xref: /linux-6.15/include/linux/mm_types.h (revision 6faeeea4)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17 
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22 
23 struct address_space;
24 struct mem_cgroup;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 typedef void compound_page_dtor(struct page *);
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * The objects in struct page are organized in double word blocks in
41  * order to allows us to use atomic double word operations on portions
42  * of struct page. That is currently only used by slub but the arrangement
43  * allows the use of atomic double word operations on the flags/mapping
44  * and lru list pointers also.
45  */
46 struct page {
47 	/* First double word block */
48 	unsigned long flags;		/* Atomic flags, some possibly
49 					 * updated asynchronously */
50 	union {
51 		struct address_space *mapping;	/* If low bit clear, points to
52 						 * inode address_space, or NULL.
53 						 * If page mapped as anonymous
54 						 * memory, low bit is set, and
55 						 * it points to anon_vma object:
56 						 * see PAGE_MAPPING_ANON below.
57 						 */
58 		void *s_mem;			/* slab first object */
59 	};
60 
61 	/* Second double word */
62 	struct {
63 		union {
64 			pgoff_t index;		/* Our offset within mapping. */
65 			void *freelist;		/* sl[aou]b first free object */
66 			bool pfmemalloc;	/* If set by the page allocator,
67 						 * ALLOC_NO_WATERMARKS was set
68 						 * and the low watermark was not
69 						 * met implying that the system
70 						 * is under some pressure. The
71 						 * caller should try ensure
72 						 * this page is only used to
73 						 * free other pages.
74 						 */
75 		};
76 
77 		union {
78 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
79 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
80 			/* Used for cmpxchg_double in slub */
81 			unsigned long counters;
82 #else
83 			/*
84 			 * Keep _count separate from slub cmpxchg_double data.
85 			 * As the rest of the double word is protected by
86 			 * slab_lock but _count is not.
87 			 */
88 			unsigned counters;
89 #endif
90 
91 			struct {
92 
93 				union {
94 					/*
95 					 * Count of ptes mapped in
96 					 * mms, to show when page is
97 					 * mapped & limit reverse map
98 					 * searches.
99 					 *
100 					 * Used also for tail pages
101 					 * refcounting instead of
102 					 * _count. Tail pages cannot
103 					 * be mapped and keeping the
104 					 * tail page _count zero at
105 					 * all times guarantees
106 					 * get_page_unless_zero() will
107 					 * never succeed on tail
108 					 * pages.
109 					 */
110 					atomic_t _mapcount;
111 
112 					struct { /* SLUB */
113 						unsigned inuse:16;
114 						unsigned objects:15;
115 						unsigned frozen:1;
116 					};
117 					int units;	/* SLOB */
118 				};
119 				atomic_t _count;		/* Usage count, see below. */
120 			};
121 			unsigned int active;	/* SLAB */
122 		};
123 	};
124 
125 	/* Third double word block */
126 	union {
127 		struct list_head lru;	/* Pageout list, eg. active_list
128 					 * protected by zone->lru_lock !
129 					 * Can be used as a generic list
130 					 * by the page owner.
131 					 */
132 		struct {		/* slub per cpu partial pages */
133 			struct page *next;	/* Next partial slab */
134 #ifdef CONFIG_64BIT
135 			int pages;	/* Nr of partial slabs left */
136 			int pobjects;	/* Approximate # of objects */
137 #else
138 			short int pages;
139 			short int pobjects;
140 #endif
141 		};
142 
143 		struct slab *slab_page; /* slab fields */
144 		struct rcu_head rcu_head;	/* Used by SLAB
145 						 * when destroying via RCU
146 						 */
147 		/* First tail page of compound page */
148 		struct {
149 			compound_page_dtor *compound_dtor;
150 			unsigned long compound_order;
151 		};
152 
153 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
154 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
155 #endif
156 	};
157 
158 	/* Remainder is not double word aligned */
159 	union {
160 		unsigned long private;		/* Mapping-private opaque data:
161 					 	 * usually used for buffer_heads
162 						 * if PagePrivate set; used for
163 						 * swp_entry_t if PageSwapCache;
164 						 * indicates order in the buddy
165 						 * system if PG_buddy is set.
