1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/list.h> 9 #include <linux/spinlock.h> 10 #include <linux/rbtree.h> 11 #include <linux/rwsem.h> 12 #include <linux/completion.h> 13 #include <linux/cpumask.h> 14 #include <linux/uprobes.h> 15 #include <linux/page-flags-layout.h> 16 #include <linux/workqueue.h> 17 18 #include <asm/mmu.h> 19 20 #ifndef AT_VECTOR_SIZE_ARCH 21 #define AT_VECTOR_SIZE_ARCH 0 22 #endif 23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 typedef int vm_fault_t; 26 27 struct address_space; 28 struct mem_cgroup; 29 struct hmm; 30 31 /* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * If you allocate the page using alloc_pages(), you can use some of the 39 * space in struct page for your own purposes. The five words in the main 40 * union are available, except for bit 0 of the first word which must be 41 * kept clear. Many users use this word to store a pointer to an object 42 * which is guaranteed to be aligned. If you use the same storage as 43 * page->mapping, you must restore it to NULL before freeing the page. 44 * 45 * If your page will not be mapped to userspace, you can also use the four 46 * bytes in the mapcount union, but you must call page_mapcount_reset() 47 * before freeing it. 48 * 49 * If you want to use the refcount field, it must be used in such a way 50 * that other CPUs temporarily incrementing and then decrementing the 51 * refcount does not cause problems. On receiving the page from 52 * alloc_pages(), the refcount will be positive. 53 * 54 * If you allocate pages of order > 0, you can use some of the fields 55 * in each subpage, but you may need to restore some of their values 56 * afterwards. 57 * 58 * SLUB uses cmpxchg_double() to atomically update its freelist and 59 * counters. That requires that freelist & counters be adjacent and 60 * double-word aligned. We align all struct pages to double-word 61 * boundaries, and ensure that 'freelist' is aligned within the 62 * struct. 63 */ 64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 65 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 66 #else 67 #define _struct_page_alignment 68 #endif 69 70 struct page { 71 unsigned long flags; /* Atomic flags, some possibly 72 * updated asynchronously */ 73 /* 74 * Five words (20/40 bytes) are available in this union. 75 * WARNING: bit 0 of the first word is used for PageTail(). That 76 * means the other users of this union MUST NOT use the bit to 77 * avoid collision and false-positive PageTail(). 78 */ 79 union { 80 struct { /* Page cache and anonymous pages */ 81 /** 82 * @lru: Pageout list, eg. active_list protected by 83 * zone_lru_lock. Sometimes used as a generic list 84 * by the page owner. 85 */ 86 struct list_head lru; 87 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 88 struct address_space *mapping; 89 pgoff_t index; /* Our offset within mapping. */ 90 /** 91 * @private: Mapping-private opaque data. 92 * Usually used for buffer_heads if PagePrivate. 93 * Used for swp_entry_t if PageSwapCache. 94 * Indicates order in the buddy system if PageBuddy. 95 */ 96 unsigned long private; 97 }; 98 struct { /* slab, slob and slub */ 99 union { 100 struct list_head slab_list; /* uses lru */ 101 struct { /* Partial pages */ 102 struct page *next; 103 #ifdef CONFIG_64BIT 104 int pages; /* Nr of pages left */ 105 int pobjects; /* Approximate count */ 106 #else 107 short int pages; 108 short int pobjects; 109 #endif 110 }; 111 }; 112 struct kmem_cache *slab_cache; /* not slob */ 113 /* Double-word boundary */ 114 void *freelist; /* first free object */ 115 union { 116 void *s_mem; /* slab: first object */ 117 unsigned long counters; /* SLUB */ 118 struct { /* SLUB */ 119 unsigned inuse:16; 120 unsigned objects:15; 121 unsigned frozen:1; 122 }; 123 }; 124 }; 125 struct { /* Tail pages of compound page */ 126 unsigned long compound_head; /* Bit zero is set */ 127 128 /* First tail page only */ 129 unsigned char compound_dtor; 130 unsigned char compound_order; 131 atomic_t compound_mapcount; 132 }; 133 struct { /* Second tail page of compound page */ 134 