1 #ifndef _LINUX_MM_TYPES_H 2 #define _LINUX_MM_TYPES_H 3 4 #include <linux/auxvec.h> 5 #include <linux/types.h> 6 #include <linux/threads.h> 7 #include <linux/list.h> 8 #include <linux/spinlock.h> 9 #include <linux/rbtree.h> 10 #include <linux/rwsem.h> 11 #include <linux/completion.h> 12 #include <linux/cpumask.h> 13 #include <linux/uprobes.h> 14 #include <linux/page-flags-layout.h> 15 #include <linux/workqueue.h> 16 #include <asm/page.h> 17 #include <asm/mmu.h> 18 19 #ifndef AT_VECTOR_SIZE_ARCH 20 #define AT_VECTOR_SIZE_ARCH 0 21 #endif 22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24 struct address_space; 25 struct mem_cgroup; 26 27 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 28 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 29 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 30 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 31 32 /* 33 * Each physical page in the system has a struct page associated with 34 * it to keep track of whatever it is we are using the page for at the 35 * moment. Note that we have no way to track which tasks are using 36 * a page, though if it is a pagecache page, rmap structures can tell us 37 * who is mapping it. 38 * 39 * The objects in struct page are organized in double word blocks in 40 * order to allows us to use atomic double word operations on portions 41 * of struct page. That is currently only used by slub but the arrangement 42 * allows the use of atomic double word operations on the flags/mapping 43 * and lru list pointers also. 44 */ 45 struct page { 46 /* First double word block */ 47 unsigned long flags; /* Atomic flags, some possibly 48 * updated asynchronously */ 49 union { 50 struct address_space *mapping; /* If low bit clear, points to 51 * inode address_space, or NULL. 52 * If page mapped as anonymous 53 * memory, low bit is set, and 54 * it points to anon_vma object: 55 * see PAGE_MAPPING_ANON below. 56 */ 57 void *s_mem; /* slab first object */ 58 atomic_t compound_mapcount; /* first tail page */ 59 /* page_deferred_list().next -- second tail page */ 60 }; 61 62 /* Second double word */ 63 union { 64 pgoff_t index; /* Our offset within mapping. */ 65 void *freelist; /* sl[aou]b first free object */ 66 /* page_deferred_list().prev -- second tail page */ 67 }; 68 69 union { 70 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 71 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 72 /* Used for cmpxchg_double in slub */ 73 unsigned long counters; 74 #else 75 /* 76 * Keep _refcount separate from slub cmpxchg_double data. 77 * As the rest of the double word is protected by slab_lock 78 * but _refcount is not. 79 */ 80 unsigned counters; 81 #endif 82 struct { 83 84 union { 85 /* 86 * Count of ptes mapped in mms, to show when 87 * page is mapped & limit reverse map searches. 88 * 89 * Extra information about page type may be 90 * stored here for pages that are never mapped, 91 * in which case the value MUST BE <= -2. 92 * See page-flags.h for more details. 93 */ 94 atomic_t _mapcount; 95 96 unsigned int active; /* SLAB */ 97 struct { /* SLUB */ 98 unsigned inuse:16; 99 unsigned objects:15; 100 unsigned frozen:1; 101 }; 102 int units; /* SLOB */ 103 }; 104 /* 105 * Usage count, *USE WRAPPER FUNCTION* when manual 106 * accounting. See page_ref.h 107 */ 108 atomic_t _refcount; 109 }; 110 }; 111 112 /* 113 * Third double word block 114 * 115 * WARNING: bit 0 of the first word encode PageTail(). That means 116 * the rest users of the storage space MUST NOT use the bit to 117 * avoid collision and false-positive PageTail(). 118 */ 119 union { 120 struct list_head lru; /* Pageout list, eg. active_list 121 * protected by zone_lru_lock ! 122 * Can be used as a generic list 123 * by the page owner. 