1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/list.h> 9 #include <linux/spinlock.h> 10 #include <linux/rbtree.h> 11 #include <linux/rwsem.h> 12 #include <linux/completion.h> 13 #include <linux/cpumask.h> 14 #include <linux/uprobes.h> 15 #include <linux/rcupdate.h> 16 #include <linux/page-flags-layout.h> 17 #include <linux/workqueue.h> 18 #include <linux/seqlock.h> 19 20 #include <asm/mmu.h> 21 22 #ifndef AT_VECTOR_SIZE_ARCH 23 #define AT_VECTOR_SIZE_ARCH 0 24 #endif 25 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 26 27 #define INIT_PASID 0 28 29 struct address_space; 30 struct mem_cgroup; 31 32 /* 33 * Each physical page in the system has a struct page associated with 34 * it to keep track of whatever it is we are using the page for at the 35 * moment. Note that we have no way to track which tasks are using 36 * a page, though if it is a pagecache page, rmap structures can tell us 37 * who is mapping it. 38 * 39 * If you allocate the page using alloc_pages(), you can use some of the 40 * space in struct page for your own purposes. The five words in the main 41 * union are available, except for bit 0 of the first word which must be 42 * kept clear. Many users use this word to store a pointer to an object 43 * which is guaranteed to be aligned. If you use the same storage as 44 * page->mapping, you must restore it to NULL before freeing the page. 45 * 46 * If your page will not be mapped to userspace, you can also use the four 47 * bytes in the mapcount union, but you must call page_mapcount_reset() 48 * before freeing it. 49 * 50 * If you want to use the refcount field, it must be used in such a way 51 * that other CPUs temporarily incrementing and then decrementing the 52 * refcount does not cause problems. On receiving the page from 53 * alloc_pages(), the refcount will be positive. 54 * 55 * If you allocate pages of order > 0, you can use some of the fields 56 * in each subpage, but you may need to restore some of their values 57 * afterwards. 58 * 59 * SLUB uses cmpxchg_double() to atomically update its freelist and 60 * counters. That requires that freelist & counters be adjacent and 61 * double-word aligned. We align all struct pages to double-word 62 * boundaries, and ensure that 'freelist' is aligned within the 63 * struct. 64 */ 65 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 66 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 67 #else 68 #define _struct_page_alignment 69 #endif 70 71 struct page { 72 unsigned long flags; /* Atomic flags, some possibly 73 * updated asynchronously */ 74 /* 75 * Five words (20/40 bytes) are available in this union. 76 * WARNING: bit 0 of the first word is used for PageTail(). That 77 * means the other users of this union MUST NOT use the bit to 78 * avoid collision and false-positive PageTail(). 79 */ 80 union { 81 struct { /* Page cache and anonymous pages */ 82 /** 83 * @lru: Pageout list, eg. active_list protected by 84 * lruvec->lru_lock. Sometimes used as a generic list 85 * by the page owner. 86 */ 87 struct list_head lru; 88 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 89 struct address_space *mapping; 90 pgoff_t index; /* Our offset within mapping. */ 91 /** 92 * @private: Mapping-private opaque data. 93 * Usually used for buffer_heads if PagePrivate. 94 * Used for swp_entry_t if PageSwapCache. 95 * Indicates order in the buddy system if PageBuddy. 96 */ 97 unsigned long private; 98 }; 99 struct { /* page_pool used by netstack */ 100 /** 101 * @pp_magic: magic value to avoid recycling non 102 * page_pool allocated pages. 103 */ 104 unsigned long pp_magic; 105 struct page_pool *pp; 106 unsigned long _pp_mapping_pad; 107 unsigned long dma_addr; 108 union { 109 /** 110 * dma_addr_upper: might require a 64-bit 111 * value on 32-bit architectures. 