1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/list.h> 9 #include <linux/spinlock.h> 10 #include <linux/rbtree.h> 11 #include <linux/rwsem.h> 12 #include <linux/completion.h> 13 #include <linux/cpumask.h> 14 #include <linux/uprobes.h> 15 #include <linux/page-flags-layout.h> 16 #include <linux/workqueue.h> 17 18 #include <asm/mmu.h> 19 20 #ifndef AT_VECTOR_SIZE_ARCH 21 #define AT_VECTOR_SIZE_ARCH 0 22 #endif 23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 26 struct address_space; 27 struct mem_cgroup; 28 29 /* 30 * Each physical page in the system has a struct page associated with 31 * it to keep track of whatever it is we are using the page for at the 32 * moment. Note that we have no way to track which tasks are using 33 * a page, though if it is a pagecache page, rmap structures can tell us 34 * who is mapping it. 35 * 36 * If you allocate the page using alloc_pages(), you can use some of the 37 * space in struct page for your own purposes. The five words in the main 38 * union are available, except for bit 0 of the first word which must be 39 * kept clear. Many users use this word to store a pointer to an object 40 * which is guaranteed to be aligned. If you use the same storage as 41 * page->mapping, you must restore it to NULL before freeing the page. 42 * 43 * If your page will not be mapped to userspace, you can also use the four 44 * bytes in the mapcount union, but you must call page_mapcount_reset() 45 * before freeing it. 46 * 47 * If you want to use the refcount field, it must be used in such a way 48 * that other CPUs temporarily incrementing and then decrementing the 49 * refcount does not cause problems. On receiving the page from 50 * alloc_pages(), the refcount will be positive. 51 * 52 * If you allocate pages of order > 0, you can use some of the fields 53 * in each subpage, but you may need to restore some of their values 54 * afterwards. 55 * 56 * SLUB uses cmpxchg_double() to atomically update its freelist and 57 * counters. That requires that freelist & counters be adjacent and 58 * double-word aligned. We align all struct pages to double-word 59 * boundaries, and ensure that 'freelist' is aligned within the 60 * struct. 61 */ 62 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 63 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 64 #else 65 #define _struct_page_alignment 66 #endif 67 68 struct page { 69 unsigned long flags; /* Atomic flags, some possibly 70 * updated asynchronously */ 71 /* 72 * Five words (20/40 bytes) are available in this union. 73 * WARNING: bit 0 of the first word is used for PageTail(). That 74 * means the other users of this union MUST NOT use the bit to 75 * avoid collision and false-positive PageTail(). 76 */ 77 union { 78 struct { /* Page cache and anonymous pages */ 79 /** 80 * @lru: Pageout list, eg. active_list protected by 81 * pgdat->lru_lock. Sometimes used as a generic list 82 * by the page owner. 83 */ 84 struct list_head lru; 85 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 86 struct address_space *mapping; 87 pgoff_t index; /* Our offset within mapping. */ 88 /** 89 * @private: Mapping-private opaque data. 90 * Usually used for buffer_heads if PagePrivate. 91 * Used for swp_entry_t if PageSwapCache. 92 * Indicates order in the buddy system if PageBuddy. 93 */ 94 unsigned long private; 95 }; 96 struct { /* page_pool used by netstack */ 97 /** 98 * @dma_addr: might require a 64-bit value even on 99 * 32-bit architectures. 100 */ 101 dma_addr_t dma_addr; 102 }; 103 struct { /* slab, slob and slub */ 104 union { 105 struct list_head slab_list; 106 struct { /* Partial pages */ 107 struct page *next; 108 #ifdef CONFIG_64BIT 109 int pages; /* Nr of pages left */ 110 int pobjects; /* Approximate count */ 111 #else 112 short int pages; 113 short int pobjects; 114 #endif 115 }; 116 }; 117 struct kmem_cache *slab_cache; /* not slob */ 118 /* Double-word boundary */ 119 void *freelist; /* first free object */ 120 union { 121 void *s_mem; /* slab: first object */ 122 unsigned long counters; /* SLUB */ 123 struct { /* SLUB */ 124 unsigned inuse:16; 125 unsigned objects:15; 126 unsigned frozen:1; 127 }; 128 }; 129 }; 130 struct { /* Tail pages of compound page */ 131 unsigned long compound_head; /* Bit zero is set */ 132 133 /* First tail page only */ 134 unsigned char compound_dtor; 135 unsigned char compound_order; 136 atomic_t compound_mapcount; 137 }; 138 struct { /* Second tail page of compound page */ 139 unsigned long _compound_pad_1; /* compound_head */ 140 atomic_t hpage_pinned_refcount; 141 /* For both global and memcg */ 142 struct list_head deferred_list; 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152 #if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154 #else 155 spinlock_t ptl; 156 #endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 void *zone_device_data; 162 /* 163 * ZONE_DEVICE private pages are counted as being 164 * mapped so the next 3 words hold the mapping, index, 165 * and private fields from the source anonymous or 166 * page cache page while the page is migrated to device 167 * private memory. 168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 169 * use the mapping, index, and private fields when 170 * pmem backed DAX files are mapped. 171 */ 172 }; 173 174 /** @rcu_head: You can use this to free a page by RCU. */ 175 struct rcu_head rcu_head; 176 }; 177 178 union { /* This union is 4 bytes in size. */ 179 /* 180 * If the page can be mapped to userspace, encodes the number 181 * of times this page is referenced by a page table. 182 */ 183 atomic_t _mapcount; 184 185 /* 186 * If the page is neither PageSlab nor mappable to userspace, 187 * the value stored here may help determine what this page 188 * is used for. See page-flags.h for a list of page types 189 * which are currently stored here. 190 */ 191 unsigned int page_type; 192 193 unsigned int active; /* SLAB */ 194 int units; /* SLOB */ 195 }; 196 197 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 198 atomic_t _refcount; 199 200 #ifdef CONFIG_MEMCG 201 union { 202 struct mem_cgroup *mem_cgroup; 203 struct obj_cgroup **obj_cgroups; 204 }; 205 #endif 206 207 /* 208 * On machines where all RAM is mapped into kernel address space, 209 * we can simply calculate the virtual address. On machines with 210 * highmem some memory is mapped into kernel virtual memory 211 * dynamically, so we need a place to store that address. 212 * Note that this field could be 16 bits on x86 ... ;) 213 * 214 * Architectures with slow multiplication can define 215 * WANT_PAGE_VIRTUAL in asm/page.h 216 */ 217 #if defined(WANT_PAGE_VIRTUAL) 218 void *virtual; /* Kernel virtual address (NULL if 219 not kmapped, ie. highmem) */ 220 #endif /* WANT_PAGE_VIRTUAL */ 221 222 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 223 int _last_cpupid; 224 #endif 225 } _struct_page_alignment; 226 227 static inline atomic_t *compound_mapcount_ptr(struct page *page) 228 { 229 return &page[1].compound_mapcount; 230 } 231 232 static inline atomic_t *compound_pincount_ptr(struct page *page) 233 { 234 return &page[2].hpage_pinned_refcount; 235 } 236 237 /* 238 * Used for sizing the vmemmap region on some architectures 239 */ 240 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 241 242 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 243 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 244 245 #define page_private(page) ((page)->private) 246 247 static inline void set_page_private(struct page *page, unsigned long private) 248 { 249 page->private = private; 250 } 251 252 struct page_frag_cache { 253 void * va; 254 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 255 __u16 offset; 256 __u16 size; 257 #else 258 __u32 offset; 259 #endif 260 /* we maintain a pagecount bias, so that we dont dirty cache line 261 * containing page->_refcount every time we allocate a fragment. 