unsigned long _compound_pad_1; /* compound_head */ 135 unsigned long _compound_pad_2; 136 struct list_head deferred_list; 137 }; 138 struct { /* Page table pages */ 139 unsigned long _pt_pad_1; /* compound_head */ 140 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 141 unsigned long _pt_pad_2; /* mapping */ 142 union { 143 struct mm_struct *pt_mm; /* x86 pgds only */ 144 atomic_t pt_frag_refcount; /* powerpc */ 145 }; 146 #if ALLOC_SPLIT_PTLOCKS 147 spinlock_t *ptl; 148 #else 149 spinlock_t ptl; 150 #endif 151 }; 152 struct { /* ZONE_DEVICE pages */ 153 /** @pgmap: Points to the hosting device page map. */ 154 struct dev_pagemap *pgmap; 155 unsigned long hmm_data; 156 unsigned long _zd_pad_1; /* uses mapping */ 157 }; 158 159 /** @rcu_head: You can use this to free a page by RCU. */ 160 struct rcu_head rcu_head; 161 }; 162 163 union { /* This union is 4 bytes in size. */ 164 /* 165 * If the page can be mapped to userspace, encodes the number 166 * of times this page is referenced by a page table. 167 */ 168 atomic_t _mapcount; 169 170 /* 171 * If the page is neither PageSlab nor mappable to userspace, 172 * the value stored here may help determine what this page 173 * is used for. See page-flags.h for a list of page types 174 * which are currently stored here. 175 */ 176 unsigned int page_type; 177 178 unsigned int active; /* SLAB */ 179 int units; /* SLOB */ 180 }; 181 182 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 183 atomic_t _refcount; 184 185 #ifdef CONFIG_MEMCG 186 struct mem_cgroup *mem_cgroup; 187 #endif 188 189 /* 190 * On machines where all RAM is mapped into kernel address space, 191 * we can simply calculate the virtual address. On machines with 192 * highmem some memory is mapped into kernel virtual memory 193 * dynamically, so we need a place to store that address. 194 * Note that this field could be 16 bits on x86 ... ;) 195 * 196 * Architectures with slow multiplication can define 197 * WANT_PAGE_VIRTUAL in asm/page.h 198 */ 199 #if defined(WANT_PAGE_VIRTUAL) 200 void *virtual; /* Kernel virtual address (NULL if 201 not kmapped, ie. highmem) */ 202 #endif /* WANT_PAGE_VIRTUAL */ 203 204 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 205 int _last_cpupid; 206 #endif 207 } _struct_page_alignment; 208 209 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 210 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 211 212 struct page_frag_cache { 213 void * va; 214 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 215 __u16 offset; 216 __u16 size; 217 #else 218 __u32 offset; 219 #endif 220 /* we maintain a pagecount bias, so that we dont dirty cache line 221 * containing page->_refcount every time we allocate a fragment. 222 */ 223 unsigned int pagecnt_bias; 224 bool pfmemalloc; 225 }; 226 227 typedef unsigned long vm_flags_t; 228 229 /* 230 * A region containing a mapping of a non-memory backed file under NOMMU 231 * conditions. These are held in a global tree and are pinned by the VMAs that 232 * map parts of them. 233 */ 234 struct vm_region { 235 struct rb_node vm_rb; /* link in global region tree */ 236 vm_flags_t vm_flags; /* VMA vm_flags */ 237 unsigned long vm_start; /* start address of region */ 238 unsigned long vm_end; /* region initialised to here */ 239 unsigned long vm_top; /* region allocated to here */ 240 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 241 struct file *vm_file; /* the backing file or NULL */ 242 243 int vm_usage; /* region usage count (access under nommu_region_sem) */ 244 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 245 * this region */ 246 }; 247 248 #ifdef CONFIG_USERFAULTFD 249 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 250 struct vm_userfaultfd_ctx { 251 struct userfaultfd_ctx *ctx; 252 }; 253 #else /* CONFIG_USERFAULTFD */ 254 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 255 struct vm_userfaultfd_ctx {}; 256 #endif /* CONFIG_USERFAULTFD */ 257 258 /* 259 * This struct defines a memory VMM memory area. There is one of these 260 * per VM-area/task. A VM area is any part of the process virtual memory 261 * space that has a special rule for the page-fault handlers (ie a shared 262 * library, the executable area etc). 