112 */ 113 unsigned long dma_addr_upper; 114 /** 115 * For frag page support, not supported in 116 * 32-bit architectures with 64-bit DMA. 117 */ 118 atomic_long_t pp_frag_count; 119 }; 120 }; 121 struct { /* slab, slob and slub */ 122 union { 123 struct list_head slab_list; 124 struct { /* Partial pages */ 125 struct page *next; 126 #ifdef CONFIG_64BIT 127 int pages; /* Nr of pages left */ 128 int pobjects; /* Approximate count */ 129 #else 130 short int pages; 131 short int pobjects; 132 #endif 133 }; 134 }; 135 struct kmem_cache *slab_cache; /* not slob */ 136 /* Double-word boundary */ 137 void *freelist; /* first free object */ 138 union { 139 void *s_mem; /* slab: first object */ 140 unsigned long counters; /* SLUB */ 141 struct { /* SLUB */ 142 unsigned inuse:16; 143 unsigned objects:15; 144 unsigned frozen:1; 145 }; 146 }; 147 }; 148 struct { /* Tail pages of compound page */ 149 unsigned long compound_head; /* Bit zero is set */ 150 151 /* First tail page only */ 152 unsigned char compound_dtor; 153 unsigned char compound_order; 154 atomic_t compound_mapcount; 155 unsigned int compound_nr; /* 1 << compound_order */ 156 }; 157 struct { /* Second tail page of compound page */ 158 unsigned long _compound_pad_1; /* compound_head */ 159 atomic_t hpage_pinned_refcount; 160 /* For both global and memcg */ 161 struct list_head deferred_list; 162 }; 163 struct { /* Page table pages */ 164 unsigned long _pt_pad_1; /* compound_head */ 165 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 166 unsigned long _pt_pad_2; /* mapping */ 167 union { 168 struct mm_struct *pt_mm; /* x86 pgds only */ 169 atomic_t pt_frag_refcount; /* powerpc */ 170 }; 171 #if ALLOC_SPLIT_PTLOCKS 172 spinlock_t *ptl; 173 #else 174 spinlock_t ptl; 175 #endif 176 }; 177 struct { /* ZONE_DEVICE pages */ 178 /** @pgmap: Points to the hosting device page map. */ 179 struct dev_pagemap *pgmap; 180 void *zone_device_data; 181 /* 182 * ZONE_DEVICE private pages are counted as being 183 * mapped so the next 3 words hold the mapping, index, 184 * and private fields from the source anonymous or 185 * page cache page while the page is migrated to device 186 * private memory. 187 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 188 * use the mapping, index, and private fields when 189 * pmem backed DAX files are mapped. 190 */ 191 }; 192 193 /** @rcu_head: You can use this to free a page by RCU. */ 194 struct rcu_head rcu_head; 195 }; 196 197 union { /* This union is 4 bytes in size. */ 198 /* 199 * If the page can be mapped to userspace, encodes the number 200 * of times this page is referenced by a page table. 201 */ 202 atomic_t _mapcount; 203 204 /* 205 * If the page is neither PageSlab nor mappable to userspace, 206 * the value stored here may help determine what this page 207 * is used for. See page-flags.h for a list of page types 208 * which are currently stored here. 209 */ 210 unsigned int page_type; 211 212 unsigned int active; /* SLAB */ 213 int units; /* SLOB */ 214 }; 215 216 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 217 atomic_t _refcount; 218 219 #ifdef CONFIG_MEMCG 220 unsigned long memcg_data; 221 #endif 222 223 /* 224 * On machines where all RAM is mapped into kernel address space, 225 * we can simply calculate the virtual address. On machines with 226 * highmem some memory is mapped into kernel virtual memory 227 * dynamically, so we need a place to store that address. 228 * Note that this field could be 16 bits on x86 ... ;) 229 * 230 * Architectures with slow multiplication can define 231 * WANT_PAGE_VIRTUAL in asm/page.h 232 */ 233 #if defined(WANT_PAGE_VIRTUAL) 234 void *virtual; /* Kernel virtual address (NULL if 235 not kmapped, ie. highmem) */ 236 #endif /* WANT_PAGE_VIRTUAL */ 237 238 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 239 int _last_cpupid; 240 #endif 241 } _struct_page_alignment; 242 243 /** 244 * struct folio - Represents a contiguous set of bytes. 245 * @flags: Identical to the page flags. 246 * @lru: Least Recently Used list; tracks how recently this folio was used. 247 * @mapping: The file this page belongs to, or refers to the anon_vma for 248 * anonymous memory. 249 * @index: Offset within the file, in units of pages. For anonymous memory, 250 * this is the index from the beginning of the mmap. 251 * @private: Filesystem per-folio data (see folio_attach_private()). 252 * Used for swp_entry_t if folio_test_swapcache(). 253 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 254 * find out how many times this folio is mapped by userspace. 255 * @_refcount: Do not access this member directly. Use folio_ref_count() 256 * to find how many references there are to this folio. 