1 #ifndef _LINUX_MM_TYPES_H 2 #define _LINUX_MM_TYPES_H 3 4 #include <linux/mm_types_task.h> 5 6 #include <linux/auxvec.h> 7 #include <linux/list.h> 8 #include <linux/spinlock.h> 9 #include <linux/rbtree.h> 10 #include <linux/rwsem.h> 11 #include <linux/completion.h> 12 #include <linux/cpumask.h> 13 #include <linux/uprobes.h> 14 #include <linux/page-flags-layout.h> 15 #include <linux/workqueue.h> 16 17 #include <asm/mmu.h> 18 19 #ifndef AT_VECTOR_SIZE_ARCH 20 #define AT_VECTOR_SIZE_ARCH 0 21 #endif 22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24 struct address_space; 25 struct mem_cgroup; 26 struct hmm; 27 28 /* 29 * Each physical page in the system has a struct page associated with 30 * it to keep track of whatever it is we are using the page for at the 31 * moment. Note that we have no way to track which tasks are using 32 * a page, though if it is a pagecache page, rmap structures can tell us 33 * who is mapping it. 34 * 35 * The objects in struct page are organized in double word blocks in 36 * order to allows us to use atomic double word operations on portions 37 * of struct page. That is currently only used by slub but the arrangement 38 * allows the use of atomic double word operations on the flags/mapping 39 * and lru list pointers also. 40 */ 41 struct page { 42 /* First double word block */ 43 unsigned long flags; /* Atomic flags, some possibly 44 * updated asynchronously */ 45 union { 46 struct address_space *mapping; /* If low bit clear, points to 47 * inode address_space, or NULL. 48 * If page mapped as anonymous 49 * memory, low bit is set, and 50 * it points to anon_vma object: 51 * see PAGE_MAPPING_ANON below. 52 */ 53 void *s_mem; /* slab first object */ 54 atomic_t compound_mapcount; /* first tail page */ 55 /* page_deferred_list().next -- second tail page */ 56 }; 57 58 /* Second double word */ 59 union { 60 pgoff_t index; /* Our offset within mapping. */ 61 void *freelist; /* sl[aou]b first free object */ 62 /* page_deferred_list().prev -- second tail page */ 63 }; 64 65 union { 66 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 67 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 68 /* Used for cmpxchg_double in slub */ 69 unsigned long counters; 70 #else 71 /* 72 * Keep _refcount separate from slub cmpxchg_double data. 73 * As the rest of the double word is protected by slab_lock 74 * but _refcount is not. 75 */ 76 unsigned counters; 77 #endif 78 struct { 79 80 union { 81 /* 82 * Count of ptes mapped in mms, to show when 83 * page is mapped & limit reverse map searches. 84 * 85 * Extra information about page type may be 86 * stored here for pages that are never mapped, 87 * in which case the value MUST BE <= -2. 88 * See page-flags.h for more details. 89 */ 90 atomic_t _mapcount; 91 92 unsigned int active; /* SLAB */ 93 struct { /* SLUB */ 94 unsigned inuse:16; 95 unsigned objects:15; 96 unsigned frozen:1; 97 }; 98 int units; /* SLOB */ 99 }; 100 /* 101 * Usage count, *USE WRAPPER FUNCTION* when manual 102 * accounting. See page_ref.h 103 */ 104 atomic_t _refcount; 105 }; 106 }; 107 108 /* 109 * Third double word block 110 * 111 * WARNING: bit 0 of the first word encode PageTail(). That means 112 * the rest users of the storage space MUST NOT use the bit to 113 * avoid collision and false-positive PageTail(). 114 */ 115 union { 116 struct list_head lru; /* Pageout list, eg. active_list 117 * protected by zone_lru_lock ! 118 * Can be used as a generic list 119 * by the page owner. 120 */ 121 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an 122 * lru or handled by a slab 123 * allocator, this points to the 124 * hosting device page map. 125 */ 126 struct { /* slub per cpu partial pages */ 127 struct page *next; /* Next partial slab */ 128 #ifdef CONFIG_64BIT 129 int pages; /* Nr of partial slabs left */ 130 int pobjects; /* Approximate # of objects */ 131 #else 132 short int pages; 133 short int pobjects; 134 #endif 135 }; 136 137 struct rcu_head rcu_head; /* Used by SLAB 138 * when destroying via RCU 139 */ 140 /* Tail pages of compound page */ 141 struct { 142 unsigned long compound_head; /* If bit zero is set */ 143 144 /* First tail page only */ 145 #ifdef CONFIG_64BIT 146 /* 147 * On 64 bit system we have enough space in struct page 148 * to encode compound_dtor and compound_order with 149 * unsigned int. It can help compiler generate better or 150 * smaller code on some archtectures. 