166 						 */
167 #if USE_SPLIT_PTE_PTLOCKS
168 #if ALLOC_SPLIT_PTLOCKS
169 		spinlock_t *ptl;
170 #else
171 		spinlock_t ptl;
172 #endif
173 #endif
174 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
175 		struct page *first_page;	/* Compound tail pages */
176 	};
177 
178 #ifdef CONFIG_MEMCG
179 	struct mem_cgroup *mem_cgroup;
180 #endif
181 
182 	/*
183 	 * On machines where all RAM is mapped into kernel address space,
184 	 * we can simply calculate the virtual address. On machines with
185 	 * highmem some memory is mapped into kernel virtual memory
186 	 * dynamically, so we need a place to store that address.
187 	 * Note that this field could be 16 bits on x86 ... ;)
188 	 *
189 	 * Architectures with slow multiplication can define
190 	 * WANT_PAGE_VIRTUAL in asm/page.h
191 	 */
192 #if defined(WANT_PAGE_VIRTUAL)
193 	void *virtual;			/* Kernel virtual address (NULL if
194 					   not kmapped, ie. highmem) */
195 #endif /* WANT_PAGE_VIRTUAL */
196 
197 #ifdef CONFIG_KMEMCHECK
198 	/*
199 	 * kmemcheck wants to track the status of each byte in a page; this
200 	 * is a pointer to such a status block. NULL if not tracked.
201 	 */
202 	void *shadow;
203 #endif
204 
205 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
206 	int _last_cpupid;
207 #endif
208 }
209 /*
210  * The struct page can be forced to be double word aligned so that atomic ops
211  * on double words work. The SLUB allocator can make use of such a feature.
212  */
213 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
214 	__aligned(2 * sizeof(unsigned long))
215 #endif
216 ;
217 
218 struct page_frag {
219 	struct page *page;
220 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
221 	__u32 offset;
222 	__u32 size;
223 #else
224 	__u16 offset;
225 	__u16 size;
226 #endif
227 };
228 
229 typedef unsigned long __nocast vm_flags_t;
230 
231 /*
232  * A region containing a mapping of a non-memory backed file under NOMMU
233  * conditions.  These are held in a global tree and are pinned by the VMAs that
234  * map parts of them.
235  */
236 struct vm_region {
237 	struct rb_node	vm_rb;		/* link in global region tree */
238 	vm_flags_t	vm_flags;	/* VMA vm_flags */
239 	unsigned long	vm_start;	/* start address of region */
240 	unsigned long	vm_end;		/* region initialised to here */
241 	unsigned long	vm_top;		/* region allocated to here */
242 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
243 	struct file	*vm_file;	/* the backing file or NULL */
244 
245 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
246 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
247 						* this region */
248 };
249 
250 /*
251  * This struct defines a memory VMM memory area. There is one of these
252  * per VM-area/task.  A VM area is any part of the process virtual memory
253  * space that has a special rule for the page-fault handlers (ie a shared
254  * library, the executable area etc).
255  */
256 struct vm_area_struct {
257 	/* The first cache line has the info for VMA tree walking. */
258 
259 	unsigned long vm_start;		/* Our start address within vm_mm. */
260 	unsigned long vm_end;		/* The first byte after our end address
261 					   within vm_mm. */
262 
263 	/* linked list of VM areas per task, sorted by address */
264 	struct vm_area_struct *vm_next, *vm_prev;
265 
266 	struct rb_node vm_rb;
267 
268 	/*
269 	 * Largest free memory gap in bytes to the left of this VMA.
270 	 * Either between this VMA and vma->vm_prev, or between one of the
271 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
272 	 * get_unmapped_area find a free area of the right size.
273 	 */
274 	unsigned long rb_subtree_gap;
275 
276 	/* Second cache line starts here. */
277 
278 	struct mm_struct *vm_mm;	/* The address space we belong to. */
279 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
280 	unsigned long vm_flags;		/* Flags, see mm.h. */
281 
282 	/*
283 	 * For areas with an address space and backing store,
284 	 * linkage into the address_space->i_mmap interval tree.