257 * @memcg_data: Memory Control Group data. 258 * 259 * A folio is a physically, virtually and logically contiguous set 260 * of bytes. It is a power-of-two in size, and it is aligned to that 261 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 262 * in the page cache, it is at a file offset which is a multiple of that 263 * power-of-two. It may be mapped into userspace at an address which is 264 * at an arbitrary page offset, but its kernel virtual address is aligned 265 * to its size. 266 */ 267 struct folio { 268 /* private: don't document the anon union */ 269 union { 270 struct { 271 /* public: */ 272 unsigned long flags; 273 struct list_head lru; 274 struct address_space *mapping; 275 pgoff_t index; 276 void *private; 277 atomic_t _mapcount; 278 atomic_t _refcount; 279 #ifdef CONFIG_MEMCG 280 unsigned long memcg_data; 281 #endif 282 /* private: the union with struct page is transitional */ 283 }; 284 struct page page; 285 }; 286 }; 287 288 static_assert(sizeof(struct page) == sizeof(struct folio)); 289 #define FOLIO_MATCH(pg, fl) \ 290 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 291 FOLIO_MATCH(flags, flags); 292 FOLIO_MATCH(lru, lru); 293 FOLIO_MATCH(compound_head, lru); 294 FOLIO_MATCH(index, index); 295 FOLIO_MATCH(private, private); 296 FOLIO_MATCH(_mapcount, _mapcount); 297 FOLIO_MATCH(_refcount, _refcount); 298 #ifdef CONFIG_MEMCG 299 FOLIO_MATCH(memcg_data, memcg_data); 300 #endif 301 #undef FOLIO_MATCH 302 303 static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 304 { 305 struct page *tail = &folio->page + 1; 306 return &tail->compound_mapcount; 307 } 308 309 static inline atomic_t *compound_mapcount_ptr(struct page *page) 310 { 311 return &page[1].compound_mapcount; 312 } 313 314 static inline atomic_t *compound_pincount_ptr(struct page *page) 315 { 316 return &page[2].hpage_pinned_refcount; 317 } 318 319 /* 320 * Used for sizing the vmemmap region on some architectures 321 */ 322 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 323 324 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 325 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 326 327 /* 328 * page_private can be used on tail pages. However, PagePrivate is only 329 * checked by the VM on the head page. So page_private on the tail pages 330 * should be used for data that's ancillary to the head page (eg attaching 331 * buffer heads to tail pages after attaching buffer heads to the head page) 332 */ 333 #define page_private(page) ((page)->private) 334 335 static inline void set_page_private(struct page *page, unsigned long private) 336 { 337 page->private = private; 338 } 339 340 static inline void *folio_get_private(struct folio *folio) 341 { 342 return folio->private; 343 } 344 345 struct page_frag_cache { 346 void * va; 347 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 348 __u16 offset; 349 __u16 size; 350 #else 351 __u32 offset; 352 #endif 353 /* we maintain a pagecount bias, so that we dont dirty cache line 354 * containing page->_refcount every time we allocate a fragment. 355 */ 356 unsigned int pagecnt_bias; 357 bool pfmemalloc; 358 }; 359 360 typedef unsigned long vm_flags_t; 361 362 /* 363 * A region containing a mapping of a non-memory backed file under NOMMU 364 * conditions. These are held in a global tree and are pinned by the VMAs that 365 * map parts of them. 366 */ 367 struct vm_region { 368 struct rb_node vm_rb; /* link in global region tree */ 369 vm_flags_t vm_flags; /* VMA vm_flags */ 370 unsigned long vm_start; /* start address of region */ 371 unsigned long vm_end; /* region initialised to here */ 372 unsigned long vm_top; /* region allocated to here */ 373 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 374 struct file *vm_file; /* the backing file or NULL */ 375 376 int vm_usage; /* region usage count (access under nommu_region_sem) */ 377 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 378 * this region */ 379 }; 380 381 #ifdef CONFIG_USERFAULTFD 382 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 383 struct vm_userfaultfd_ctx { 384 struct userfaultfd_ctx *ctx; 385 }; 386 #else /* CONFIG_USERFAULTFD */ 387 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 388 struct vm_userfaultfd_ctx {}; 389 #endif /* CONFIG_USERFAULTFD */ 390 391 /* 392 * This struct describes a virtual memory area. There is one of these 393 * per VM-area/task. A VM area is any part of the process virtual memory 394 * space that has a special rule for the page-fault handlers (ie a shared 395 * library, the executable area etc). 