xref: /linux-6.15/include/linux/mm_types.h (revision 5e6ded2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/rwsem.h>
13 #include <linux/completion.h>
14 #include <linux/cpumask.h>
15 #include <linux/uprobes.h>
16 #include <linux/rcupdate.h>
17 #include <linux/page-flags-layout.h>
18 #include <linux/workqueue.h>
19 #include <linux/seqlock.h>
20 
21 #include <asm/mmu.h>
22 
23 #ifndef AT_VECTOR_SIZE_ARCH
24 #define AT_VECTOR_SIZE_ARCH 0
25 #endif
26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27 
28 #define INIT_PASID	0
29 
30 struct address_space;
31 struct mem_cgroup;
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * If you allocate the page using alloc_pages(), you can use some of the
41  * space in struct page for your own purposes.  The five words in the main
42  * union are available, except for bit 0 of the first word which must be
43  * kept clear.  Many users use this word to store a pointer to an object
44  * which is guaranteed to be aligned.  If you use the same storage as
45  * page->mapping, you must restore it to NULL before freeing the page.
46  *
47  * If your page will not be mapped to userspace, you can also use the four
48  * bytes in the mapcount union, but you must call page_mapcount_reset()
49  * before freeing it.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61  * That requires that freelist & counters in struct slab be adjacent and
62  * double-word aligned. Because struct slab currently just reinterprets the
63  * bits of struct page, we align all struct pages to double-word boundaries,
64  * and ensure that 'freelist' is aligned within struct slab.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			/**
84 			 * @lru: Pageout list, eg. active_list protected by
85 			 * lruvec->lru_lock.  Sometimes used as a generic list
86 			 * by the page owner.
87 			 */
88 			struct list_head lru;
89 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
90 			struct address_space *mapping;
91 			pgoff_t index;		/* Our offset within mapping. */
92 			/**
93 			 * @private: Mapping-private opaque data.
94 			 * Usually used for buffer_heads if PagePrivate.
95 			 * Used for swp_entry_t if PageSwapCache.
96 			 * Indicates order in the buddy system if PageBuddy.
97 			 */
98 			unsigned long private;
99 		};
100 		struct {	/* page_pool used by netstack */
101 			/**
102 			 * @pp_magic: magic value to avoid recycling non
103 			 * page_pool allocated pages.
104 			 */
105 			unsigned long pp_magic;
106 			struct page_pool *pp;
107 			unsigned long _pp_mapping_pad;
108 			unsigned long dma_addr;
109 			union {
110 				/**
111 				 * dma_addr_upper: might require a 64-bit
112 				 * value on 32-bit architectures.
113 				 */
114 				unsigned long dma_addr_upper;
115 				/**
116 				 * For frag page support, not supported in
117 				 * 32-bit architectures with 64-bit DMA.
118 				 */
119 				atomic_long_t pp_frag_count;
120 			};
121 		};
122 		struct {	/* slab, slob and slub */
123 			union {
124 				struct list_head slab_list;
125 				struct {	/* Partial pages */
126 					struct page *next;
127 #ifdef CONFIG_64BIT
128 					int pages;	/* Nr of pages left */
129 #else
130 					short int pages;
131 #endif
132 				};
133 			};
134 			struct kmem_cache *slab_cache; /* not slob */
135 			/* Double-word boundary */
136 			void *freelist;		/* first free object */
137 			union {
138 				void *s_mem;	/* slab: first object */
139 				unsigned long counters;		/* SLUB */
140 				struct {			/* SLUB */
141 					unsigned inuse:16;
142 					unsigned objects:15;
143 					unsigned frozen:1;
144 				};
145 			};
146 		};
147 		struct {	/* Tail pages of compound page */
148 			unsigned long compound_head;	/* Bit zero is set */
149 
150 			/* First tail page only */
151 			unsigned char compound_dtor;
152 			unsigned char compound_order;
153 			atomic_t compound_mapcount;
154 			unsigned int compound_nr; /* 1 << compound_order */
155 		};
156 		struct {	/* Second tail page of compound page */
157 			unsigned long _compound_pad_1;	/* compound_head */
158 			atomic_t hpage_pinned_refcount;
159 			/* For both global and memcg */
160 			struct list_head deferred_list;
161 		};
162 		struct {	/* Page table pages */
163 			unsigned long _pt_pad_1;	/* compound_head */
164 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
165 			unsigned long _pt_pad_2;	/* mapping */
166 			union {
167 				struct mm_struct *pt_mm; /* x86 pgds only */
168 				atomic_t pt_frag_refcount; /* powerpc */
169 			};
170 #if ALLOC_SPLIT_PTLOCKS
171 			spinlock_t *ptl;
172 #else
173 			spinlock_t ptl;
174 #endif
175 		};
176 		struct {	/* ZONE_DEVICE pages */
177 			/** @pgmap: Points to the hosting device page map. */
178 			struct dev_pagemap *pgmap;
179 			void *zone_device_data;
180 			/*
181 			 * ZONE_DEVICE private pages are counted as being
182 			 * mapped so the next 3 words hold the mapping, index,
183 			 * and private fields from the source anonymous or
184 			 * page cache page while the page is migrated to device
185 			 * private memory.
