xref: /linux-6.15/include/linux/mm_types.h (revision 8ea8814f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 
26 struct address_space;
27 struct mem_cgroup;
28 struct hmm;
29 
30 /*
31  * Each physical page in the system has a struct page associated with
32  * it to keep track of whatever it is we are using the page for at the
33  * moment. Note that we have no way to track which tasks are using
34  * a page, though if it is a pagecache page, rmap structures can tell us
35  * who is mapping it.
36  *
37  * If you allocate the page using alloc_pages(), you can use some of the
38  * space in struct page for your own purposes.  The five words in the main
39  * union are available, except for bit 0 of the first word which must be
40  * kept clear.  Many users use this word to store a pointer to an object
41  * which is guaranteed to be aligned.  If you use the same storage as
42  * page->mapping, you must restore it to NULL before freeing the page.
43  *
44  * If your page will not be mapped to userspace, you can also use the four
45  * bytes in the mapcount union, but you must call page_mapcount_reset()
46  * before freeing it.
47  *
48  * If you want to use the refcount field, it must be used in such a way
49  * that other CPUs temporarily incrementing and then decrementing the
50  * refcount does not cause problems.  On receiving the page from
51  * alloc_pages(), the refcount will be positive.
52  *
53  * If you allocate pages of order > 0, you can use some of the fields
54  * in each subpage, but you may need to restore some of their values
55  * afterwards.
56  *
57  * SLUB uses cmpxchg_double() to atomically update its freelist and
58  * counters.  That requires that freelist & counters be adjacent and
59  * double-word aligned.  We align all struct pages to double-word
60  * boundaries, and ensure that 'freelist' is aligned within the
61  * struct.
62  */
63 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
64 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
65 #else
66 #define _struct_page_alignment
67 #endif
68 
69 struct page {
70 	unsigned long flags;		/* Atomic flags, some possibly
71 					 * updated asynchronously */
72 	/*
73 	 * Five words (20/40 bytes) are available in this union.
74 	 * WARNING: bit 0 of the first word is used for PageTail(). That
75 	 * means the other users of this union MUST NOT use the bit to
76 	 * avoid collision and false-positive PageTail().
77 	 */
78 	union {
79 		struct {	/* Page cache and anonymous pages */
80 			/**
81 			 * @lru: Pageout list, eg. active_list protected by
82 			 * pgdat->lru_lock.  Sometimes used as a generic list
83 			 * by the page owner.
84 			 */
85 			struct list_head lru;
86 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
87 			struct address_space *mapping;
88 			pgoff_t index;		/* Our offset within mapping. */
89 			/**
90 			 * @private: Mapping-private opaque data.
91 			 * Usually used for buffer_heads if PagePrivate.
92 			 * Used for swp_entry_t if PageSwapCache.
93 			 * Indicates order in the buddy system if PageBuddy.
94 			 */
95 			unsigned long private;
96 		};
97 		struct {	/* page_pool used by netstack */
98 			/**
99 			 * @dma_addr: might require a 64-bit value even on
100 			 * 32-bit architectures.