396 */ 397 struct vm_area_struct { 398 /* The first cache line has the info for VMA tree walking. */ 399 400 unsigned long vm_start; /* Our start address within vm_mm. */ 401 unsigned long vm_end; /* The first byte after our end address 402 within vm_mm. */ 403 404 /* linked list of VM areas per task, sorted by address */ 405 struct vm_area_struct *vm_next, *vm_prev; 406 407 struct rb_node vm_rb; 408 409 /* 410 * Largest free memory gap in bytes to the left of this VMA. 411 * Either between this VMA and vma->vm_prev, or between one of the 412 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 413 * get_unmapped_area find a free area of the right size. 414 */ 415 unsigned long rb_subtree_gap; 416 417 /* Second cache line starts here. */ 418 419 struct mm_struct *vm_mm; /* The address space we belong to. */ 420 421 /* 422 * Access permissions of this VMA. 423 * See vmf_insert_mixed_prot() for discussion. 424 */ 425 pgprot_t vm_page_prot; 426 unsigned long vm_flags; /* Flags, see mm.h. */ 427 428 /* 429 * For areas with an address space and backing store, 430 * linkage into the address_space->i_mmap interval tree. 431 */ 432 struct { 433 struct rb_node rb; 434 unsigned long rb_subtree_last; 435 } shared; 436 437 /* 438 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 439 * list, after a COW of one of the file pages. A MAP_SHARED vma 440 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 441 * or brk vma (with NULL file) can only be in an anon_vma list. 442 */ 443 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 444 * page_table_lock */ 445 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 446 447 /* Function pointers to deal with this struct. */ 448 const struct vm_operations_struct *vm_ops; 449 450 /* Information about our backing store: */ 451 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 452 units */ 453 struct file * vm_file; /* File we map to (can be NULL). */ 454 void * vm_private_data; /* was vm_pte (shared mem) */ 455 456 #ifdef CONFIG_SWAP 457 atomic_long_t swap_readahead_info; 458 #endif 459 #ifndef CONFIG_MMU 460 struct vm_region *vm_region; /* NOMMU mapping region */ 461 #endif 462 #ifdef CONFIG_NUMA 463 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 464 #endif 465 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 466 } __randomize_layout; 467 468 struct core_thread { 469 struct task_struct *task; 470 struct core_thread *next; 471 }; 472 473 struct core_state { 474 atomic_t nr_threads; 475 struct core_thread dumper; 476 struct completion startup; 477 }; 478 479 struct kioctx_table; 480 struct mm_struct { 481 struct { 482 struct vm_area_struct *mmap; /* list of VMAs */ 483 struct rb_root mm_rb; 484 u64 vmacache_seqnum; /* per-thread vmacache */ 485 #ifdef CONFIG_MMU 486 unsigned long (*get_unmapped_area) (struct file *filp, 487 unsigned long addr, unsigned long len, 488 unsigned long pgoff, unsigned long flags); 489 #endif 490 unsigned long mmap_base; /* base of mmap area */ 491 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 492 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 493 /* Base addresses for compatible mmap() */ 494 unsigned long mmap_compat_base; 495 unsigned long mmap_compat_legacy_base; 496 #endif 497 unsigned long task_size; /* size of task vm space */ 498 unsigned long highest_vm_end; /* highest vma end address */ 499 pgd_t * pgd; 500 501 #ifdef CONFIG_MEMBARRIER 502 /** 503 * @membarrier_state: Flags controlling membarrier behavior. 504 * 505 * This field is close to @pgd to hopefully fit in the same 506 * cache-line, which needs to be touched by switch_mm(). 507 */ 508 atomic_t membarrier_state; 509 #endif 510 511 /** 512 * @mm_users: The number of users including userspace. 513 * 514 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 515 * drops to 0 (i.e. when the task exits and there are no other 516 * temporary reference holders), we also release a reference on 517 * @mm_count (which may then free the &struct mm_struct if 518 * @mm_count also drops to 0). 