151 */ 152 unsigned int compound_dtor; 153 unsigned int compound_order; 154 #else 155 unsigned short int compound_dtor; 156 unsigned short int compound_order; 157 #endif 158 }; 159 160 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 161 struct { 162 unsigned long __pad; /* do not overlay pmd_huge_pte 163 * with compound_head to avoid 164 * possible bit 0 collision. 165 */ 166 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 167 }; 168 #endif 169 }; 170 171 /* Remainder is not double word aligned */ 172 union { 173 unsigned long private; /* Mapping-private opaque data: 174 * usually used for buffer_heads 175 * if PagePrivate set; used for 176 * swp_entry_t if PageSwapCache; 177 * indicates order in the buddy 178 * system if PG_buddy is set. 179 */ 180 #if USE_SPLIT_PTE_PTLOCKS 181 #if ALLOC_SPLIT_PTLOCKS 182 spinlock_t *ptl; 183 #else 184 spinlock_t ptl; 185 #endif 186 #endif 187 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 188 }; 189 190 #ifdef CONFIG_MEMCG 191 struct mem_cgroup *mem_cgroup; 192 #endif 193 194 /* 195 * On machines where all RAM is mapped into kernel address space, 196 * we can simply calculate the virtual address. On machines with 197 * highmem some memory is mapped into kernel virtual memory 198 * dynamically, so we need a place to store that address. 199 * Note that this field could be 16 bits on x86 ... ;) 200 * 201 * Architectures with slow multiplication can define 202 * WANT_PAGE_VIRTUAL in asm/page.h 203 */ 204 #if defined(WANT_PAGE_VIRTUAL) 205 void *virtual; /* Kernel virtual address (NULL if 206 not kmapped, ie. highmem) */ 207 #endif /* WANT_PAGE_VIRTUAL */ 208 209 #ifdef CONFIG_KMEMCHECK 210 /* 211 * kmemcheck wants to track the status of each byte in a page; this 212 * is a pointer to such a status block. NULL if not tracked. 213 */ 214 void *shadow; 215 #endif 216 217 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 218 int _last_cpupid; 219 #endif 220 } 221 /* 222 * The struct page can be forced to be double word aligned so that atomic ops 223 * on double words work. The SLUB allocator can make use of such a feature. 224 */ 225 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 226 __aligned(2 * sizeof(unsigned long)) 227 #endif 228 ; 229 230 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 231 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 232 233 struct page_frag_cache { 234 void * va; 235 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 236 __u16 offset; 237 __u16 size; 238 #else 239 __u32 offset; 240 #endif 241 /* we maintain a pagecount bias, so that we dont dirty cache line 242 * containing page->_refcount every time we allocate a fragment. 243 */ 244 unsigned int pagecnt_bias; 245 bool pfmemalloc; 246 }; 247 248 typedef unsigned long vm_flags_t; 249 250 /* 251 * A region containing a mapping of a non-memory backed file under NOMMU 252 * conditions. These are held in a global tree and are pinned by the VMAs that 253 * map parts of them. 254 */ 255 struct vm_region { 256 struct rb_node vm_rb; /* link in global region tree */ 257 vm_flags_t vm_flags; /* VMA vm_flags */ 258 unsigned long vm_start; /* start address of region */ 259 unsigned long vm_end; /* region initialised to here */ 260 unsigned long vm_top; /* region allocated to here */ 261 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 262 struct file *vm_file; /* the backing file or NULL */ 263 264 int vm_usage; /* region usage count (access under nommu_region_sem) */ 265 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 266 * this region */ 267 }; 268 269 #ifdef CONFIG_USERFAULTFD 270 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 271 struct vm_userfaultfd_ctx { 272 struct userfaultfd_ctx *ctx; 273 }; 274 #else /* CONFIG_USERFAULTFD */ 275 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 276 struct vm_userfaultfd_ctx {}; 277 #endif /* CONFIG_USERFAULTFD */ 278 279 /* 280 * This struct defines a memory VMM memory area. There is one of these 281 * per VM-area/task. A VM area is any part of the process virtual memory 282 * space that has a special rule for the page-fault handlers (ie a shared 283 * library, the executable area etc). 