186 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
187 			 * use the mapping, index, and private fields when
188 			 * pmem backed DAX files are mapped.
189 			 */
190 		};
191 
192 		/** @rcu_head: You can use this to free a page by RCU. */
193 		struct rcu_head rcu_head;
194 	};
195 
196 	union {		/* This union is 4 bytes in size. */
197 		/*
198 		 * If the page can be mapped to userspace, encodes the number
199 		 * of times this page is referenced by a page table.
200 		 */
201 		atomic_t _mapcount;
202 
203 		/*
204 		 * If the page is neither PageSlab nor mappable to userspace,
205 		 * the value stored here may help determine what this page
206 		 * is used for.  See page-flags.h for a list of page types
207 		 * which are currently stored here.
208 		 */
209 		unsigned int page_type;
210 
211 		unsigned int active;		/* SLAB */
212 		int units;			/* SLOB */
213 	};
214 
215 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
216 	atomic_t _refcount;
217 
218 #ifdef CONFIG_MEMCG
219 	unsigned long memcg_data;
220 #endif
221 
222 	/*
223 	 * On machines where all RAM is mapped into kernel address space,
224 	 * we can simply calculate the virtual address. On machines with
225 	 * highmem some memory is mapped into kernel virtual memory
226 	 * dynamically, so we need a place to store that address.
227 	 * Note that this field could be 16 bits on x86 ... ;)
228 	 *
229 	 * Architectures with slow multiplication can define
230 	 * WANT_PAGE_VIRTUAL in asm/page.h
231 	 */
232 #if defined(WANT_PAGE_VIRTUAL)
233 	void *virtual;			/* Kernel virtual address (NULL if
234 					   not kmapped, ie. highmem) */
235 #endif /* WANT_PAGE_VIRTUAL */
236 
237 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
238 	int _last_cpupid;
239 #endif
240 } _struct_page_alignment;
241 
242 /**
243  * struct folio - Represents a contiguous set of bytes.
244  * @flags: Identical to the page flags.
245  * @lru: Least Recently Used list; tracks how recently this folio was used.
246  * @mapping: The file this page belongs to, or refers to the anon_vma for
247  *    anonymous memory.
248  * @index: Offset within the file, in units of pages.  For anonymous memory,
249  *    this is the index from the beginning of the mmap.
250  * @private: Filesystem per-folio data (see folio_attach_private()).
251  *    Used for swp_entry_t if folio_test_swapcache().
252  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
253  *    find out how many times this folio is mapped by userspace.
254  * @_refcount: Do not access this member directly.  Use folio_ref_count()
255  *    to find how many references there are to this folio.
256  * @memcg_data: Memory Control Group data.
257  *
258  * A folio is a physically, virtually and logically contiguous set
259  * of bytes.  It is a power-of-two in size, and it is aligned to that
260  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
261  * in the page cache, it is at a file offset which is a multiple of that
262  * power-of-two.  It may be mapped into userspace at an address which is
263  * at an arbitrary page offset, but its kernel virtual address is aligned
264  * to its size.