519 */ 520 atomic_t mm_users; 521 522 /** 523 * @mm_count: The number of references to &struct mm_struct 524 * (@mm_users count as 1). 525 * 526 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 527 * &struct mm_struct is freed. 528 */ 529 atomic_t mm_count; 530 531 #ifdef CONFIG_MMU 532 atomic_long_t pgtables_bytes; /* PTE page table pages */ 533 #endif 534 int map_count; /* number of VMAs */ 535 536 spinlock_t page_table_lock; /* Protects page tables and some 537 * counters 538 */ 539 /* 540 * With some kernel config, the current mmap_lock's offset 541 * inside 'mm_struct' is at 0x120, which is very optimal, as 542 * its two hot fields 'count' and 'owner' sit in 2 different 543 * cachelines, and when mmap_lock is highly contended, both 544 * of the 2 fields will be accessed frequently, current layout 545 * will help to reduce cache bouncing. 546 * 547 * So please be careful with adding new fields before 548 * mmap_lock, which can easily push the 2 fields into one 549 * cacheline. 550 */ 551 struct rw_semaphore mmap_lock; 552 553 struct list_head mmlist; /* List of maybe swapped mm's. These 554 * are globally strung together off 555 * init_mm.mmlist, and are protected 556 * by mmlist_lock 557 */ 558 559 560 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 561 unsigned long hiwater_vm; /* High-water virtual memory usage */ 562 563 unsigned long total_vm; /* Total pages mapped */ 564 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 565 atomic64_t pinned_vm; /* Refcount permanently increased */ 566 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 567 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 568 unsigned long stack_vm; /* VM_STACK */ 569 unsigned long def_flags; 570 571 /** 572 * @write_protect_seq: Locked when any thread is write 573 * protecting pages mapped by this mm to enforce a later COW, 574 * for instance during page table copying for fork(). 575 */ 576 seqcount_t write_protect_seq; 577 578 spinlock_t arg_lock; /* protect the below fields */ 579 580 unsigned long start_code, end_code, start_data, end_data; 581 unsigned long start_brk, brk, start_stack; 582 unsigned long arg_start, arg_end, env_start, env_end; 583 584 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 585 586 /* 587 * Special counters, in some configurations protected by the 588 * page_table_lock, in other configurations by being atomic. 589 */ 590 struct mm_rss_stat rss_stat; 591 592 struct linux_binfmt *binfmt; 593 594 /* Architecture-specific MM context */ 595 mm_context_t context; 596 597 unsigned long flags; /* Must use atomic bitops to access */ 598 599 struct core_state *core_state; /* coredumping support */ 600 601 #ifdef CONFIG_AIO 602 spinlock_t ioctx_lock; 603 struct kioctx_table __rcu *ioctx_table; 604 #endif 605 #ifdef CONFIG_MEMCG 606 /* 607 * "owner" points to a task that is regarded as the canonical 608 * user/owner of this mm. All of the following must be true in 609 * order for it to be changed: 610 * 611 * current == mm->owner 612 * current->mm != mm 613 * new_owner->mm == mm 614 * new_owner->alloc_lock is held 615 */ 616 struct task_struct __rcu *owner; 617 #endif 618 struct user_namespace *user_ns; 619 620 /* store ref to file /proc/<pid>/exe symlink points to */ 621 struct file __rcu *exe_file; 622 #ifdef CONFIG_MMU_NOTIFIER 623 struct mmu_notifier_subscriptions *notifier_subscriptions; 624 #endif 625 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 626 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 627 #endif 628 #ifdef CONFIG_NUMA_BALANCING 629 /* 630 * numa_next_scan is the next time that the PTEs will be marked 631 * pte_numa. NUMA hinting faults will gather statistics and 632 * migrate pages to new nodes if necessary. 