1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/list.h> 9 #include <linux/spinlock.h> 10 #include <linux/rbtree.h> 11 #include <linux/rwsem.h> 12 #include <linux/completion.h> 13 #include <linux/cpumask.h> 14 #include <linux/uprobes.h> 15 #include <linux/page-flags-layout.h> 16 #include <linux/workqueue.h> 17 18 #include <asm/mmu.h> 19 20 #ifndef AT_VECTOR_SIZE_ARCH 21 #define AT_VECTOR_SIZE_ARCH 0 22 #endif 23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 26 struct address_space; 27 struct mem_cgroup; 28 struct hmm; 29 30 /* 31 * Each physical page in the system has a struct page associated with 32 * it to keep track of whatever it is we are using the page for at the 33 * moment. Note that we have no way to track which tasks are using 34 * a page, though if it is a pagecache page, rmap structures can tell us 35 * who is mapping it. 36 * 37 * If you allocate the page using alloc_pages(), you can use some of the 38 * space in struct page for your own purposes. The five words in the main 39 * union are available, except for bit 0 of the first word which must be 40 * kept clear. Many users use this word to store a pointer to an object 41 * which is guaranteed to be aligned. If you use the same storage as 42 * page->mapping, you must restore it to NULL before freeing the page. 43 * 44 * If your page will not be mapped to userspace, you can also use the four 45 * bytes in the mapcount union, but you must call page_mapcount_reset() 46 * before freeing it. 47 * 48 * If you want to use the refcount field, it must be used in such a way 49 * that other CPUs temporarily incrementing and then decrementing the 50 * refcount does not cause problems. On receiving the page from 51 * alloc_pages(), the refcount will be positive. 52 * 53 * If you allocate pages of order > 0, you can use some of the fields 54 * in each subpage, but you may need to restore some of their values 55 * afterwards. 56 * 57 * SLUB uses cmpxchg_double() to atomically update its freelist and 58 * counters. That requires that freelist & counters be adjacent and 59 * double-word aligned. We align all struct pages to double-word 60 * boundaries, and ensure that 'freelist' is aligned within the 61 * struct. 62 */ 63 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 64 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 65 #else 66 #define _struct_page_alignment 67 #endif 68 69 struct page { 70 unsigned long flags; /* Atomic flags, some possibly 71 * updated asynchronously */ 72 /* 73 * Five words (20/40 bytes) are available in this union. 74 * WARNING: bit 0 of the first word is used for PageTail(). That 75 * means the other users of this union MUST NOT use the bit to 76 * avoid collision and false-positive PageTail(). 77 */ 78 union { 79 struct { /* Page cache and anonymous pages */ 80 /** 81 * @lru: Pageout list, eg. active_list protected by 82 * pgdat->lru_lock. Sometimes used as a generic list 83 * by the page owner. 84 */ 85 struct list_head lru; 86 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 87 struct address_space *mapping; 88 pgoff_t index; /* Our offset within mapping. */ 89 /** 90 * @private: Mapping-private opaque data. 91 * Usually used for buffer_heads if PagePrivate. 92 * Used for swp_entry_t if PageSwapCache. 93 * Indicates order in the buddy system if PageBuddy. 94 */ 95 unsigned long private; 96 }; 97 struct { /* page_pool used by netstack */ 98 /** 99 * @dma_addr: might require a 64-bit value even on 100 * 32-bit architectures. 101 */ 102 dma_addr_t dma_addr; 103 }; 104 struct { /* slab, slob and slub */ 105 union { 106 struct list_head slab_list; 107 struct { /* Partial pages */ 108 struct page *next; 109 #ifdef CONFIG_64BIT 110 int pages; /* Nr of pages left */ 111 int pobjects; /* Approximate count */ 112 #else 113 short int pages; 114 short int pobjects; 115 #endif 116 }; 117 }; 118 struct kmem_cache *slab_cache; /* not slob */ 119 /* Double-word boundary */ 120 void *freelist; /* first free object */ 121 union { 122 void *s_mem; /* slab: first object */ 123 unsigned long counters; /* SLUB */ 124 struct { /* SLUB */ 125 unsigned inuse:16; 126 unsigned objects:15; 127 unsigned frozen:1; 128 }; 129 }; 130 }; 131 struct { /* Tail pages of compound page */ 132 unsigned long compound_head; /* Bit zero is set */ 133 134 /* First tail page only */ 135 unsigned char compound_dtor; 136 unsigned char compound_order; 137 atomic_t compound_mapcount; 138 }; 139 struct { /* Second tail page of compound page */ 140 unsigned long _compound_pad_1; /* compound_head */ 141 unsigned long _compound_pad_2; 142 struct list_head deferred_list; 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152 #if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154 #else 155 spinlock_t ptl; 156 #endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 void *zone_device_data; 162 unsigned long _zd_pad_1; /* uses mapping */ 163 }; 164 165 /** @rcu_head: You can use this to free a page by RCU. */ 166 struct rcu_head rcu_head; 167 }; 168 169 union { /* This union is 4 bytes in size. */ 170 /* 171 * If the page can be mapped to userspace, encodes the number 172 * of times this page is referenced by a page table. 