263 */ 264 struct vm_area_struct { 265 /* The first cache line has the info for VMA tree walking. */ 266 267 unsigned long vm_start; /* Our start address within vm_mm. */ 268 unsigned long vm_end; /* The first byte after our end address 269 within vm_mm. */ 270 271 /* linked list of VM areas per task, sorted by address */ 272 struct vm_area_struct *vm_next, *vm_prev; 273 274 struct rb_node vm_rb; 275 276 /* 277 * Largest free memory gap in bytes to the left of this VMA. 278 * Either between this VMA and vma->vm_prev, or between one of the 279 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 280 * get_unmapped_area find a free area of the right size. 281 */ 282 unsigned long rb_subtree_gap; 283 284 /* Second cache line starts here. */ 285 286 struct mm_struct *vm_mm; /* The address space we belong to. */ 287 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 288 unsigned long vm_flags; /* Flags, see mm.h. */ 289 290 /* 291 * For areas with an address space and backing store, 292 * linkage into the address_space->i_mmap interval tree. 293 */ 294 struct { 295 struct rb_node rb; 296 unsigned long rb_subtree_last; 297 } shared; 298 299 /* 300 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 301 * list, after a COW of one of the file pages. A MAP_SHARED vma 302 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 303 * or brk vma (with NULL file) can only be in an anon_vma list. 304 */ 305 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 306 * page_table_lock */ 307 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 308 309 /* Function pointers to deal with this struct. */ 310 const struct vm_operations_struct *vm_ops; 311 312 /* Information about our backing store: */ 313 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 314 units */ 315 struct file * vm_file; /* File we map to (can be NULL). */ 316 void * vm_private_data; /* was vm_pte (shared mem) */ 317 318 atomic_long_t swap_readahead_info; 319 #ifndef CONFIG_MMU 320 struct vm_region *vm_region; /* NOMMU mapping region */ 321 #endif 322 #ifdef CONFIG_NUMA 323 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 324 #endif 325 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 326 } __randomize_layout; 327 328 struct core_thread { 329 struct task_struct *task; 330 struct core_thread *next; 331 }; 332 333 struct core_state { 334 atomic_t nr_threads; 335 struct core_thread dumper; 336 struct completion startup; 337 }; 338 339 struct kioctx_table; 340 struct mm_struct { 341 struct vm_area_struct *mmap; /* list of VMAs */ 342 struct rb_root mm_rb; 343 u32 vmacache_seqnum; /* per-thread vmacache */ 344 #ifdef CONFIG_MMU 345 unsigned long (*get_unmapped_area) (struct file *filp, 346 unsigned long addr, unsigned long len, 347 unsigned long pgoff, unsigned long flags); 348 #endif 349 unsigned long mmap_base; /* base of mmap area */ 350 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 351 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 352 /* Base adresses for compatible mmap() */ 353 unsigned long mmap_compat_base; 354 unsigned long mmap_compat_legacy_base; 355 #endif 356 unsigned long task_size; /* size of task vm space */ 357 unsigned long highest_vm_end; /* highest vma end address */ 358 pgd_t * pgd; 359 360 /** 361 * @mm_users: The number of users including userspace. 362 * 363 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops 364 * to 0 (i.e. when the task exits and there are no other temporary 365 * reference holders), we also release a reference on @mm_count 366 * (which may then free the &struct mm_struct if @mm_count also 367 * drops to 0). 368 */ 369 atomic_t mm_users; 370 371 /** 372 * @mm_count: The number of references to &struct mm_struct 373 * (@mm_users count as 1). 374 * 375 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 376 * &struct mm_struct is freed. 