101 			 */
102 			dma_addr_t dma_addr;
103 		};
104 		struct {	/* slab, slob and slub */
105 			union {
106 				struct list_head slab_list;	/* uses lru */
107 				struct {	/* Partial pages */
108 					struct page *next;
109 #ifdef CONFIG_64BIT
110 					int pages;	/* Nr of pages left */
111 					int pobjects;	/* Approximate count */
112 #else
113 					short int pages;
114 					short int pobjects;
115 #endif
116 				};
117 			};
118 			struct kmem_cache *slab_cache; /* not slob */
119 			/* Double-word boundary */
120 			void *freelist;		/* first free object */
121 			union {
122 				void *s_mem;	/* slab: first object */
123 				unsigned long counters;		/* SLUB */
124 				struct {			/* SLUB */
125 					unsigned inuse:16;
126 					unsigned objects:15;
127 					unsigned frozen:1;
128 				};
129 			};
130 		};
131 		struct {	/* Tail pages of compound page */
132 			unsigned long compound_head;	/* Bit zero is set */
133 
134 			/* First tail page only */
135 			unsigned char compound_dtor;
136 			unsigned char compound_order;
137 			atomic_t compound_mapcount;
138 		};
139 		struct {	/* Second tail page of compound page */
140 			unsigned long _compound_pad_1;	/* compound_head */
141 			unsigned long _compound_pad_2;
142 			struct list_head deferred_list;
143 		};
144 		struct {	/* Page table pages */
145 			unsigned long _pt_pad_1;	/* compound_head */
146 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 			unsigned long _pt_pad_2;	/* mapping */
148 			union {
149 				struct mm_struct *pt_mm; /* x86 pgds only */
150 				atomic_t pt_frag_refcount; /* powerpc */
151 			};
152 #if ALLOC_SPLIT_PTLOCKS
153 			spinlock_t *ptl;
154 #else
155 			spinlock_t ptl;
156 #endif
157 		};
158 		struct {	/* ZONE_DEVICE pages */
159 			/** @pgmap: Points to the hosting device page map. */
160 			struct dev_pagemap *pgmap;
161 			unsigned long hmm_data;
162 			unsigned long _zd_pad_1;	/* uses mapping */
163 		};
164 
165 		/** @rcu_head: You can use this to free a page by RCU. */
166 		struct rcu_head rcu_head;
167 	};
168 
169 	union {		/* This union is 4 bytes in size. */
170 		/*
171 		 * If the page can be mapped to userspace, encodes the number
172 		 * of times this page is referenced by a page table.
173 		 */
174 		atomic_t _mapcount;
175 
176 		/*
177 		 * If the page is neither PageSlab nor mappable to userspace,
178 		 * the value stored here may help determine what this page
179 		 * is used for.  See page-flags.h for a list of page types
180 		 * which are currently stored here.
181 		 */
182 		unsigned int page_type;
183 
184 		unsigned int active;		/* SLAB */
185 		int units;			/* SLOB */
186 	};
187 
188 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
189 	atomic_t _refcount;
190 
191 #ifdef CONFIG_MEMCG
192 	struct mem_cgroup *mem_cgroup;
193 #endif
194 
195 	/*
196 	 * On machines where all RAM is mapped into kernel address space,
197 	 * we can simply calculate the virtual address. On machines with
198 	 * highmem some memory is mapped into kernel virtual memory
199 	 * dynamically, so we need a place to store that address.
200 	 * Note that this field could be 16 bits on x86 ... ;)
201 	 *
202 	 * Architectures with slow multiplication can define
203 	 * WANT_PAGE_VIRTUAL in asm/page.h
204 	 */
205 #if defined(WANT_PAGE_VIRTUAL)
206 	void *virtual;			/* Kernel virtual address (NULL if
207 					   not kmapped, ie. highmem) */
208 #endif /* WANT_PAGE_VIRTUAL */
209 
210 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
211 	int _last_cpupid;
212 #endif
213 } _struct_page_alignment;
214 
215 /*
216  * Used for sizing the vmemmap region on some architectures
217  */
218 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
219 
220 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
221 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
222 
223 struct page_frag_cache {
224 	void * va;
225 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
226 	__u16 offset;
227 	__u16 size;
228 #else
229 	__u32 offset;
230 #endif
231 	/* we maintain a pagecount bias, so that we dont dirty cache line
232 	 * containing page->_refcount every time we allocate a fragment.
233 	 */
234 	unsigned int		pagecnt_bias;
235 	bool pfmemalloc;
236 };
237 
238 typedef unsigned long vm_flags_t;
239 
240 /*
241  * A region containing a mapping of a non-memory backed file under NOMMU
242  * conditions.  These are held in a global tree and are pinned by the VMAs that
243  * map parts of them.