262 */ 263 unsigned int pagecnt_bias; 264 bool pfmemalloc; 265 }; 266 267 typedef unsigned long vm_flags_t; 268 269 /* 270 * A region containing a mapping of a non-memory backed file under NOMMU 271 * conditions. These are held in a global tree and are pinned by the VMAs that 272 * map parts of them. 273 */ 274 struct vm_region { 275 struct rb_node vm_rb; /* link in global region tree */ 276 vm_flags_t vm_flags; /* VMA vm_flags */ 277 unsigned long vm_start; /* start address of region */ 278 unsigned long vm_end; /* region initialised to here */ 279 unsigned long vm_top; /* region allocated to here */ 280 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 281 struct file *vm_file; /* the backing file or NULL */ 282 283 int vm_usage; /* region usage count (access under nommu_region_sem) */ 284 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 285 * this region */ 286 }; 287 288 #ifdef CONFIG_USERFAULTFD 289 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 290 struct vm_userfaultfd_ctx { 291 struct userfaultfd_ctx *ctx; 292 }; 293 #else /* CONFIG_USERFAULTFD */ 294 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 295 struct vm_userfaultfd_ctx {}; 296 #endif /* CONFIG_USERFAULTFD */ 297 298 /* 299 * This struct describes a virtual memory area. There is one of these 300 * per VM-area/task. A VM area is any part of the process virtual memory 301 * space that has a special rule for the page-fault handlers (ie a shared 302 * library, the executable area etc). 303 */ 304 struct vm_area_struct { 305 /* The first cache line has the info for VMA tree walking. */ 306 307 unsigned long vm_start; /* Our start address within vm_mm. */ 308 unsigned long vm_end; /* The first byte after our end address 309 within vm_mm. */ 310 311 /* linked list of VM areas per task, sorted by address */ 312 struct vm_area_struct *vm_next, *vm_prev; 313 314 struct rb_node vm_rb; 315 316 /* 317 * Largest free memory gap in bytes to the left of this VMA. 318 * Either between this VMA and vma->vm_prev, or between one of the 319 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 320 * get_unmapped_area find a free area of the right size. 321 */ 322 unsigned long rb_subtree_gap; 323 324 /* Second cache line starts here. */ 325 326 struct mm_struct *vm_mm; /* The address space we belong to. */ 327 328 /* 329 * Access permissions of this VMA. 330 * See vmf_insert_mixed_prot() for discussion. 331 */ 332 pgprot_t vm_page_prot; 333 unsigned long vm_flags; /* Flags, see mm.h. */ 334 335 /* 336 * For areas with an address space and backing store, 337 * linkage into the address_space->i_mmap interval tree. 338 */ 339 struct { 340 struct rb_node rb; 341 unsigned long rb_subtree_last; 342 } shared; 343 344 /* 345 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 346 * list, after a COW of one of the file pages. A MAP_SHARED vma 347 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 348 * or brk vma (with NULL file) can only be in an anon_vma list. 349 */ 350 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 351 * page_table_lock */ 352 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 353 354 /* Function pointers to deal with this struct. */ 355 const struct vm_operations_struct *vm_ops; 356 357 /* Information about our backing store: */ 358 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 359 units */ 360 struct file * vm_file; /* File we map to (can be NULL). */ 361 void * vm_private_data; /* was vm_pte (shared mem) */ 362 363 #ifdef CONFIG_SWAP 364 atomic_long_t swap_readahead_info; 365 #endif 366 #ifndef CONFIG_MMU 367 struct vm_region *vm_region; /* NOMMU mapping region */ 368 #endif 369 #ifdef CONFIG_NUMA 370 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 371 #endif 372 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 373 } __randomize_layout; 374 375 struct core_thread { 376 struct task_struct *task; 377 struct core_thread *next; 378 }; 379 380 struct core_state { 381 atomic_t nr_threads; 382 struct core_thread dumper; 383 struct completion startup; 384 }; 385 386 struct kioctx_table; 387 struct mm_struct { 388 struct { 389 struct vm_area_struct *mmap; /* list of VMAs */ 390 struct rb_root mm_rb; 391 u64 vmacache_seqnum; /* per-thread vmacache */ 392 #ifdef CONFIG_MMU 393 unsigned long (*get_unmapped_area) (struct file *filp, 394 unsigned long addr, unsigned long len, 395 unsigned long pgoff, unsigned long flags); 396 #endif 397 unsigned long mmap_base; /* base of mmap area */ 398 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 399 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 400 /* Base adresses for compatible mmap() */ 401 unsigned long mmap_compat_base; 402 unsigned long mmap_compat_legacy_base; 403 #endif 404 unsigned long task_size; /* size of task vm space */ 405 unsigned long highest_vm_end; /* highest vma end address */ 406 pgd_t * pgd; 407 408 #ifdef CONFIG_MEMBARRIER 409 /** 410 * @membarrier_state: Flags controlling membarrier behavior. 