377 */ 378 atomic_t mm_count; 379 380 #ifdef CONFIG_MMU 381 atomic_long_t pgtables_bytes; /* PTE page table pages */ 382 #endif 383 int map_count; /* number of VMAs */ 384 385 spinlock_t page_table_lock; /* Protects page tables and some counters */ 386 struct rw_semaphore mmap_sem; 387 388 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 389 * together off init_mm.mmlist, and are protected 390 * by mmlist_lock 391 */ 392 393 394 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 395 unsigned long hiwater_vm; /* High-water virtual memory usage */ 396 397 unsigned long total_vm; /* Total pages mapped */ 398 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 399 unsigned long pinned_vm; /* Refcount permanently increased */ 400 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 401 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 402 unsigned long stack_vm; /* VM_STACK */ 403 unsigned long def_flags; 404 405 spinlock_t arg_lock; /* protect the below fields */ 406 unsigned long start_code, end_code, start_data, end_data; 407 unsigned long start_brk, brk, start_stack; 408 unsigned long arg_start, arg_end, env_start, env_end; 409 410 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 411 412 /* 413 * Special counters, in some configurations protected by the 414 * page_table_lock, in other configurations by being atomic. 415 */ 416 struct mm_rss_stat rss_stat; 417 418 struct linux_binfmt *binfmt; 419 420 cpumask_var_t cpu_vm_mask_var; 421 422 /* Architecture-specific MM context */ 423 mm_context_t context; 424 425 unsigned long flags; /* Must use atomic bitops to access the bits */ 426 427 struct core_state *core_state; /* coredumping support */ 428 #ifdef CONFIG_MEMBARRIER 429 atomic_t membarrier_state; 430 #endif 431 #ifdef CONFIG_AIO 432 spinlock_t ioctx_lock; 433 struct kioctx_table __rcu *ioctx_table; 434 #endif 435 #ifdef CONFIG_MEMCG 436 /* 437 * "owner" points to a task that is regarded as the canonical 438 * user/owner of this mm. All of the following must be true in 439 * order for it to be changed: 440 * 441 * current == mm->owner 442 * current->mm != mm 443 * new_owner->mm == mm 444 * new_owner->alloc_lock is held 445 */ 446 struct task_struct __rcu *owner; 447 #endif 448 struct user_namespace *user_ns; 449 450 /* store ref to file /proc/<pid>/exe symlink points to */ 451 struct file __rcu *exe_file; 452 #ifdef CONFIG_MMU_NOTIFIER 453 struct mmu_notifier_mm *mmu_notifier_mm; 454 #endif 455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 456 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 457 #endif 458 #ifdef CONFIG_CPUMASK_OFFSTACK 459 struct cpumask cpumask_allocation; 460 #endif 461 #ifdef CONFIG_NUMA_BALANCING 462 /* 463 * numa_next_scan is the next time that the PTEs will be marked 464 * pte_numa. NUMA hinting faults will gather statistics and migrate 465 * pages to new nodes if necessary. 466 */ 467 unsigned long numa_next_scan; 468 469 /* Restart point for scanning and setting pte_numa */ 470 unsigned long numa_scan_offset; 471 472 /* numa_scan_seq prevents two threads setting pte_numa */ 473 int numa_scan_seq; 474 #endif 475 /* 476 * An operation with batched TLB flushing is going on. Anything that 477 * can move process memory needs to flush the TLB when moving a 478 * PROT_NONE or PROT_NUMA mapped page. 479 */ 480 atomic_t tlb_flush_pending; 481 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 482 /* See flush_tlb_batched_pending() */ 483 bool tlb_flush_batched; 484 #endif 485 struct uprobes_state uprobes_state; 486 #ifdef CONFIG_HUGETLB_PAGE 487 atomic_long_t hugetlb_usage; 488 #endif 489 struct work_struct async_put_work; 490 491 #if IS_ENABLED(CONFIG_HMM) 492 /* HMM needs to track a few things per mm */ 493 struct hmm *hmm; 494 #endif 495 } __randomize_layout; 496 497 extern struct mm_struct init_mm; 498 499 static inline void mm_init_cpumask(struct mm_struct *mm) 500 { 501 #ifdef CONFIG_CPUMASK_OFFSTACK 502 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 503 #endif 504 cpumask_clear(mm->cpu_vm_mask_var); 505 } 506 507 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 508 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 509 { 510 return mm->cpu_vm_mask_var; 