124 */ 125 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an 126 * lru or handled by a slab 127 * allocator, this points to the 128 * hosting device page map. 129 */ 130 struct { /* slub per cpu partial pages */ 131 struct page *next; /* Next partial slab */ 132 #ifdef CONFIG_64BIT 133 int pages; /* Nr of partial slabs left */ 134 int pobjects; /* Approximate # of objects */ 135 #else 136 short int pages; 137 short int pobjects; 138 #endif 139 }; 140 141 struct rcu_head rcu_head; /* Used by SLAB 142 * when destroying via RCU 143 */ 144 /* Tail pages of compound page */ 145 struct { 146 unsigned long compound_head; /* If bit zero is set */ 147 148 /* First tail page only */ 149 #ifdef CONFIG_64BIT 150 /* 151 * On 64 bit system we have enough space in struct page 152 * to encode compound_dtor and compound_order with 153 * unsigned int. It can help compiler generate better or 154 * smaller code on some archtectures. 155 */ 156 unsigned int compound_dtor; 157 unsigned int compound_order; 158 #else 159 unsigned short int compound_dtor; 160 unsigned short int compound_order; 161 #endif 162 }; 163 164 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 165 struct { 166 unsigned long __pad; /* do not overlay pmd_huge_pte 167 * with compound_head to avoid 168 * possible bit 0 collision. 169 */ 170 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 171 }; 172 #endif 173 }; 174 175 /* Remainder is not double word aligned */ 176 union { 177 unsigned long private; /* Mapping-private opaque data: 178 * usually used for buffer_heads 179 * if PagePrivate set; used for 180 * swp_entry_t if PageSwapCache; 181 * indicates order in the buddy 182 * system if PG_buddy is set. 183 */ 184 #if USE_SPLIT_PTE_PTLOCKS 185 #if ALLOC_SPLIT_PTLOCKS 186 spinlock_t *ptl; 187 #else 188 spinlock_t ptl; 189 #endif 190 #endif 191 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 192 }; 193 194 #ifdef CONFIG_MEMCG 195 struct mem_cgroup *mem_cgroup; 196 #endif 197 198 /* 199 * On machines where all RAM is mapped into kernel address space, 200 * we can simply calculate the virtual address. On machines with 201 * highmem some memory is mapped into kernel virtual memory 202 * dynamically, so we need a place to store that address. 203 * Note that this field could be 16 bits on x86 ... ;) 204 * 205 * Architectures with slow multiplication can define 206 * WANT_PAGE_VIRTUAL in asm/page.h 207 */ 208 #if defined(WANT_PAGE_VIRTUAL) 209 void *virtual; /* Kernel virtual address (NULL if 210 not kmapped, ie. highmem) */ 211 #endif /* WANT_PAGE_VIRTUAL */ 212 213 #ifdef CONFIG_KMEMCHECK 214 /* 215 * kmemcheck wants to track the status of each byte in a page; this 216 * is a pointer to such a status block. NULL if not tracked. 217 */ 218 void *shadow; 219 #endif 220 221 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 222 int _last_cpupid; 223 #endif 224 } 225 /* 226 * The struct page can be forced to be double word aligned so that atomic ops 227 * on double words work. The SLUB allocator can make use of such a feature. 228 */ 229 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 230 __aligned(2 * sizeof(unsigned long)) 231 #endif 232 ; 233 234 struct page_frag { 235 struct page *page; 236 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 237 __u32 offset; 238 __u32 size; 239 #else 240 __u16 offset; 241 __u16 size; 242 #endif 243 }; 244 245 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 246 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 247 248 struct page_frag_cache { 249 void * va; 250 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 251 __u16 offset; 252 __u16 size; 253 #else 254 __u32 offset; 255 #endif 256 /* we maintain a pagecount bias, so that we dont dirty cache line 257 * containing page->_refcount every time we allocate a fragment. 