244  */
245 struct vm_region {
246 	struct rb_node	vm_rb;		/* link in global region tree */
247 	vm_flags_t	vm_flags;	/* VMA vm_flags */
248 	unsigned long	vm_start;	/* start address of region */
249 	unsigned long	vm_end;		/* region initialised to here */
250 	unsigned long	vm_top;		/* region allocated to here */
251 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
252 	struct file	*vm_file;	/* the backing file or NULL */
253 
254 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
255 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
256 						* this region */
257 };
258 
259 #ifdef CONFIG_USERFAULTFD
260 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
261 struct vm_userfaultfd_ctx {
262 	struct userfaultfd_ctx *ctx;
263 };
264 #else /* CONFIG_USERFAULTFD */
265 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
266 struct vm_userfaultfd_ctx {};
267 #endif /* CONFIG_USERFAULTFD */
268 
269 /*
270  * This struct defines a memory VMM memory area. There is one of these
271  * per VM-area/task.  A VM area is any part of the process virtual memory
272  * space that has a special rule for the page-fault handlers (ie a shared
273  * library, the executable area etc).
274  */
275 struct vm_area_struct {
276 	/* The first cache line has the info for VMA tree walking. */
277 
278 	unsigned long vm_start;		/* Our start address within vm_mm. */
279 	unsigned long vm_end;		/* The first byte after our end address
280 					   within vm_mm. */
281 
282 	/* linked list of VM areas per task, sorted by address */
283 	struct vm_area_struct *vm_next, *vm_prev;
284 
285 	struct rb_node vm_rb;
286 
287 	/*
288 	 * Largest free memory gap in bytes to the left of this VMA.
289 	 * Either between this VMA and vma->vm_prev, or between one of the
290 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
291 	 * get_unmapped_area find a free area of the right size.
292 	 */
293 	unsigned long rb_subtree_gap;
294 
295 	/* Second cache line starts here. */
296 
297 	struct mm_struct *vm_mm;	/* The address space we belong to. */
298 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
299 	unsigned long vm_flags;		/* Flags, see mm.h. */
300 
301 	/*
302 	 * For areas with an address space and backing store,
303 	 * linkage into the address_space->i_mmap interval tree.
304 	 */
305 	struct {
306 		struct rb_node rb;
307 		unsigned long rb_subtree_last;
308 	} shared;
309 
310 	/*
311 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
312 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
313 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
314 	 * or brk vma (with NULL file) can only be in an anon_vma list.
315 	 */
316 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
317 					  * page_table_lock */
318 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
319 
320 	/* Function pointers to deal with this struct. */
321 	const struct vm_operations_struct *vm_ops;
322 
323 	/* Information about our backing store: */
324 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
325 					   units */
326 	struct file * vm_file;		/* File we map to (can be NULL). */
327 	void * vm_private_data;		/* was vm_pte (shared mem) */
328 
329 	atomic_long_t swap_readahead_info;
330 #ifndef CONFIG_MMU
331 	struct vm_region *vm_region;	/* NOMMU mapping region */
332 #endif
333 #ifdef CONFIG_NUMA
334 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
335 #endif
336 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
337 } __randomize_layout;
338 
339 struct core_thread {
340 	struct task_struct *task;
341 	struct core_thread *next;
342 };
343 
344 struct core_state {
345 	atomic_t nr_threads;
346 	struct core_thread dumper;
347 	struct completion startup;
348 };
349 
350 struct kioctx_table;
351 struct mm_struct {
352 	struct {
353 		struct vm_area_struct *mmap;		/* list of VMAs */
354 		struct rb_root mm_rb;
355 		u64 vmacache_seqnum;                   /* per-thread vmacache */
356 #ifdef CONFIG_MMU
357 		unsigned long (*get_unmapped_area) (struct file *filp,
358 				unsigned long addr, unsigned long len,
359 				unsigned long pgoff, unsigned long flags);
360 #endif
361 		unsigned long mmap_base;	/* base of mmap area */
362 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
363 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
364 		/* Base adresses for compatible mmap() */
365 		unsigned long mmap_compat_base;
366 		unsigned long mmap_compat_legacy_base;
367 #endif
368 		unsigned long task_size;	/* size of task vm space */
369 		unsigned long highest_vm_end;	/* highest vma end address */
370 		pgd_t * pgd;
371 
372 		/**
373 		 * @mm_users: The number of users including userspace.