265  */
266 struct folio {
267 	/* private: don't document the anon union */
268 	union {
269 		struct {
270 	/* public: */
271 			unsigned long flags;
272 			struct list_head lru;
273 			struct address_space *mapping;
274 			pgoff_t index;
275 			void *private;
276 			atomic_t _mapcount;
277 			atomic_t _refcount;
278 #ifdef CONFIG_MEMCG
279 			unsigned long memcg_data;
280 #endif
281 	/* private: the union with struct page is transitional */
282 		};
283 		struct page page;
284 	};
285 };
286 
287 static_assert(sizeof(struct page) == sizeof(struct folio));
288 #define FOLIO_MATCH(pg, fl)						\
289 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
290 FOLIO_MATCH(flags, flags);
291 FOLIO_MATCH(lru, lru);
292 FOLIO_MATCH(compound_head, lru);
293 FOLIO_MATCH(index, index);
294 FOLIO_MATCH(private, private);
295 FOLIO_MATCH(_mapcount, _mapcount);
296 FOLIO_MATCH(_refcount, _refcount);
297 #ifdef CONFIG_MEMCG
298 FOLIO_MATCH(memcg_data, memcg_data);
299 #endif
300 #undef FOLIO_MATCH
301 
302 static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
303 {
304 	struct page *tail = &folio->page + 1;
305 	return &tail->compound_mapcount;
306 }
307 
308 static inline atomic_t *compound_mapcount_ptr(struct page *page)
309 {
310 	return &page[1].compound_mapcount;
311 }
312 
313 static inline atomic_t *compound_pincount_ptr(struct page *page)
314 {
315 	return &page[2].hpage_pinned_refcount;
316 }
317 
318 /*
319  * Used for sizing the vmemmap region on some architectures
320  */
321 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
322 
323 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
324 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
325 
326 /*
327  * page_private can be used on tail pages.  However, PagePrivate is only
328  * checked by the VM on the head page.  So page_private on the tail pages
329  * should be used for data that's ancillary to the head page (eg attaching
330  * buffer heads to tail pages after attaching buffer heads to the head page)
331  */
332 #define page_private(page)		((page)->private)
333 
334 static inline void set_page_private(struct page *page, unsigned long private)
335 {
336 	page->private = private;
337 }
338 
339 static inline void *folio_get_private(struct folio *folio)
340 {
341 	return folio->private;
342 }
343 
344 struct page_frag_cache {
345 	void * va;
346 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
347 	__u16 offset;
348 	__u16 size;
349 #else
350 	__u32 offset;
351 #endif
352 	/* we maintain a pagecount bias, so that we dont dirty cache line
353 	 * containing page->_refcount every time we allocate a fragment.
354 	 */
355 	unsigned int		pagecnt_bias;
356 	bool pfmemalloc;
357 };
358 
359 typedef unsigned long vm_flags_t;
360 
361 /*
362  * A region containing a mapping of a non-memory backed file under NOMMU
363  * conditions.  These are held in a global tree and are pinned by the VMAs that
364  * map parts of them.
365  */
366 struct vm_region {
367 	struct rb_node	vm_rb;		/* link in global region tree */
368 	vm_flags_t	vm_flags;	/* VMA vm_flags */
369 	unsigned long	vm_start;	/* start address of region */
370 	unsigned long	vm_end;		/* region initialised to here */
371 	unsigned long	vm_top;		/* region allocated to here */
372 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
373 	struct file	*vm_file;	/* the backing file or NULL */
374 
375 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
376 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
377 						* this region */
378 };
379 
380 #ifdef CONFIG_USERFAULTFD
381 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
382 struct vm_userfaultfd_ctx {
383 	struct userfaultfd_ctx *ctx;
384 };
385 #else /* CONFIG_USERFAULTFD */
386 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
387 struct vm_userfaultfd_ctx {};
388 #endif /* CONFIG_USERFAULTFD */
389 
390 struct anon_vma_name {
391 	struct kref kref;
392 	/* The name needs to be at the end because it is dynamically sized. */
393 	char name[];
394 };
395 
396 /*
397  * This struct describes a virtual memory area. There is one of these
398  * per VM-area/task. A VM area is any part of the process virtual memory
399  * space that has a special rule for the page-fault handlers (ie a shared
400  * library, the executable area etc).