258 */ 259 unsigned int pagecnt_bias; 260 bool pfmemalloc; 261 }; 262 263 typedef unsigned long vm_flags_t; 264 265 /* 266 * A region containing a mapping of a non-memory backed file under NOMMU 267 * conditions. These are held in a global tree and are pinned by the VMAs that 268 * map parts of them. 269 */ 270 struct vm_region { 271 struct rb_node vm_rb; /* link in global region tree */ 272 vm_flags_t vm_flags; /* VMA vm_flags */ 273 unsigned long vm_start; /* start address of region */ 274 unsigned long vm_end; /* region initialised to here */ 275 unsigned long vm_top; /* region allocated to here */ 276 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 277 struct file *vm_file; /* the backing file or NULL */ 278 279 int vm_usage; /* region usage count (access under nommu_region_sem) */ 280 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 281 * this region */ 282 }; 283 284 #ifdef CONFIG_USERFAULTFD 285 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 286 struct vm_userfaultfd_ctx { 287 struct userfaultfd_ctx *ctx; 288 }; 289 #else /* CONFIG_USERFAULTFD */ 290 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 291 struct vm_userfaultfd_ctx {}; 292 #endif /* CONFIG_USERFAULTFD */ 293 294 /* 295 * This struct defines a memory VMM memory area. There is one of these 296 * per VM-area/task. A VM area is any part of the process virtual memory 297 * space that has a special rule for the page-fault handlers (ie a shared 298 * library, the executable area etc). 299 */ 300 struct vm_area_struct { 301 /* The first cache line has the info for VMA tree walking. */ 302 303 unsigned long vm_start; /* Our start address within vm_mm. */ 304 unsigned long vm_end; /* The first byte after our end address 305 within vm_mm. */ 306 307 /* linked list of VM areas per task, sorted by address */ 308 struct vm_area_struct *vm_next, *vm_prev; 309 310 struct rb_node vm_rb; 311 312 /* 313 * Largest free memory gap in bytes to the left of this VMA. 314 * Either between this VMA and vma->vm_prev, or between one of the 315 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 316 * get_unmapped_area find a free area of the right size. 317 */ 318 unsigned long rb_subtree_gap; 319 320 /* Second cache line starts here. */ 321 322 struct mm_struct *vm_mm; /* The address space we belong to. */ 323 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 324 unsigned long vm_flags; /* Flags, see mm.h. */ 325 326 /* 327 * For areas with an address space and backing store, 328 * linkage into the address_space->i_mmap interval tree. 329 */ 330 struct { 331 struct rb_node rb; 332 unsigned long rb_subtree_last; 333 } shared; 334 335 /* 336 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 337 * list, after a COW of one of the file pages. A MAP_SHARED vma 338 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 339 * or brk vma (with NULL file) can only be in an anon_vma list. 340 */ 341 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 342 * page_table_lock */ 343 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 344 345 /* Function pointers to deal with this struct. */ 346 const struct vm_operations_struct *vm_ops; 347 348 /* Information about our backing store: */ 349 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 350 units */ 351 struct file * vm_file; /* File we map to (can be NULL). */ 352 void * vm_private_data; /* was vm_pte (shared mem) */ 353 354 #ifndef CONFIG_MMU 355 struct vm_region *vm_region; /* NOMMU mapping region */ 356 #endif 357 #ifdef CONFIG_NUMA 358 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 359 #endif 360 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 361 }; 362 363 struct core_thread { 364 struct task_struct *task; 365 struct core_thread *next; 366 }; 367 368 struct core_state { 369 atomic_t nr_threads; 370 struct core_thread dumper; 371 struct completion startup; 