173 */ 174 atomic_t _mapcount; 175 176 /* 177 * If the page is neither PageSlab nor mappable to userspace, 178 * the value stored here may help determine what this page 179 * is used for. See page-flags.h for a list of page types 180 * which are currently stored here. 181 */ 182 unsigned int page_type; 183 184 unsigned int active; /* SLAB */ 185 int units; /* SLOB */ 186 }; 187 188 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 189 atomic_t _refcount; 190 191 #ifdef CONFIG_MEMCG 192 struct mem_cgroup *mem_cgroup; 193 #endif 194 195 /* 196 * On machines where all RAM is mapped into kernel address space, 197 * we can simply calculate the virtual address. On machines with 198 * highmem some memory is mapped into kernel virtual memory 199 * dynamically, so we need a place to store that address. 200 * Note that this field could be 16 bits on x86 ... ;) 201 * 202 * Architectures with slow multiplication can define 203 * WANT_PAGE_VIRTUAL in asm/page.h 204 */ 205 #if defined(WANT_PAGE_VIRTUAL) 206 void *virtual; /* Kernel virtual address (NULL if 207 not kmapped, ie. highmem) */ 208 #endif /* WANT_PAGE_VIRTUAL */ 209 210 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 211 int _last_cpupid; 212 #endif 213 } _struct_page_alignment; 214 215 /* 216 * Used for sizing the vmemmap region on some architectures 217 */ 218 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 219 220 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 221 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 222 223 #define page_private(page) ((page)->private) 224 #define set_page_private(page, v) ((page)->private = (v)) 225 226 struct page_frag_cache { 227 void * va; 228 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 229 __u16 offset; 230 __u16 size; 231 #else 232 __u32 offset; 233 #endif 234 /* we maintain a pagecount bias, so that we dont dirty cache line 235 * containing page->_refcount every time we allocate a fragment. 236 */ 237 unsigned int pagecnt_bias; 238 bool pfmemalloc; 239 }; 240 241 typedef unsigned long vm_flags_t; 242 243 /* 244 * A region containing a mapping of a non-memory backed file under NOMMU 245 * conditions. These are held in a global tree and are pinned by the VMAs that 246 * map parts of them. 247 */ 248 struct vm_region { 249 struct rb_node vm_rb; /* link in global region tree */ 250 vm_flags_t vm_flags; /* VMA vm_flags */ 251 unsigned long vm_start; /* start address of region */ 252 unsigned long vm_end; /* region initialised to here */ 253 unsigned long vm_top; /* region allocated to here */ 254 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 255 struct file *vm_file; /* the backing file or NULL */ 256 257 int vm_usage; /* region usage count (access under nommu_region_sem) */ 258 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 259 * this region */ 260 }; 261 262 #ifdef CONFIG_USERFAULTFD 263 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 264 struct vm_userfaultfd_ctx { 265 struct userfaultfd_ctx *ctx; 266 }; 267 #else /* CONFIG_USERFAULTFD */ 268 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 269 struct vm_userfaultfd_ctx {}; 270 #endif /* CONFIG_USERFAULTFD */ 271 272 /* 273 * This struct defines a memory VMM memory area. There is one of these 274 * per VM-area/task. A VM area is any part of the process virtual memory 275 * space that has a special rule for the page-fault handlers (ie a shared 276 * library, the executable area etc). 277 */ 278 struct vm_area_struct { 279 /* The first cache line has the info for VMA tree walking. */ 280 281 unsigned long vm_start; /* Our start address within vm_mm. */ 282 unsigned long vm_end; /* The first byte after our end address 283 within vm_mm. */ 284 285 /* linked list of VM areas per task, sorted by address */ 286 struct vm_area_struct *vm_next, *vm_prev; 287 288 struct rb_node vm_rb; 289 290 /* 291 * Largest free memory gap in bytes to the left of this VMA. 292 * Either between this VMA and vma->vm_prev, or between one of the 293 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 294 * get_unmapped_area find a free area of the right size. 295 */ 296 unsigned long rb_subtree_gap; 297 298 /* Second cache line starts here. */ 299 300 struct mm_struct *vm_mm; /* The address space we belong to. */ 301 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 302 unsigned long vm_flags; /* Flags, see mm.h. */ 303 304 /* 305 * For areas with an address space and backing store, 306 * linkage into the address_space->i_mmap interval