401  */
402 struct vm_area_struct {
403 	/* The first cache line has the info for VMA tree walking. */
404 
405 	unsigned long vm_start;		/* Our start address within vm_mm. */
406 	unsigned long vm_end;		/* The first byte after our end address
407 					   within vm_mm. */
408 
409 	/* linked list of VM areas per task, sorted by address */
410 	struct vm_area_struct *vm_next, *vm_prev;
411 
412 	struct rb_node vm_rb;
413 
414 	/*
415 	 * Largest free memory gap in bytes to the left of this VMA.
416 	 * Either between this VMA and vma->vm_prev, or between one of the
417 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
418 	 * get_unmapped_area find a free area of the right size.
419 	 */
420 	unsigned long rb_subtree_gap;
421 
422 	/* Second cache line starts here. */
423 
424 	struct mm_struct *vm_mm;	/* The address space we belong to. */
425 
426 	/*
427 	 * Access permissions of this VMA.
428 	 * See vmf_insert_mixed_prot() for discussion.
429 	 */
430 	pgprot_t vm_page_prot;
431 	unsigned long vm_flags;		/* Flags, see mm.h. */
432 
433 	/*
434 	 * For areas with an address space and backing store,
435 	 * linkage into the address_space->i_mmap interval tree.
436 	 *
437 	 * For private anonymous mappings, a pointer to a null terminated string
438 	 * containing the name given to the vma, or NULL if unnamed.
439 	 */
440 
441 	union {
442 		struct {
443 			struct rb_node rb;
444 			unsigned long rb_subtree_last;
445 		} shared;
446 		/* Serialized by mmap_sem. */
447 		struct anon_vma_name *anon_name;
448 	};
449 
450 	/*
451 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
452 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
453 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
454 	 * or brk vma (with NULL file) can only be in an anon_vma list.
455 	 */
456 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
457 					  * page_table_lock */
458 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
459 
460 	/* Function pointers to deal with this struct. */
461 	const struct vm_operations_struct *vm_ops;
462 
463 	/* Information about our backing store: */
464 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
465 					   units */
466 	struct file * vm_file;		/* File we map to (can be NULL). */
467 	void * vm_private_data;		/* was vm_pte (shared mem) */
468 
469 #ifdef CONFIG_SWAP
470 	atomic_long_t swap_readahead_info;
471 #endif
472 #ifndef CONFIG_MMU
473 	struct vm_region *vm_region;	/* NOMMU mapping region */
474 #endif
475 #ifdef CONFIG_NUMA
476 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
477 #endif
478 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
479 } __randomize_layout;
480 
481 struct kioctx_table;
482 struct mm_struct {
483 	struct {
484 		struct vm_area_struct *mmap;		/* list of VMAs */
485 		struct rb_root mm_rb;
486 		u64 vmacache_seqnum;                   /* per-thread vmacache */
487 #ifdef CONFIG_MMU
488 		unsigned long (*get_unmapped_area) (struct file *filp,
489 				unsigned long addr, unsigned long len,
490 				unsigned long pgoff, unsigned long flags);
491 #endif
492 		unsigned long mmap_base;	/* base of mmap area */
493 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
494 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
495 		/* Base addresses for compatible mmap() */
496 		unsigned long mmap_compat_base;
497 		unsigned long mmap_compat_legacy_base;
498 #endif
499 		unsigned long task_size;	/* size of task vm space */
500 		unsigned long highest_vm_end;	/* highest vma end address */
501 		pgd_t * pgd;
502 
503 #ifdef CONFIG_MEMBARRIER
504 		/**
505 		 * @membarrier_state: Flags controlling membarrier behavior.