284 */ 285 struct vm_area_struct { 286 /* The first cache line has the info for VMA tree walking. */ 287 288 unsigned long vm_start; /* Our start address within vm_mm. */ 289 unsigned long vm_end; /* The first byte after our end address 290 within vm_mm. */ 291 292 /* linked list of VM areas per task, sorted by address */ 293 struct vm_area_struct *vm_next, *vm_prev; 294 295 struct rb_node vm_rb; 296 297 /* 298 * Largest free memory gap in bytes to the left of this VMA. 299 * Either between this VMA and vma->vm_prev, or between one of the 300 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 301 * get_unmapped_area find a free area of the right size. 302 */ 303 unsigned long rb_subtree_gap; 304 305 /* Second cache line starts here. */ 306 307 struct mm_struct *vm_mm; /* The address space we belong to. */ 308 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 309 unsigned long vm_flags; /* Flags, see mm.h. */ 310 311 /* 312 * For areas with an address space and backing store, 313 * linkage into the address_space->i_mmap interval tree. 314 */ 315 struct { 316 struct rb_node rb; 317 unsigned long rb_subtree_last; 318 } shared; 319 320 /* 321 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 322 * list, after a COW of one of the file pages. A MAP_SHARED vma 323 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 324 * or brk vma (with NULL file) can only be in an anon_vma list. 325 */ 326 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 327 * page_table_lock */ 328 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 329 330 /* Function pointers to deal with this struct. */ 331 const struct vm_operations_struct *vm_ops; 332 333 /* Information about our backing store: */ 334 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 335 units */ 336 struct file * vm_file; /* File we map to (can be NULL). */ 337 void * vm_private_data; /* was vm_pte (shared mem) */ 338 339 atomic_long_t swap_readahead_info; 340 #ifndef CONFIG_MMU 341 struct vm_region *vm_region; /* NOMMU mapping region */ 342 #endif 343 #ifdef CONFIG_NUMA 344 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 345 #endif 346 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 347 } __randomize_layout; 348 349 struct core_thread { 350 struct task_struct *task; 351 struct core_thread *next; 352 }; 353 354 struct core_state { 355 atomic_t nr_threads; 356 struct core_thread dumper; 357 struct completion startup; 358 }; 359 360 struct kioctx_table; 361 struct mm_struct { 362 struct vm_area_struct *mmap; /* list of VMAs */ 363 struct rb_root mm_rb; 364 u32 vmacache_seqnum; /* per-thread vmacache */ 365 #ifdef CONFIG_MMU 366 unsigned long (*get_unmapped_area) (struct file *filp, 367 unsigned long addr, unsigned long len, 368 unsigned long pgoff, unsigned long flags); 369 #endif 370 unsigned long mmap_base; /* base of mmap area */ 371 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 372 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 373 /* Base adresses for compatible mmap() */ 374 unsigned long mmap_compat_base; 375 unsigned long mmap_compat_legacy_base; 376 #endif 377 unsigned long task_size; /* size of task vm space */ 378 unsigned long highest_vm_end; /* highest vma end address */ 379 pgd_t * pgd; 380 381 /** 382 * @mm_users: The number of users including userspace. 383 * 384 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops 385 * to 0 (i.e. when the task exits and there are no other temporary 386 * reference holders), we also release a reference on @mm_count 387 * (which may then free the &struct mm_struct if @mm_count also 388 * drops to 0). 389 */ 390 atomic_t mm_users; 391 392 /** 393 * @mm_count: The number of references to &struct mm_struct 394 * (@mm_users count as 1). 395 * 396 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 397 * &struct mm_struct is freed. 