374 		 *
375 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
376 		 * drops to 0 (i.e. when the task exits and there are no other
377 		 * temporary reference holders), we also release a reference on
378 		 * @mm_count (which may then free the &struct mm_struct if
379 		 * @mm_count also drops to 0).
380 		 */
381 		atomic_t mm_users;
382 
383 		/**
384 		 * @mm_count: The number of references to &struct mm_struct
385 		 * (@mm_users count as 1).
386 		 *
387 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
388 		 * &struct mm_struct is freed.
389 		 */
390 		atomic_t mm_count;
391 
392 #ifdef CONFIG_MMU
393 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
394 #endif
395 		int map_count;			/* number of VMAs */
396 
397 		spinlock_t page_table_lock; /* Protects page tables and some
398 					     * counters
399 					     */
400 		struct rw_semaphore mmap_sem;
401 
402 		struct list_head mmlist; /* List of maybe swapped mm's.	These
403 					  * are globally strung together off
404 					  * init_mm.mmlist, and are protected
405 					  * by mmlist_lock
406 					  */
407 
408 
409 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
410 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
411 
412 		unsigned long total_vm;	   /* Total pages mapped */
413 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
414 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
415 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
416 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
417 		unsigned long stack_vm;	   /* VM_STACK */
418 		unsigned long def_flags;
419 
420 		spinlock_t arg_lock; /* protect the below fields */
421 		unsigned long start_code, end_code, start_data, end_data;
422 		unsigned long start_brk, brk, start_stack;
423 		unsigned long arg_start, arg_end, env_start, env_end;
424 
425 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
426 
427 		/*
428 		 * Special counters, in some configurations protected by the
429 		 * page_table_lock, in other configurations by being atomic.
430 		 */
431 		struct mm_rss_stat rss_stat;
432 
433 		struct linux_binfmt *binfmt;
434 
435 		/* Architecture-specific MM context */
436 		mm_context_t context;
437 
438 		unsigned long flags; /* Must use atomic bitops to access */
439 
440 		struct core_state *core_state; /* coredumping support */
441 #ifdef CONFIG_MEMBARRIER
442 		atomic_t membarrier_state;
443 #endif
444 #ifdef CONFIG_AIO
445 		spinlock_t			ioctx_lock;
446 		struct kioctx_table __rcu	*ioctx_table;
447 #endif
448 #ifdef CONFIG_MEMCG
449 		/*
450 		 * "owner" points to a task that is regarded as the canonical
451 		 * user/owner of this mm. All of the following must be true in
452 		 * order for it to be changed:
453 		 *
454 		 * current == mm->owner
455 		 * current->mm != mm
456 		 * new_owner->mm == mm
457 		 * new_owner->alloc_lock is held
458 		 */
459 		struct task_struct __rcu *owner;
460 #endif
461 		struct user_namespace *user_ns;
462 
463 		/* store ref to file /proc/<pid>/exe symlink points to */
464 		struct file __rcu *exe_file;
465 #ifdef CONFIG_MMU_NOTIFIER
466 		struct mmu_notifier_mm *mmu_notifier_mm;
467 #endif
468 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
469 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
470 #endif
471 #ifdef CONFIG_NUMA_BALANCING
472 		/*
473 		 * numa_next_scan is the next time that the PTEs will be marked
474 		 * pte_numa. NUMA hinting faults will gather statistics and
475 		 * migrate pages to new nodes if necessary.
476 		 */
477 		unsigned long numa_next_scan;
478 
479 		/* Restart point for scanning and setting pte_numa */
480 		unsigned long numa_scan_offset;
481 
482 		/* numa_scan_seq prevents two threads setting pte_numa */
483 		int numa_scan_seq;
484 #endif
485 		/*
486 		 * An operation with batched TLB flushing is going on. Anything
487 		 * that can move process memory needs to flush the TLB when
488 		 * moving a PROT_NONE or PROT_NUMA mapped page.