411 * 412 * This field is close to @pgd to hopefully fit in the same 413 * cache-line, which needs to be touched by switch_mm(). 414 */ 415 atomic_t membarrier_state; 416 #endif 417 418 /** 419 * @mm_users: The number of users including userspace. 420 * 421 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 422 * drops to 0 (i.e. when the task exits and there are no other 423 * temporary reference holders), we also release a reference on 424 * @mm_count (which may then free the &struct mm_struct if 425 * @mm_count also drops to 0). 426 */ 427 atomic_t mm_users; 428 429 /** 430 * @mm_count: The number of references to &struct mm_struct 431 * (@mm_users count as 1). 432 * 433 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 434 * &struct mm_struct is freed. 435 */ 436 atomic_t mm_count; 437 438 #ifdef CONFIG_MMU 439 atomic_long_t pgtables_bytes; /* PTE page table pages */ 440 #endif 441 int map_count; /* number of VMAs */ 442 443 spinlock_t page_table_lock; /* Protects page tables and some 444 * counters 445 */ 446 struct rw_semaphore mmap_lock; 447 448 struct list_head mmlist; /* List of maybe swapped mm's. These 449 * are globally strung together off 450 * init_mm.mmlist, and are protected 451 * by mmlist_lock 452 */ 453 454 455 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 456 unsigned long hiwater_vm; /* High-water virtual memory usage */ 457 458 unsigned long total_vm; /* Total pages mapped */ 459 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 460 atomic64_t pinned_vm; /* Refcount permanently increased */ 461 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 462 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 463 unsigned long stack_vm; /* VM_STACK */ 464 unsigned long def_flags; 465 466 spinlock_t arg_lock; /* protect the below fields */ 467 unsigned long start_code, end_code, start_data, end_data; 468 unsigned long start_brk, brk, start_stack; 469 unsigned long arg_start, arg_end, env_start, env_end; 470 471 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 472 473 /* 474 * Special counters, in some configurations protected by the 475 * page_table_lock, in other configurations by being atomic. 476 */ 477 struct mm_rss_stat rss_stat; 478 479 struct linux_binfmt *binfmt; 480 481 /* Architecture-specific MM context */ 482 mm_context_t context; 483 484 unsigned long flags; /* Must use atomic bitops to access */ 485 486 struct core_state *core_state; /* coredumping support */ 487 488 #ifdef CONFIG_AIO 489 spinlock_t ioctx_lock; 490 struct kioctx_table __rcu *ioctx_table; 491 #endif 492 #ifdef CONFIG_MEMCG 493 /* 494 * "owner" points to a task that is regarded as the canonical 495 * user/owner of this mm. All of the following must be true in 496 * order for it to be changed: 497 * 498 * current == mm->owner 499 * current->mm != mm 500 * new_owner->mm == mm 501 * new_owner->alloc_lock is held 502 */ 503 struct task_struct __rcu *owner; 504 #endif 505 struct user_namespace *user_ns; 506 507 /* store ref to file /proc/<pid>/exe symlink points to */ 508 struct file __rcu *exe_file; 509 #ifdef CONFIG_MMU_NOTIFIER 510 struct mmu_notifier_subscriptions *notifier_subscriptions; 511 #endif 512 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 513 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 514 #endif 515 #ifdef CONFIG_NUMA_BALANCING 516 /* 517 * numa_next_scan is the next time that the PTEs will be marked 518 * pte_numa. NUMA hinting faults will gather statistics and 519 * migrate pages to new nodes if necessary. 