511 } 512 513 struct mmu_gather; 514 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 515 unsigned long start, unsigned long end); 516 extern void tlb_finish_mmu(struct mmu_gather *tlb, 517 unsigned long start, unsigned long end); 518 519 static inline void init_tlb_flush_pending(struct mm_struct *mm) 520 { 521 atomic_set(&mm->tlb_flush_pending, 0); 522 } 523 524 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 525 { 526 atomic_inc(&mm->tlb_flush_pending); 527 /* 528 * The only time this value is relevant is when there are indeed pages 529 * to flush. And we'll only flush pages after changing them, which 530 * requires the PTL. 531 * 532 * So the ordering here is: 533 * 534 * atomic_inc(&mm->tlb_flush_pending); 535 * spin_lock(&ptl); 536 * ... 537 * set_pte_at(); 538 * spin_unlock(&ptl); 539 * 540 * spin_lock(&ptl) 541 * mm_tlb_flush_pending(); 542 * .... 543 * spin_unlock(&ptl); 544 * 545 * flush_tlb_range(); 546 * atomic_dec(&mm->tlb_flush_pending); 547 * 548 * Where the increment if constrained by the PTL unlock, it thus 549 * ensures that the increment is visible if the PTE modification is 550 * visible. After all, if there is no PTE modification, nobody cares 551 * about TLB flushes either. 552 * 553 * This very much relies on users (mm_tlb_flush_pending() and 554 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 555 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 556 * locks (PPC) the unlock of one doesn't order against the lock of 557 * another PTL. 558 * 559 * The decrement is ordered by the flush_tlb_range(), such that 560 * mm_tlb_flush_pending() will not return false unless all flushes have 561 * completed. 562 */ 563 } 564 565 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 566 { 567 /* 568 * See inc_tlb_flush_pending(). 569 * 570 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 571 * not order against TLB invalidate completion, which is what we need. 572 * 573 * Therefore we must rely on tlb_flush_*() to guarantee order. 574 */ 575 atomic_dec(&mm->tlb_flush_pending); 576 } 577 578 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 579 { 580 /* 581 * Must be called after having acquired the PTL; orders against that 582 * PTLs release and therefore ensures that if we observe the modified 583 * PTE we must also observe the increment from inc_tlb_flush_pending(). 584 * 585 * That is, it only guarantees to return true if there is a flush 586 * pending for _this_ PTL. 587 */ 588 return atomic_read(&mm->tlb_flush_pending); 589 } 590 591 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 592 { 593 /* 594 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 595 * for which there is a TLB flush pending in order to guarantee 596 * we've seen both that PTE modification and the increment. 597 * 598 * (no requirement on actually still holding the PTL, that is irrelevant) 599 */ 600 return atomic_read(&mm->tlb_flush_pending) > 1; 601 } 602 603 struct vm_fault; 604 605 struct vm_special_mapping { 606 const char *name; /* The name, e.g. "[vdso]". */ 607 608 /* 609 * If .fault is not provided, this points to a 610 * NULL-terminated array of pages that back the special mapping. 611 * 612 * This must not be NULL unless .fault is provided. 613 */ 614 struct page **pages; 615 616 /* 617 * If non-NULL, then this is called to resolve page faults 618 * on the special mapping. If used, .pages is not checked. 619 */ 620 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 621 struct vm_area_struct *vma, 622 struct vm_fault *vmf); 623 624 int (*mremap)(const struct vm_special_mapping *sm, 625 struct vm_area_struct *new_vma); 626 }; 627 628 enum tlb_flush_reason { 629 TLB_FLUSH_ON_TASK_SWITCH, 630 TLB_REMOTE_SHOOTDOWN, 631 TLB_LOCAL_SHOOTDOWN, 632 TLB_LOCAL_MM_SHOOTDOWN, 633 TLB_REMOTE_SEND_IPI, 634 NR_TLB_FLUSH_REASONS, 635 }; 636 637 /* 638 * A swap entry has to fit into a "unsigned long", as the entry is hidden 639 * in the "index" field of the swapper address space. 640 */ 641 typedef struct { 642 unsigned long val; 643 } swp_entry_t; 644 645 #endif /* _LINUX_MM_TYPES_H */ 646