489 		 */
490 		atomic_t tlb_flush_pending;
491 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
492 		/* See flush_tlb_batched_pending() */
493 		bool tlb_flush_batched;
494 #endif
495 		struct uprobes_state uprobes_state;
496 #ifdef CONFIG_HUGETLB_PAGE
497 		atomic_long_t hugetlb_usage;
498 #endif
499 		struct work_struct async_put_work;
500 
501 #if IS_ENABLED(CONFIG_HMM)
502 		/* HMM needs to track a few things per mm */
503 		struct hmm *hmm;
504 #endif
505 	} __randomize_layout;
506 
507 	/*
508 	 * The mm_cpumask needs to be at the end of mm_struct, because it
509 	 * is dynamically sized based on nr_cpu_ids.
510 	 */
511 	unsigned long cpu_bitmap[];
512 };
513 
514 extern struct mm_struct init_mm;
515 
516 /* Pointer magic because the dynamic array size confuses some compilers. */
517 static inline void mm_init_cpumask(struct mm_struct *mm)
518 {
519 	unsigned long cpu_bitmap = (unsigned long)mm;
520 
521 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
522 	cpumask_clear((struct cpumask *)cpu_bitmap);
523 }
524 
525 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
526 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
527 {
528 	return (struct cpumask *)&mm->cpu_bitmap;
529 }
530 
531 struct mmu_gather;
532 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
533 				unsigned long start, unsigned long end);
534 extern void tlb_finish_mmu(struct mmu_gather *tlb,
535 				unsigned long start, unsigned long end);
536 
537 static inline void init_tlb_flush_pending(struct mm_struct *mm)
538 {
539 	atomic_set(&mm->tlb_flush_pending, 0);
540 }
541 
542 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
543 {
544 	atomic_inc(&mm->tlb_flush_pending);
545 	/*
546 	 * The only time this value is relevant is when there are indeed pages
547 	 * to flush. And we'll only flush pages after changing them, which
548 	 * requires the PTL.
549 	 *
550 	 * So the ordering here is:
551 	 *
552 	 *	atomic_inc(&mm->tlb_flush_pending);
553 	 *	spin_lock(&ptl);
554 	 *	...
555 	 *	set_pte_at();
556 	 *	spin_unlock(&ptl);
557 	 *
558 	 *				spin_lock(&ptl)
559 	 *				mm_tlb_flush_pending();
560 	 *				....
561 	 *				spin_unlock(&ptl);
562 	 *
563 	 *	flush_tlb_range();
564 	 *	atomic_dec(&mm->tlb_flush_pending);
565 	 *
566 	 * Where the increment if constrained by the PTL unlock, it thus
567 	 * ensures that the increment is visible if the PTE modification is
568 	 * visible. After all, if there is no PTE modification, nobody cares
569 	 * about TLB flushes either.
570 	 *
571 	 * This very much relies on users (mm_tlb_flush_pending() and
572 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
573 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
574 	 * locks (PPC) the unlock of one doesn't order against the lock of
575 	 * another PTL.
576 	 *
577 	 * The decrement is ordered by the flush_tlb_range(), such that
578 	 * mm_tlb_flush_pending() will not return false unless all flushes have
579 	 * completed.
580 	 */
581 }
582 
583 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
584 {
585 	/*
586 	 * See inc_tlb_flush_pending().
587 	 *
588 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
589 	 * not order against TLB invalidate completion, which is what we need.
590 	 *
591 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
592 	 */
593 	atomic_dec(&mm->tlb_flush_pending);
594 }
595 
596 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
597 {
598 	/*
599 	 * Must be called after having acquired the PTL; orders against that
600 	 * PTLs release and therefore ensures that if we observe the modified
601 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
602 	 *
603 	 * That is, it only guarantees to return true if there is a flush
604 	 * pending for _this_ PTL.