520 */ 521 unsigned long numa_next_scan; 522 523 /* Restart point for scanning and setting pte_numa */ 524 unsigned long numa_scan_offset; 525 526 /* numa_scan_seq prevents two threads setting pte_numa */ 527 int numa_scan_seq; 528 #endif 529 /* 530 * An operation with batched TLB flushing is going on. Anything 531 * that can move process memory needs to flush the TLB when 532 * moving a PROT_NONE or PROT_NUMA mapped page. 533 */ 534 atomic_t tlb_flush_pending; 535 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 536 /* See flush_tlb_batched_pending() */ 537 bool tlb_flush_batched; 538 #endif 539 struct uprobes_state uprobes_state; 540 #ifdef CONFIG_HUGETLB_PAGE 541 atomic_long_t hugetlb_usage; 542 #endif 543 struct work_struct async_put_work; 544 } __randomize_layout; 545 546 /* 547 * The mm_cpumask needs to be at the end of mm_struct, because it 548 * is dynamically sized based on nr_cpu_ids. 549 */ 550 unsigned long cpu_bitmap[]; 551 }; 552 553 extern struct mm_struct init_mm; 554 555 /* Pointer magic because the dynamic array size confuses some compilers. */ 556 static inline void mm_init_cpumask(struct mm_struct *mm) 557 { 558 unsigned long cpu_bitmap = (unsigned long)mm; 559 560 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 561 cpumask_clear((struct cpumask *)cpu_bitmap); 562 } 563 564 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 565 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 566 { 567 return (struct cpumask *)&mm->cpu_bitmap; 568 } 569 570 struct mmu_gather; 571 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 572 unsigned long start, unsigned long end); 573 extern void tlb_finish_mmu(struct mmu_gather *tlb, 574 unsigned long start, unsigned long end); 575 576 static inline void init_tlb_flush_pending(struct mm_struct *mm) 577 { 578 atomic_set(&mm->tlb_flush_pending, 0); 579 } 580 581 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 582 { 583 atomic_inc(&mm->tlb_flush_pending); 584 /* 585 * The only time this value is relevant is when there are indeed pages 586 * to flush. And we'll only flush pages after changing them, which 587 * requires the PTL. 588 * 589 * So the ordering here is: 590 * 591 * atomic_inc(&mm->tlb_flush_pending); 592 * spin_lock(&ptl); 593 * ... 594 * set_pte_at(); 595 * spin_unlock(&ptl); 596 * 597 * spin_lock(&ptl) 598 * mm_tlb_flush_pending(); 599 * .... 600 * spin_unlock(&ptl); 601 * 602 * flush_tlb_range(); 603 * atomic_dec(&mm->tlb_flush_pending); 604 * 605 * Where the increment if constrained by the PTL unlock, it thus 606 * ensures that the increment is visible if the PTE modification is 607 * visible. After all, if there is no PTE modification, nobody cares 608 * about TLB flushes either. 609 * 610 * This very much relies on users (mm_tlb_flush_pending() and 611 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 612 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 613 * locks (PPC) the unlock of one doesn't order against the lock of 614 * another PTL. 615 * 616 * The decrement is ordered by the flush_tlb_range(), such that 617 * mm_tlb_flush_pending() will not return false unless all flushes have 618 * completed. 619 */ 620 } 621 622 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 623 { 624 /* 625 * See inc_tlb_flush_pending(). 626 * 627 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 628 * not order against TLB invalidate completion, which is what we need. 629 * 630 * Therefore we must rely on tlb_flush_*() to guarantee order. 631 */ 632 atomic_dec(&mm->tlb_flush_pending); 633 } 634 635 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 636 { 637 /* 638 * Must be called after having acquired the PTL; orders against that 639 * PTLs release and therefore ensures that if we observe the modified 640 * PTE we must also observe the increment from inc_tlb_flush_pending(). 641 * 642 * That is, it only guarantees to return true if there is a flush 643 * pending for _this_ PTL. 644 */ 645 return atomic_read(&mm->tlb_flush_pending); 646 } 647 648 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 649 { 650 /* 651 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 652 * for which there is a TLB flush pending in order to guarantee 653 * we've seen both that PTE modification and the increment. 654 * 655 * (no requirement on actually still holding the PTL, that is irrelevant) 656 */ 657 return atomic_read(&mm->tlb_flush_pending) > 1; 658 } 659 660 struct vm_fault; 661 662 /** 663 * typedef vm_fault_t - Return type for page fault handlers. 664 * 665 * Page fault handlers return a bitmask of %VM_FAULT values. 