory barriers to keep this state in sync are graciously provided by
475  * the page table locks, outside of which no page table modifications happen.
476  * The barriers below prevent the compiler from re-ordering the instructions
477  * around the memory barriers that are already present in the code.
478  */
479 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
480 {
481 	barrier();
482 	return mm->tlb_flush_pending;
483 }
484 static inline void set_tlb_flush_pending(struct mm_struct *mm)
485 {
486 	mm->tlb_flush_pending = true;
487 
488 	/*
489 	 * Guarantee that the tlb_flush_pending store does not leak into the
490 	 * critical section updating the page tables
491 	 */
492 	smp_mb__before_spinlock();
493 }
494 /* Clearing is done after a TLB flush, which also provides a barrier. */
495 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
496 {
497 	barrier();
498 	mm->tlb_flush_pending = false;
499 }
500 #else
501 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
502 {
503 	return false;
504 }
505 static inline void set_tlb_flush_pending(struct mm_struct *mm)
506 {
507 }
508 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
509 {
510 }
511 #endif
512 
513 #endif /* _LINUX_MM_TYPES_H */
514