398 */ 399 atomic_t mm_count; 400 401 atomic_long_t nr_ptes; /* PTE page table pages */ 402 #if CONFIG_PGTABLE_LEVELS > 2 403 atomic_long_t nr_pmds; /* PMD page table pages */ 404 #endif 405 int map_count; /* number of VMAs */ 406 407 spinlock_t page_table_lock; /* Protects page tables and some counters */ 408 struct rw_semaphore mmap_sem; 409 410 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 411 * together off init_mm.mmlist, and are protected 412 * by mmlist_lock 413 */ 414 415 416 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 417 unsigned long hiwater_vm; /* High-water virtual memory usage */ 418 419 unsigned long total_vm; /* Total pages mapped */ 420 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 421 unsigned long pinned_vm; /* Refcount permanently increased */ 422 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 423 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 424 unsigned long stack_vm; /* VM_STACK */ 425 unsigned long def_flags; 426 unsigned long start_code, end_code, start_data, end_data; 427 unsigned long start_brk, brk, start_stack; 428 unsigned long arg_start, arg_end, env_start, env_end; 429 430 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 431 432 /* 433 * Special counters, in some configurations protected by the 434 * page_table_lock, in other configurations by being atomic. 435 */ 436 struct mm_rss_stat rss_stat; 437 438 struct linux_binfmt *binfmt; 439 440 cpumask_var_t cpu_vm_mask_var; 441 442 /* Architecture-specific MM context */ 443 mm_context_t context; 444 445 unsigned long flags; /* Must use atomic bitops to access the bits */ 446 447 struct core_state *core_state; /* coredumping support */ 448 #ifdef CONFIG_MEMBARRIER 449 atomic_t membarrier_state; 450 #endif 451 #ifdef CONFIG_AIO 452 spinlock_t ioctx_lock; 453 struct kioctx_table __rcu *ioctx_table; 454 #endif 455 #ifdef CONFIG_MEMCG 456 /* 457 * "owner" points to a task that is regarded as the canonical 458 * user/owner of this mm. All of the following must be true in 459 * order for it to be changed: 460 * 461 * current == mm->owner 462 * current->mm != mm 463 * new_owner->mm == mm 464 * new_owner->alloc_lock is held 465 */ 466 struct task_struct __rcu *owner; 467 #endif 468 struct user_namespace *user_ns; 469 470 /* store ref to file /proc/<pid>/exe symlink points to */ 471 struct file __rcu *exe_file; 472 #ifdef CONFIG_MMU_NOTIFIER 473 struct mmu_notifier_mm *mmu_notifier_mm; 474 #endif 475 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 476 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 477 #endif 478 #ifdef CONFIG_CPUMASK_OFFSTACK 479 struct cpumask cpumask_allocation; 480 #endif 481 #ifdef CONFIG_NUMA_BALANCING 482 /* 483 * numa_next_scan is the next time that the PTEs will be marked 484 * pte_numa. NUMA hinting faults will gather statistics and migrate 485 * pages to new nodes if necessary. 486 */ 487 unsigned long numa_next_scan; 488 489 /* Restart point for scanning and setting pte_numa */ 490 unsigned long numa_scan_offset; 491 492 /* numa_scan_seq prevents two threads setting pte_numa */ 493 int numa_scan_seq; 494 #endif 495 /* 496 * An operation with batched TLB flushing is going on. Anything that 497 * can move process memory needs to flush the TLB when moving a 498 * PROT_NONE or PROT_NUMA mapped page. 499 */ 500 atomic_t tlb_flush_pending; 501 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 502 /* See flush_tlb_batched_pending() */ 503 bool tlb_flush_batched; 504 #endif 505 struct uprobes_state uprobes_state; 506 #ifdef CONFIG_HUGETLB_PAGE 507 atomic_long_t hugetlb_usage; 508 #endif 509 struct work_struct async_put_work; 510 511 #if IS_ENABLED(CONFIG_HMM) 512 /* HMM needs to track a few things per mm */ 513 struct hmm *hmm; 514 #endif 515 } __randomize_layout; 516 517 extern struct mm_struct init_mm; 518 519 static inline void mm_init_cpumask(struct mm_struct *mm) 520 { 521 #ifdef CONFIG_CPUMASK_OFFSTACK 522 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 523 #endif 524 cpumask_clear(mm->cpu_vm_mask_var); 525 } 526 527 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 528 