633 */ 634 unsigned long numa_next_scan; 635 636 /* Restart point for scanning and setting pte_numa */ 637 unsigned long numa_scan_offset; 638 639 /* numa_scan_seq prevents two threads setting pte_numa */ 640 int numa_scan_seq; 641 #endif 642 /* 643 * An operation with batched TLB flushing is going on. Anything 644 * that can move process memory needs to flush the TLB when 645 * moving a PROT_NONE or PROT_NUMA mapped page. 646 */ 647 atomic_t tlb_flush_pending; 648 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 649 /* See flush_tlb_batched_pending() */ 650 bool tlb_flush_batched; 651 #endif 652 struct uprobes_state uprobes_state; 653 #ifdef CONFIG_PREEMPT_RT 654 struct rcu_head delayed_drop; 655 #endif 656 #ifdef CONFIG_HUGETLB_PAGE 657 atomic_long_t hugetlb_usage; 658 #endif 659 struct work_struct async_put_work; 660 661 #ifdef CONFIG_IOMMU_SUPPORT 662 u32 pasid; 663 #endif 664 } __randomize_layout; 665 666 /* 667 * The mm_cpumask needs to be at the end of mm_struct, because it 668 * is dynamically sized based on nr_cpu_ids. 669 */ 670 unsigned long cpu_bitmap[]; 671 }; 672 673 extern struct mm_struct init_mm; 674 675 /* Pointer magic because the dynamic array size confuses some compilers. */ 676 static inline void mm_init_cpumask(struct mm_struct *mm) 677 { 678 unsigned long cpu_bitmap = (unsigned long)mm; 679 680 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 681 cpumask_clear((struct cpumask *)cpu_bitmap); 682 } 683 684 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 685 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 686 { 687 return (struct cpumask *)&mm->cpu_bitmap; 688 } 689 690 struct mmu_gather; 691 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 692 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 693 extern void tlb_finish_mmu(struct mmu_gather *tlb); 694 695 static inline void init_tlb_flush_pending(struct mm_struct *mm) 696 { 697 atomic_set(&mm->tlb_flush_pending, 0); 698 } 699 700 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 701 { 702 atomic_inc(&mm->tlb_flush_pending); 703 /* 704 * The only time this value is relevant is when there are indeed pages 705 * to flush. And we'll only flush pages after changing them, which 706 * requires the PTL. 707 * 708 * So the ordering here is: 709 * 710 * atomic_inc(&mm->tlb_flush_pending); 711 * spin_lock(&ptl); 712 * ... 713 * set_pte_at(); 714 * spin_unlock(&ptl); 715 * 716 * spin_lock(&ptl) 717 * mm_tlb_flush_pending(); 718 * .... 719 * spin_unlock(&ptl); 720 * 721 * flush_tlb_range(); 722 * atomic_dec(&mm->tlb_flush_pending); 723 * 724 * Where the increment if constrained by the PTL unlock, it thus 725 * ensures that the increment is visible if the PTE modification is 726 * visible. After all, if there is no PTE modification, nobody cares 727 * about TLB flushes either. 728 * 729 * This very much relies on users (mm_tlb_flush_pending() and 730 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 731 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 732 * locks (PPC) the unlock of one doesn't order against the lock of 733 * another PTL. 734 * 735 * The decrement is ordered by the flush_tlb_range(), such that 736 * mm_tlb_flush_pending() will not return false unless all flushes have 737 * completed. 738 */ 739 } 740 741 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 742 { 743 /* 744 * See inc_tlb_flush_pending(). 745 * 746 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 747 * not order against TLB invalidate completion, which is what we need. 748 * 749 * Therefore we must rely on tlb_flush_*() to guarantee order. 750 */ 751 atomic_dec(&mm->tlb_flush_pending); 752 } 753 754 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 755 { 756 /* 757 * Must be called after having acquired the PTL; orders against that 758 * PTLs release and therefore ensures that if we observe the modified 759 * PTE we must also observe the increment from inc_tlb_flush_pending(). 760 * 761 * That is, it only guarantees to return true if there is a flush 762 * pending for _this_ PTL. 763 */ 764 return atomic_read(&mm->tlb_flush_pending); 765 } 766 767 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 768 { 769 /* 770 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 771 * for which there is a TLB flush pending in order to guarantee 772 * we've seen both that PTE modification and the increment. 773 * 774 * (no requirement on actually still holding the PTL, that is irrelevant) 775 */ 776 return atomic_read(&mm->tlb_flush_pending) > 1; 777 } 778 779 struct vm_fault; 780 781 /** 782 * typedef vm_fault_t - Return type for page fault handlers. 