372 }; 373 374 enum { 375 MM_FILEPAGES, /* Resident file mapping pages */ 376 MM_ANONPAGES, /* Resident anonymous pages */ 377 MM_SWAPENTS, /* Anonymous swap entries */ 378 MM_SHMEMPAGES, /* Resident shared memory pages */ 379 NR_MM_COUNTERS 380 }; 381 382 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 383 #define SPLIT_RSS_COUNTING 384 /* per-thread cached information, */ 385 struct task_rss_stat { 386 int events; /* for synchronization threshold */ 387 int count[NR_MM_COUNTERS]; 388 }; 389 #endif /* USE_SPLIT_PTE_PTLOCKS */ 390 391 struct mm_rss_stat { 392 atomic_long_t count[NR_MM_COUNTERS]; 393 }; 394 395 struct kioctx_table; 396 struct mm_struct { 397 struct vm_area_struct *mmap; /* list of VMAs */ 398 struct rb_root mm_rb; 399 u32 vmacache_seqnum; /* per-thread vmacache */ 400 #ifdef CONFIG_MMU 401 unsigned long (*get_unmapped_area) (struct file *filp, 402 unsigned long addr, unsigned long len, 403 unsigned long pgoff, unsigned long flags); 404 #endif 405 unsigned long mmap_base; /* base of mmap area */ 406 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 407 unsigned long task_size; /* size of task vm space */ 408 unsigned long highest_vm_end; /* highest vma end address */ 409 pgd_t * pgd; 410 atomic_t mm_users; /* How many users with user space? */ 411 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 412 atomic_long_t nr_ptes; /* PTE page table pages */ 413 #if CONFIG_PGTABLE_LEVELS > 2 414 atomic_long_t nr_pmds; /* PMD page table pages */ 415 #endif 416 int map_count; /* number of VMAs */ 417 418 spinlock_t page_table_lock; /* Protects page tables and some counters */ 419 struct rw_semaphore mmap_sem; 420 421 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 422 * together off init_mm.mmlist, and are protected 423 * by mmlist_lock 424 */ 425 426 427 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 428 unsigned long hiwater_vm; /* High-water virtual memory usage */ 429 430 unsigned long total_vm; /* Total pages mapped */ 431 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 432 unsigned long pinned_vm; /* Refcount permanently increased */ 433 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 434 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 435 unsigned long stack_vm; /* VM_STACK */ 436 unsigned long def_flags; 437 unsigned long start_code, end_code, start_data, end_data; 438 unsigned long start_brk, brk, start_stack; 439 unsigned long arg_start, arg_end, env_start, env_end; 440 441 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 442 443 /* 444 * Special counters, in some configurations protected by the 445 * page_table_lock, in other configurations by being atomic. 446 */ 447 struct mm_rss_stat rss_stat; 448 449 struct linux_binfmt *binfmt; 450 451 cpumask_var_t cpu_vm_mask_var; 452 453 /* Architecture-specific MM context */ 454 mm_context_t context; 455 456 unsigned long flags; /* Must use atomic bitops to access the bits */ 457 458 struct core_state *core_state; /* coredumping support */ 459 #ifdef CONFIG_AIO 460 spinlock_t ioctx_lock; 461 struct kioctx_table __rcu *ioctx_table; 462 #endif 463 #ifdef CONFIG_MEMCG 464 /* 465 * "owner" points to a task that is regarded as the canonical 466 * user/owner of this mm. All of the following must be true in 467 * order for it to be changed: 468 * 469 * current == mm->owner 470 * current->mm != mm 471 * new_owner->mm == mm 472 * new_owner->alloc_lock is held 473 */ 474 struct task_struct __rcu *owner; 475 #endif 476 struct user_namespace *user_ns; 477 478 /* store ref to file /proc/<pid>/exe symlink points to */ 479 struct file __rcu *exe_file; 480 #ifdef CONFIG_MMU_NOTIFIER 481 struct mmu_notifier_mm *mmu_notifier_mm; 482 #endif 483 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 484 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 485 #endif 486 #ifdef CONFIG_CPUMASK_OFFSTACK 487 struct cpumask cpumask_allocation; 488 #endif 489 #ifdef CONFIG_NUMA_BALANCING 490 /* 491 * numa_next_scan is the next time that the PTEs will be marked 492 * pte_numa. NUMA hinting faults will gather statistics and migrate 493 * pages to new nodes if necessary. 