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 529 { 530 return mm->cpu_vm_mask_var; 531 } 532 533 struct mmu_gather; 534 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 535 unsigned long start, unsigned long end); 536 extern void tlb_finish_mmu(struct mmu_gather *tlb, 537 unsigned long start, unsigned long end); 538 539 static inline void init_tlb_flush_pending(struct mm_struct *mm) 540 { 541 atomic_set(&mm->tlb_flush_pending, 0); 542 } 543 544 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 545 { 546 atomic_inc(&mm->tlb_flush_pending); 547 /* 548 * The only time this value is relevant is when there are indeed pages 549 * to flush. And we'll only flush pages after changing them, which 550 * requires the PTL. 551 * 552 * So the ordering here is: 553 * 554 * atomic_inc(&mm->tlb_flush_pending); 555 * spin_lock(&ptl); 556 * ... 557 * set_pte_at(); 558 * spin_unlock(&ptl); 559 * 560 * spin_lock(&ptl) 561 * mm_tlb_flush_pending(); 562 * .... 563 * spin_unlock(&ptl); 564 * 565 * flush_tlb_range(); 566 * atomic_dec(&mm->tlb_flush_pending); 567 * 568 * Where the increment if constrained by the PTL unlock, it thus 569 * ensures that the increment is visible if the PTE modification is 570 * visible. After all, if there is no PTE modification, nobody cares 571 * about TLB flushes either. 572 * 573 * This very much relies on users (mm_tlb_flush_pending() and 574 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 575 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 576 * locks (PPC) the unlock of one doesn't order against the lock of 577 * another PTL. 578 * 579 * The decrement is ordered by the flush_tlb_range(), such that 580 * mm_tlb_flush_pending() will not return false unless all flushes have 581 * completed. 582 */ 583 } 584 585 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 586 { 587 /* 588 * See inc_tlb_flush_pending(). 589 * 590 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 591 * not order against TLB invalidate completion, which is what we need. 592 * 593 * Therefore we must rely on tlb_flush_*() to guarantee order. 594 */ 595 atomic_dec(&mm->tlb_flush_pending); 596 } 597 598 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 599 { 600 /* 601 * Must be called after having acquired the PTL; orders against that 602 * PTLs release and therefore ensures that if we observe the modified 603 * PTE we must also observe the increment from inc_tlb_flush_pending(). 604 * 605 * That is, it only guarantees to return true if there is a flush 606 * pending for _this_ PTL. 607 */ 608 return atomic_read(&mm->tlb_flush_pending); 609 } 610 611 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 612 { 613 /* 614 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 615 * for which there is a TLB flush pending in order to guarantee 616 * we've seen both that PTE modification and the increment. 617 * 618 * (no requirement on actually still holding the PTL, that is irrelevant) 619 */ 620 return atomic_read(&mm->tlb_flush_pending) > 1; 621 } 622 623 struct vm_fault; 624 625 struct vm_special_mapping { 626 const char *name; /* The name, e.g. "[vdso]". */ 627 628 /* 629 * If .fault is not provided, this points to a 630 * NULL-terminated array of pages that back the special mapping. 631 * 632 * This must not be NULL unless .fault is provided. 633 */ 634 struct page **pages; 635 636 /* 637 * If non-NULL, then this is called to resolve page faults 638 * on the special mapping. If used, .pages is not checked. 639 */ 640 int (*fault)(const struct vm_special_mapping *sm, 641 struct vm_area_struct *vma, 642 struct vm_fault *vmf); 643 644 int (*mremap)(const struct vm_special_mapping *sm, 645 struct vm_area_struct *new_vma); 646 }; 647 648 enum tlb_flush_reason { 649 TLB_FLUSH_ON_TASK_SWITCH, 650 TLB_REMOTE_SHOOTDOWN, 651 TLB_LOCAL_SHOOTDOWN, 652 TLB_LOCAL_MM_SHOOTDOWN, 653 TLB_REMOTE_SEND_IPI, 654 NR_TLB_FLUSH_REASONS, 655 }; 656 657 /* 658 * A swap entry has to fit into a "unsigned long", as the entry is hidden 659 * in the "index" field of the swapper address space. 660 */ 661 typedef struct { 662 unsigned long val; 663 } swp_entry_t; 664 665 #endif /* _LINUX_MM_TYPES_H */ 666