783 * 784 * Page fault handlers return a bitmask of %VM_FAULT values. 785 */ 786 typedef __bitwise unsigned int vm_fault_t; 787 788 /** 789 * enum vm_fault_reason - Page fault handlers return a bitmask of 790 * these values to tell the core VM what happened when handling the 791 * fault. Used to decide whether a process gets delivered SIGBUS or 792 * just gets major/minor fault counters bumped up. 793 * 794 * @VM_FAULT_OOM: Out Of Memory 795 * @VM_FAULT_SIGBUS: Bad access 796 * @VM_FAULT_MAJOR: Page read from storage 797 * @VM_FAULT_WRITE: Special case for get_user_pages 798 * @VM_FAULT_HWPOISON: Hit poisoned small page 799 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 800 * in upper bits 801 * @VM_FAULT_SIGSEGV: segmentation fault 802 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 803 * @VM_FAULT_LOCKED: ->fault locked the returned page 804 * @VM_FAULT_RETRY: ->fault blocked, must retry 805 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 806 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 807 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 808 * fsync() to complete (for synchronous page faults 809 * in DAX) 810 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 811 * 812 */ 813 enum vm_fault_reason { 814 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 815 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 816 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 817 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 818 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 819 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 820 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 821 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 822 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 823 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 824 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 825 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 826 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 827 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 828 }; 829 830 /* Encode hstate index for a hwpoisoned large page */ 831 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 832 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 833 834 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 835 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 836 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 837 838 #define VM_FAULT_RESULT_TRACE \ 839 { VM_FAULT_OOM, "OOM" }, \ 840 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 841 { VM_FAULT_MAJOR, "MAJOR" }, \ 842 { VM_FAULT_WRITE, "WRITE" }, \ 843 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 844 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 845 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 846 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 847 { VM_FAULT_LOCKED, "LOCKED" }, \ 848 { VM_FAULT_RETRY, "RETRY" }, \ 849 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 850 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 851 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 852 853 struct vm_special_mapping { 854 const char *name; /* The name, e.g. "[vdso]". */ 855 856 /* 857 * If .fault is not provided, this points to a 858 * NULL-terminated array of pages that back the special mapping. 859 * 860 * This must not be NULL unless .fault is provided. 861 */ 862 struct page **pages; 863 864 /* 865 * If non-NULL, then this is called to resolve page faults 866 * on the special mapping. If used, .pages is not checked. 867 */ 868 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 869 struct vm_area_struct *vma, 870 struct vm_fault *vmf); 871 872 int (*mremap)(const struct vm_special_mapping *sm, 873 struct vm_area_struct *new_vma); 874 }; 875 876 enum tlb_flush_reason { 877 TLB_FLUSH_ON_TASK_SWITCH, 878 TLB_REMOTE_SHOOTDOWN, 879 TLB_LOCAL_SHOOTDOWN, 880 TLB_LOCAL_MM_SHOOTDOWN, 881 TLB_REMOTE_SEND_IPI, 882 NR_TLB_FLUSH_REASONS, 883 }; 884 885 /* 886 * A swap entry has to fit into a "unsigned long", as the entry is hidden 887 * in the "index" field of the swapper address space. 888 */ 889 typedef struct { 890 unsigned long val; 891 } swp_entry_t; 892 893 #endif /* _LINUX_MM_TYPES_H */ 894