285 	 */
286 	struct {
287 		struct rb_node rb;
288 		unsigned long rb_subtree_last;
289 	} shared;
290 
291 	/*
292 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
293 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
294 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
295 	 * or brk vma (with NULL file) can only be in an anon_vma list.
296 	 */
297 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
298 					  * page_table_lock */
299 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
300 
301 	/* Function pointers to deal with this struct. */
302 	const struct vm_operations_struct *vm_ops;
303 
304 	/* Information about our backing store: */
305 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
306 					   units, *not* PAGE_CACHE_SIZE */
307 	struct file * vm_file;		/* File we map to (can be NULL). */
308 	void * vm_private_data;		/* was vm_pte (shared mem) */
309 
310 #ifndef CONFIG_MMU
311 	struct vm_region *vm_region;	/* NOMMU mapping region */
312 #endif
313 #ifdef CONFIG_NUMA
314 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
315 #endif
316 };
317 
318 struct core_thread {
319 	struct task_struct *task;
320 	struct core_thread *next;
321 };
322 
323 struct core_state {
324 	atomic_t nr_threads;
325 	struct core_thread dumper;
326 	struct completion startup;
327 };
328 
329 enum {
330 	MM_FILEPAGES,
331 	MM_ANONPAGES,
332 	MM_SWAPENTS,
333 	NR_MM_COUNTERS
334 };
335 
336 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
337 #define SPLIT_RSS_COUNTING
338 /* per-thread cached information, */
339 struct task_rss_stat {
340 	int events;	/* for synchronization threshold */
341 	int count[NR_MM_COUNTERS];
342 };
343 #endif /* USE_SPLIT_PTE_PTLOCKS */
344 
345 struct mm_rss_stat {
346 	atomic_long_t count[NR_MM_COUNTERS];
347 };
348 
349 struct kioctx_table;
350 struct mm_struct {
351 	struct vm_area_struct *mmap;		/* list of VMAs */
352 	struct rb_root mm_rb;
353 	u32 vmacache_seqnum;                   /* per-thread vmacache */
354 #ifdef CONFIG_MMU
355 	unsigned long (*get_unmapped_area) (struct file *filp,
356 				unsigned long addr, unsigned long len,
357 				unsigned long pgoff, unsigned long flags);
358 #endif
359 	unsigned long mmap_base;		/* base of mmap area */
360 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
361 	unsigned long task_size;		/* size of task vm space */
362 	unsigned long highest_vm_end;		/* highest vma end address */
363 	pgd_t * pgd;
364 	atomic_t mm_users;			/* How many users with user space? */
365 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
366 	atomic_long_t nr_ptes;			/* PTE page table pages */
367 	atomic_long_t nr_pmds;			/* PMD page table pages */
368 	int map_count;				/* number of VMAs */
369 
370 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
371 	struct rw_semaphore mmap_sem;
372 
373 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
374 						 * together off init_mm.mmlist, and are protected
375 						 * by mmlist_lock
376 						 */
377 
378 
379 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
380 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
381 
382 	unsigned long total_vm;		/* Total pages mapped */
383 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
384 	unsigned long pinned_vm;	/* Refcount permanently increased */
385 	unsigned long shared_vm;	/* Shared pages (files) */
386 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
387 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
388 	unsigned long def_flags;
389 	unsigned long start_code, end_code, start_data, end_data;
390 	unsigned long start_brk, brk, start_stack;
391 	unsigned long arg_start, arg_end, env_start, env_end;
392 
393 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
394 
395 	/*
396 	 * Special counters, in some configurations protected by the
397 	 * page_table_lock, in other configurations by being atomic.