tree. 307 */ 308 struct { 309 struct rb_node rb; 310 unsigned long rb_subtree_last; 311 } shared; 312 313 /* 314 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 315 * list, after a COW of one of the file pages. A MAP_SHARED vma 316 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 317 * or brk vma (with NULL file) can only be in an anon_vma list. 318 */ 319 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 320 * page_table_lock */ 321 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 322 323 /* Function pointers to deal with this struct. */ 324 const struct vm_operations_struct *vm_ops; 325 326 /* Information about our backing store: */ 327 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 328 units */ 329 struct file * vm_file; /* File we map to (can be NULL). */ 330 void * vm_private_data; /* was vm_pte (shared mem) */ 331 332 #ifdef CONFIG_SWAP 333 atomic_long_t swap_readahead_info; 334 #endif 335 #ifndef CONFIG_MMU 336 struct vm_region *vm_region; /* NOMMU mapping region */ 337 #endif 338 #ifdef CONFIG_NUMA 339 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 340 #endif 341 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 342 } __randomize_layout; 343 344 struct core_thread { 345 struct task_struct *task; 346 struct core_thread *next; 347 }; 348 349 struct core_state { 350 atomic_t nr_threads; 351 struct core_thread dumper; 352 struct completion startup; 353 }; 354 355 struct kioctx_table; 356 struct mm_struct { 357 struct { 358 struct vm_area_struct *mmap; /* list of VMAs */ 359 struct rb_root mm_rb; 360 u64 vmacache_seqnum; /* per-thread vmacache */ 361 #ifdef CONFIG_MMU 362 unsigned long (*get_unmapped_area) (struct file *filp, 363 unsigned long addr, unsigned long len, 364 unsigned long pgoff, unsigned long flags); 365 #endif 366 unsigned long mmap_base; /* base of mmap area */ 367 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 368 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 369 /* Base adresses for compatible mmap() */ 370 unsigned long mmap_compat_base; 371 unsigned long mmap_compat_legacy_base; 372 #endif 373 unsigned long task_size; /* size of task vm space */ 374 unsigned long highest_vm_end; /* highest vma end address */ 375 pgd_t * pgd; 376 377 /** 378 * @mm_users: The number of users including userspace. 379 * 380 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 381 * drops to 0 (i.e. when the task exits and there are no other 382 * temporary reference holders), we also release a reference on 383 * @mm_count (which may then free the &struct mm_struct if 384 * @mm_count also drops to 0). 385 */ 386 atomic_t mm_users; 387 388 /** 389 * @mm_count: The number of references to &struct mm_struct 390 * (@mm_users count as 1). 391 * 392 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 393 * &struct mm_struct is freed. 394 */ 395 atomic_t mm_count; 396 397 #ifdef CONFIG_MMU 398 atomic_long_t pgtables_bytes; /* PTE page table pages */ 399 #endif 400 int map_count; /* number of VMAs */ 401 402 spinlock_t page_table_lock; /* Protects page tables and some 403 * counters 404 */ 405 struct rw_semaphore mmap_sem; 406 407 struct list_head mmlist; /* List of maybe swapped mm's. These 408 * are globally strung together off 409 * init_mm.mmlist, and are protected 410 * by mmlist_lock 411 */ 412 413 414 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 415 unsigned long hiwater_vm; /* High-water virtual memory usage */ 416 417 unsigned long total_vm; /* Total pages mapped */ 418 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 419 atomic64_t pinned_vm; /* Refcount permanently increased */ 420 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 421 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 422 unsigned long stack_vm; /* VM_STACK */ 423 unsigned long def_flags; 424 425 spinlock_t arg_lock; /* protect the below fields */ 426 unsigned long start_code, end_code, start_data, end_data; 427 unsigned long start_brk, brk, start_stack; 428 unsigned long arg_start, arg_end, env_start, env_end; 429 430 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 431 432 /* 433 * Special counters, in some configurations protected by the 434 * page_table_lock, in other configurations by being atomic. 