666 */ 667 typedef __bitwise unsigned int vm_fault_t; 668 669 /** 670 * enum vm_fault_reason - Page fault handlers return a bitmask of 671 * these values to tell the core VM what happened when handling the 672 * fault. Used to decide whether a process gets delivered SIGBUS or 673 * just gets major/minor fault counters bumped up. 674 * 675 * @VM_FAULT_OOM: Out Of Memory 676 * @VM_FAULT_SIGBUS: Bad access 677 * @VM_FAULT_MAJOR: Page read from storage 678 * @VM_FAULT_WRITE: Special case for get_user_pages 679 * @VM_FAULT_HWPOISON: Hit poisoned small page 680 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 681 * in upper bits 682 * @VM_FAULT_SIGSEGV: segmentation fault 683 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 684 * @VM_FAULT_LOCKED: ->fault locked the returned page 685 * @VM_FAULT_RETRY: ->fault blocked, must retry 686 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 687 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 688 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 689 * fsync() to complete (for synchronous page faults 690 * in DAX) 691 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 692 * 693 */ 694 enum vm_fault_reason { 695 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 696 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 697 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 698 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 699 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 700 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 701 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 702 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 703 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 704 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 705 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 706 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 707 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 708 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 709 }; 710 711 /* Encode hstate index for a hwpoisoned large page */ 712 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 713 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 714 715 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 716 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 717 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 718 719 #define VM_FAULT_RESULT_TRACE \ 720 { VM_FAULT_OOM, "OOM" }, \ 721 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 722 { VM_FAULT_MAJOR, "MAJOR" }, \ 723 { VM_FAULT_WRITE, "WRITE" }, \ 724 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 725 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 726 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 727 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 728 { VM_FAULT_LOCKED, "LOCKED" }, \ 729 { VM_FAULT_RETRY, "RETRY" }, \ 730 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 731 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 732 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 733 734 struct vm_special_mapping { 735 const char *name; /* The name, e.g. "[vdso]". */ 736 737 /* 738 * If .fault is not provided, this points to a 739 * NULL-terminated array of pages that back the special mapping. 740 * 741 * This must not be NULL unless .fault is provided. 742 */ 743 struct page **pages; 744 745 /* 746 * If non-NULL, then this is called to resolve page faults 747 * on the special mapping. If used, .pages is not checked. 748 */ 749 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 750 struct vm_area_struct *vma, 751 struct vm_fault *vmf); 752 753 int (*mremap)(const struct vm_special_mapping *sm, 754 struct vm_area_struct *new_vma); 755 }; 756 757 enum tlb_flush_reason { 758 TLB_FLUSH_ON_TASK_SWITCH, 759 TLB_REMOTE_SHOOTDOWN, 760 TLB_LOCAL_SHOOTDOWN, 761 TLB_LOCAL_MM_SHOOTDOWN, 762 TLB_REMOTE_SEND_IPI, 763 NR_TLB_FLUSH_REASONS, 764 }; 765 766 /* 767 * A swap entry has to fit into a "unsigned long", as the entry is hidden 768 * in the "index" field of the swapper address space. 769 */ 770 typedef struct { 771 unsigned long val; 772 } swp_entry_t; 773 774 #endif /* _LINUX_MM_TYPES_H */ 775