398 	 */
399 	struct mm_rss_stat rss_stat;
400 
401 	struct linux_binfmt *binfmt;
402 
403 	cpumask_var_t cpu_vm_mask_var;
404 
405 	/* Architecture-specific MM context */
406 	mm_context_t context;
407 
408 	unsigned long flags; /* Must use atomic bitops to access the bits */
409 
410 	struct core_state *core_state; /* coredumping support */
411 #ifdef CONFIG_AIO
412 	spinlock_t			ioctx_lock;
413 	struct kioctx_table __rcu	*ioctx_table;
414 #endif
415 #ifdef CONFIG_MEMCG
416 	/*
417 	 * "owner" points to a task that is regarded as the canonical
418 	 * user/owner of this mm. All of the following must be true in
419 	 * order for it to be changed:
420 	 *
421 	 * current == mm->owner
422 	 * current->mm != mm
423 	 * new_owner->mm == mm
424 	 * new_owner->alloc_lock is held
425 	 */
426 	struct task_struct __rcu *owner;
427 #endif
428 
429 	/* store ref to file /proc/<pid>/exe symlink points to */
430 	struct file *exe_file;
431 #ifdef CONFIG_MMU_NOTIFIER
432 	struct mmu_notifier_mm *mmu_notifier_mm;
433 #endif
434 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
435 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
436 #endif
437 #ifdef CONFIG_CPUMASK_OFFSTACK
438 	struct cpumask cpumask_allocation;
439 #endif
440 #ifdef CONFIG_NUMA_BALANCING
441 	/*
442 	 * numa_next_scan is the next time that the PTEs will be marked
443 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
444 	 * pages to new nodes if necessary.
445 	 */
446 	unsigned long numa_next_scan;
447 
448 	/* Restart point for scanning and setting pte_numa */
449 	unsigned long numa_scan_offset;
450 
451 	/* numa_scan_seq prevents two threads setting pte_numa */
452 	int numa_scan_seq;
453 #endif
454 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
455 	/*
456 	 * An operation with batched TLB flushing is going on. Anything that
457 	 * can move process memory needs to flush the TLB when moving a
458 	 * PROT_NONE or PROT_NUMA mapped page.
459 	 */
460 	bool tlb_flush_pending;
461 #endif
462 	struct uprobes_state uprobes_state;
463 #ifdef CONFIG_X86_INTEL_MPX
464 	/* address of the bounds directory */
465 	void __user *bd_addr;
466 #endif
467 };
468 
469 static inline void mm_init_cpumask(struct mm_struct *mm)
470 {
471 #ifdef CONFIG_CPUMASK_OFFSTACK
472 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
473 #endif
474 	cpumask_clear(mm->cpu_vm_mask_var);
475 }
476 
477 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
478 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
479 {
480 	return mm->cpu_vm_mask_var;
481 }
482 
483 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
484 /*
485  * Memory barriers to keep this state in sync are graciously provided by
486  * the page table locks, outside of which no page table modifications happen.
487  * The barriers below prevent the compiler from re-ordering the instructions
488  * around the memory barriers that are already present in the code.
489  */
490 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
491 {
492 	barrier();
493 	return mm->tlb_flush_pending;
494 }
495 static inline void set_tlb_flush_pending(struct mm_struct *mm)
496 {
497 	mm->tlb_flush_pending = true;
498 
499 	/*
500 	 * Guarantee that the tlb_flush_pending store does not leak into the
501 	 * critical section updating the page tables
502 	 */
503 	smp_mb__before_spinlock();
504 }
505 /* Clearing is done after a TLB flush, which also provides a barrier. */
506 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
507 {
508 	barrier();
509 	mm->tlb_flush_pending = false;
510 }
511 #else
512 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
513 {
514 	return false;
515 }
516 static inline void set_tlb_flush_pending(struct mm_struct *mm)
517 {
518 }
519 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
520 {
521 }
522 #endif
523 
524 struct vm_special_mapping
525 {
526 	const char *name;
527 	struct page **pages;
528 };
529 
530 enum tlb_flush_reason {
531 	TLB_FLUSH_ON_TASK_SWITCH,
532 	TLB_REMOTE_SHOOTDOWN,
533 	TLB_LOCAL_SHOOTDOWN,
534 	TLB_LOCAL_MM_SHOOTDOWN,
535 	NR_TLB_FLUSH_REASONS,
536 };
537 
538  /*
539   * A swap entry has to fit into a "unsigned long", as the entry is hidden
540   * in the "index" field of the swapper address space.
541   */
542 typedef struct {
543 	unsigned long val;
544 } swp_entry_t;
545 
546 #endif /* _LINUX_MM_TYPES_H */
547