435 */ 436 struct mm_rss_stat rss_stat; 437 438 struct linux_binfmt *binfmt; 439 440 /* Architecture-specific MM context */ 441 mm_context_t context; 442 443 unsigned long flags; /* Must use atomic bitops to access */ 444 445 struct core_state *core_state; /* coredumping support */ 446 #ifdef CONFIG_MEMBARRIER 447 atomic_t membarrier_state; 448 #endif 449 #ifdef CONFIG_AIO 450 spinlock_t ioctx_lock; 451 struct kioctx_table __rcu *ioctx_table; 452 #endif 453 #ifdef CONFIG_MEMCG 454 /* 455 * "owner" points to a task that is regarded as the canonical 456 * user/owner of this mm. All of the following must be true in 457 * order for it to be changed: 458 * 459 * current == mm->owner 460 * current->mm != mm 461 * new_owner->mm == mm 462 * new_owner->alloc_lock is held 463 */ 464 struct task_struct __rcu *owner; 465 #endif 466 struct user_namespace *user_ns; 467 468 /* store ref to file /proc/<pid>/exe symlink points to */ 469 struct file __rcu *exe_file; 470 #ifdef CONFIG_MMU_NOTIFIER 471 struct mmu_notifier_mm *mmu_notifier_mm; 472 #endif 473 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 474 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 475 #endif 476 #ifdef CONFIG_NUMA_BALANCING 477 /* 478 * numa_next_scan is the next time that the PTEs will be marked 479 * pte_numa. NUMA hinting faults will gather statistics and 480 * migrate pages to new nodes if necessary. 481 */ 482 unsigned long numa_next_scan; 483 484 /* Restart point for scanning and setting pte_numa */ 485 unsigned long numa_scan_offset; 486 487 /* numa_scan_seq prevents two threads setting pte_numa */ 488 int numa_scan_seq; 489 #endif 490 /* 491 * An operation with batched TLB flushing is going on. Anything 492 * that can move process memory needs to flush the TLB when 493 * moving a PROT_NONE or PROT_NUMA mapped page. 494 */ 495 atomic_t tlb_flush_pending; 496 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 497 /* See flush_tlb_batched_pending() */ 498 bool tlb_flush_batched; 499 #endif 500 struct uprobes_state uprobes_state; 501 #ifdef CONFIG_HUGETLB_PAGE 502 atomic_long_t hugetlb_usage; 503 #endif 504 struct work_struct async_put_work; 505 506 #ifdef CONFIG_HMM_MIRROR 507 /* HMM needs to track a few things per mm */ 508 struct hmm *hmm; 509 #endif 510 } __randomize_layout; 511 512 /* 513 * The mm_cpumask needs to be at the end of mm_struct, because it 514 * is dynamically sized based on nr_cpu_ids. 515 */ 516 unsigned long cpu_bitmap[]; 517 }; 518 519 extern struct mm_struct init_mm; 520 521 /* Pointer magic because the dynamic array size confuses some compilers. */ 522 static inline void mm_init_cpumask(struct mm_struct *mm) 523 { 524 unsigned long cpu_bitmap = (unsigned long)mm; 525 526 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 527 cpumask_clear((struct cpumask *)cpu_bitmap); 528 } 529 530 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 531 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 532 { 533 return (struct cpumask *)&mm->cpu_bitmap; 534 } 535 536 struct mmu_gather; 537 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 538 unsigned long start, unsigned long end); 539 extern void tlb_finish_mmu(struct mmu_gather *tlb, 540 unsigned long start, unsigned long end); 541 542 static inline void init_tlb_flush_pending(struct mm_struct *mm) 543 { 544 atomic_set(&mm->tlb_flush_pending, 0); 545 } 546 547 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 548 { 549 atomic_inc(&mm->tlb_flush_pending); 550 /* 551 * The only time this value is relevant is when there are indeed pages 552 * to flush. And we'll only flush pages after changing them, which 553 * requires the PTL. 554 * 555 * So the ordering here is: 556 * 557 * atomic_inc(&mm->tlb_flush_pending); 558 * spin_lock(&ptl); 559 * ... 560 * set_pte_at(); 561 * spin_unlock(&ptl); 562 * 563 * spin_lock(&ptl) 564 * mm_tlb_flush_pending(); 565 * .... 566 * spin_unlock(&ptl); 567 * 568 * flush_tlb_range(); 569 * atomic_dec(&mm->tlb_flush_pending); 570 * 571 * Where the increment if constrained by the PTL unlock, it thus 572 * ensures that the increment is visible if the PTE modification is 573 * visible. After all, if there is no PTE modification, nobody cares 574 * about TLB flushes either. 575 * 576 * This very much relies on users (mm_tlb_flush_pending() and 577 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 578 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 579 * locks (PPC) the unlock of one doesn't order against the lock of 580 * another PTL. 581 * 582 * The decrement is ordered by the flush_tlb_range(), such that 583 * mm_tlb_flush_pending() will not return false unless all flushes have 584 * completed. 585 */ 586 } 587 588 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 589 { 590 /* 591 * See inc_tlb_flush_pending(). 592 * 593 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 594 * not order against TLB invalidate completion, which is what we need. 595 * 596 * Therefore we must rely on tlb_flush_*() to guarantee order. 597 */ 598 atomic_dec(&mm->tlb_flush_pending); 599 } 600 601 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 602 { 603 /* 604 * Must be called after having acquired the PTL; orders against that 605 * PTLs release and therefore ensures that if we observe the modified 606 * PTE we must also observe the increment from inc_tlb_flush_pending(). 