605 	 */
606 	return atomic_read(&mm->tlb_flush_pending);
607 }
608 
609 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
610 {
611 	/*
612 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
613 	 * for which there is a TLB flush pending in order to guarantee
614 	 * we've seen both that PTE modification and the increment.
615 	 *
616 	 * (no requirement on actually still holding the PTL, that is irrelevant)
617 	 */
618 	return atomic_read(&mm->tlb_flush_pending) > 1;
619 }
620 
621 struct vm_fault;
622 
623 /**
624  * typedef vm_fault_t - Return type for page fault handlers.
625  *
626  * Page fault handlers return a bitmask of %VM_FAULT values.
627  */
628 typedef __bitwise unsigned int vm_fault_t;
629 
630 /**
631  * enum vm_fault_reason - Page fault handlers return a bitmask of
632  * these values to tell the core VM what happened when handling the
633  * fault. Used to decide whether a process gets delivered SIGBUS or
634  * just gets major/minor fault counters bumped up.
635  *
636  * @VM_FAULT_OOM:		Out Of Memory
637  * @VM_FAULT_SIGBUS:		Bad access
638  * @VM_FAULT_MAJOR:		Page read from storage
639  * @VM_FAULT_WRITE:		Special case for get_user_pages
640  * @VM_FAULT_HWPOISON:		Hit poisoned small page
641  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
642  *				in upper bits
643  * @VM_FAULT_SIGSEGV:		segmentation fault
644  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
645  * @VM_FAULT_LOCKED:		->fault locked the returned page
646  * @VM_FAULT_RETRY:		->fault blocked, must retry
647  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
648  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
649  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
650  *				fsync() to complete (for synchronous page faults
651  *				in DAX)
652  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
653  *
654  */
655 enum vm_fault_reason {
656 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
657 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
658 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
659 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
660 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
661 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
662 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
663 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
664 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
665 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
666 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
667 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
668 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
669 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
670 };
671 
672 /* Encode hstate index for a hwpoisoned large page */
673 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
674 #define VM_FAULT_GET_HINDEX(x) (((x) >> 16) & 0xf)
675 
676 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
677 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
678 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
679 
680 #define VM_FAULT_RESULT_TRACE \
681 	{ VM_FAULT_OOM,                 "OOM" },	\
682 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
683 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
684 	{ VM_FAULT_WRITE,               "WRITE" },	\
685 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
686 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
687 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
688 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
689 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
690 	{ VM_FAULT_RETRY,               "RETRY" },	\
691 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
692 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
693 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
694 
695 struct vm_special_mapping {
696 	const char *name;	/* The name, e.g. "[vdso]". */
697 
698 	/*
699 	 * If .fault is not provided, this points to a
700 	 * NULL-terminated array of pages that back the special mapping.
701 	 *
702 	 * This must not be NULL unless .fault is provided.
703 	 */
704 	struct page **pages;
705 
706 	/*
707 	 * If non-NULL, then this is called to resolve page faults
708 	 * on the special mapping.  If used, .pages is not checked.
709 	 */
710 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
711 				struct vm_area_struct *vma,
712 				struct vm_fault *vmf);
713 
714 	int (*mremap)(const struct vm_special_mapping *sm,
715 		     struct vm_area_struct *new_vma);
716 };
717 
718 enum tlb_flush_reason {
719 	TLB_FLUSH_ON_TASK_SWITCH,
720 	TLB_REMOTE_SHOOTDOWN,
721 	TLB_LOCAL_SHOOTDOWN,
722 	TLB_LOCAL_MM_SHOOTDOWN,
723 	TLB_REMOTE_SEND_IPI,
724 	NR_TLB_FLUSH_REASONS,
725 };
726 
727  /*
728   * A swap entry has to fit into a "unsigned long", as the entry is hidden
729   * in the "index" field of the swapper address space.
730   */
731 typedef struct {
732 	unsigned long val;
733 } swp_entry_t;
734 
735 #endif /* _LINUX_MM_TYPES_H */
736