494 */ 495 unsigned long numa_next_scan; 496 497 /* Restart point for scanning and setting pte_numa */ 498 unsigned long numa_scan_offset; 499 500 /* numa_scan_seq prevents two threads setting pte_numa */ 501 int numa_scan_seq; 502 #endif 503 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 504 /* 505 * An operation with batched TLB flushing is going on. Anything that 506 * can move process memory needs to flush the TLB when moving a 507 * PROT_NONE or PROT_NUMA mapped page. 508 */ 509 bool tlb_flush_pending; 510 #endif 511 struct uprobes_state uprobes_state; 512 #ifdef CONFIG_HUGETLB_PAGE 513 atomic_long_t hugetlb_usage; 514 #endif 515 struct work_struct async_put_work; 516 }; 517 518 static inline void mm_init_cpumask(struct mm_struct *mm) 519 { 520 #ifdef CONFIG_CPUMASK_OFFSTACK 521 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 522 #endif 523 cpumask_clear(mm->cpu_vm_mask_var); 524 } 525 526 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 527 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 528 { 529 return mm->cpu_vm_mask_var; 530 } 531 532 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 533 /* 534 * Memory barriers to keep this state in sync are graciously provided by 535 * the page table locks, outside of which no page table modifications happen. 536 * The barriers below prevent the compiler from re-ordering the instructions 537 * around the memory barriers that are already present in the code. 538 */ 539 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 540 { 541 barrier(); 542 return mm->tlb_flush_pending; 543 } 544 static inline void set_tlb_flush_pending(struct mm_struct *mm) 545 { 546 mm->tlb_flush_pending = true; 547 548 /* 549 * Guarantee that the tlb_flush_pending store does not leak into the 550 * critical section updating the page tables 551 */ 552 smp_mb__before_spinlock(); 553 } 554 /* Clearing is done after a TLB flush, which also provides a barrier. */ 555 static inline void clear_tlb_flush_pending(struct mm_struct *mm) 556 { 557 barrier(); 558 mm->tlb_flush_pending = false; 559 } 560 #else 561 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 562 { 563 return false; 564 } 565 static inline void set_tlb_flush_pending(struct mm_struct *mm) 566 { 567 } 568 static inline void clear_tlb_flush_pending(struct mm_struct *mm) 569 { 570 } 571 #endif 572 573 struct vm_fault; 574 575 struct vm_special_mapping { 576 const char *name; /* The name, e.g. "[vdso]". */ 577 578 /* 579 * If .fault is not provided, this points to a 580 * NULL-terminated array of pages that back the special mapping. 581 * 582 * This must not be NULL unless .fault is provided. 583 */ 584 struct page **pages; 585 586 /* 587 * If non-NULL, then this is called to resolve page faults 588 * on the special mapping. If used, .pages is not checked. 589 */ 590 int (*fault)(const struct vm_special_mapping *sm, 591 struct vm_area_struct *vma, 592 struct vm_fault *vmf); 593 594 int (*mremap)(const struct vm_special_mapping *sm, 595 struct vm_area_struct *new_vma); 596 }; 597 598 enum tlb_flush_reason { 599 TLB_FLUSH_ON_TASK_SWITCH, 600 TLB_REMOTE_SHOOTDOWN, 601 TLB_LOCAL_SHOOTDOWN, 602 TLB_LOCAL_MM_SHOOTDOWN, 603 TLB_REMOTE_SEND_IPI, 604 NR_TLB_FLUSH_REASONS, 605 }; 606 607 /* 608 * A swap entry has to fit into a "unsigned long", as the entry is hidden 609 * in the "index" field of the swapper address space. 610 */ 611 typedef struct { 612 unsigned long val; 613 } swp_entry_t; 614 615 #endif /* _LINUX_MM_TYPES_H */ 616