607 * 608 * That is, it only guarantees to return true if there is a flush 609 * pending for _this_ PTL. 610 */ 611 return atomic_read(&mm->tlb_flush_pending); 612 } 613 614 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 615 { 616 /* 617 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 618 * for which there is a TLB flush pending in order to guarantee 619 * we've seen both that PTE modification and the increment. 620 * 621 * (no requirement on actually still holding the PTL, that is irrelevant) 622 */ 623 return atomic_read(&mm->tlb_flush_pending) > 1; 624 } 625 626 struct vm_fault; 627 628 /** 629 * typedef vm_fault_t - Return type for page fault handlers. 630 * 631 * Page fault handlers return a bitmask of %VM_FAULT values. 632 */ 633 typedef __bitwise unsigned int vm_fault_t; 634 635 /** 636 * enum vm_fault_reason - Page fault handlers return a bitmask of 637 * these values to tell the core VM what happened when handling the 638 * fault. Used to decide whether a process gets delivered SIGBUS or 639 * just gets major/minor fault counters bumped up. 640 * 641 * @VM_FAULT_OOM: Out Of Memory 642 * @VM_FAULT_SIGBUS: Bad access 643 * @VM_FAULT_MAJOR: Page read from storage 644 * @VM_FAULT_WRITE: Special case for get_user_pages 645 * @VM_FAULT_HWPOISON: Hit poisoned small page 646 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 647 * in upper bits 648 * @VM_FAULT_SIGSEGV: segmentation fault 649 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 650 * @VM_FAULT_LOCKED: ->fault locked the returned page 651 * @VM_FAULT_RETRY: ->fault blocked, must retry 652 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 653 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 654 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 655 * fsync() to complete (for synchronous page faults 656 * in DAX) 657 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 658 * 659 */ 660 enum vm_fault_reason { 661 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 662 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 663 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 664 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 665 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 666 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 667 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 668 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 669 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 670 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 671 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 672 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 673 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 674 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 675 }; 676 677 /* Encode hstate index for a hwpoisoned large page */ 678 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 679 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 680 681 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 682 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 683 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 684 685 #define VM_FAULT_RESULT_TRACE \ 686 { VM_FAULT_OOM, "OOM" }, \ 687 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 688 { VM_FAULT_MAJOR, "MAJOR" }, \ 689 { VM_FAULT_WRITE, "WRITE" }, \ 690 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 691 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 692 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 693 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 694 { VM_FAULT_LOCKED, "LOCKED" }, \ 695 { VM_FAULT_RETRY, "RETRY" }, \ 696 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 697 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 698 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 699 700 struct vm_special_mapping { 701 const char *name; /* The name, e.g. "[vdso]". */ 702 703 /* 704 * If .fault is not provided, this points to a 705 * NULL-terminated array of pages that back the special mapping. 706 * 707 * This must not be NULL unless .fault is provided. 708 */ 709 struct page **pages; 710 711 /* 712 * If non-NULL, then this is called to resolve page faults 713 * on the special mapping. If used, .pages is not checked. 714 */ 715 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 716 struct vm_area_struct *vma, 717 struct vm_fault *vmf); 718 719 int (*mremap)(const struct vm_special_mapping *sm, 720 struct vm_area_struct *new_vma); 721 }; 722 723 enum tlb_flush_reason { 724 TLB_FLUSH_ON_TASK_SWITCH, 725 TLB_REMOTE_SHOOTDOWN, 726 TLB_LOCAL_SHOOTDOWN, 727 TLB_LOCAL_MM_SHOOTDOWN, 728 TLB_REMOTE_SEND_IPI, 729 NR_TLB_FLUSH_REASONS, 730 }; 731 732 /* 733 * A swap entry has to fit into a "unsigned long", as the entry is hidden 734 * in the "index" field of the swapper address space. 735 */ 736 typedef struct { 737 unsigned long val; 738 } swp_entry_t; 739 740 #endif /* _LINUX_MM_TYPES_H */ 741