506 		 *
507 		 * This field is close to @pgd to hopefully fit in the same
508 		 * cache-line, which needs to be touched by switch_mm().
509 		 */
510 		atomic_t membarrier_state;
511 #endif
512 
513 		/**
514 		 * @mm_users: The number of users including userspace.
515 		 *
516 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
517 		 * drops to 0 (i.e. when the task exits and there are no other
518 		 * temporary reference holders), we also release a reference on
519 		 * @mm_count (which may then free the &struct mm_struct if
520 		 * @mm_count also drops to 0).
521 		 */
522 		atomic_t mm_users;
523 
524 		/**
525 		 * @mm_count: The number of references to &struct mm_struct
526 		 * (@mm_users count as 1).
527 		 *
528 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
529 		 * &struct mm_struct is freed.
530 		 */
531 		atomic_t mm_count;
532 
533 #ifdef CONFIG_MMU
534 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
535 #endif
536 		int map_count;			/* number of VMAs */
537 
538 		spinlock_t page_table_lock; /* Protects page tables and some
539 					     * counters
540 					     */
541 		/*
542 		 * With some kernel config, the current mmap_lock's offset
543 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
544 		 * its two hot fields 'count' and 'owner' sit in 2 different
545 		 * cachelines,  and when mmap_lock is highly contended, both
546 		 * of the 2 fields will be accessed frequently, current layout
547 		 * will help to reduce cache bouncing.
548 		 *
549 		 * So please be careful with adding new fields before
550 		 * mmap_lock, which can easily push the 2 fields into one
551 		 * cacheline.
552 		 */
553 		struct rw_semaphore mmap_lock;
554 
555 		struct list_head mmlist; /* List of maybe swapped mm's.	These
556 					  * are globally strung together off
557 					  * init_mm.mmlist, and are protected
558 					  * by mmlist_lock
559 					  */
560 
561 
562 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
563 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
564 
565 		unsigned long total_vm;	   /* Total pages mapped */
566 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
567 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
568 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
569 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
570 		unsigned long stack_vm;	   /* VM_STACK */
571 		unsigned long def_flags;
572 
573 		/**
574 		 * @write_protect_seq: Locked when any thread is write
575 		 * protecting pages mapped by this mm to enforce a later COW,
576 		 * for instance during page table copying for fork().
577 		 */
578 		seqcount_t write_protect_seq;
579 
580 		spinlock_t arg_lock; /* protect the below fields */
581 
582 		unsigned long start_code, end_code, start_data, end_data;
583 		unsigned long start_brk, brk, start_stack;
584 		unsigned long arg_start, arg_end, env_start, env_end;
585 
586 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
587 
588 		/*
589 		 * Special counters, in some configurations protected by the
590 		 * page_table_lock, in other configurations by being atomic.
591 		 */
592 		struct mm_rss_stat rss_stat;
593 
594 		struct linux_binfmt *binfmt;
595 
596 		/* Architecture-specific MM context */
597 		mm_context_t context;
598 
599 		unsigned long flags; /* Must use atomic bitops to access */
600 
601 #ifdef CONFIG_AIO
602 		spinlock_t			ioctx_lock;
603 		struct kioctx_table __rcu	*ioctx_table;
604 #endif
605 #ifdef CONFIG_MEMCG
606 		/*
607 		 * "owner" points to a task that is regarded as the canonical
608 		 * user/owner of this mm. All of the following must be true in
609 		 * order for it to be changed:
610 		 *
611 		 * current == mm->owner
612 		 * current->mm != mm
613 		 * new_owner->mm == mm
614 		 * new_owner->alloc_lock is held
615 		 */
616 		struct task_struct __rcu *owner;
617 #endif
618 		struct user_namespace *user_ns;
619 
620 		/* store ref to file /proc/<pid>/exe symlink points to */
621 		struct file __rcu *exe_file;
622 #ifdef CONFIG_MMU_NOTIFIER
623 		struct mmu_notifier_subscriptions *notifier_subscriptions;
624 #endif
625 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
626 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
627 #endif
628 #ifdef CONFIG_NUMA_BALANCING
629 		/*
630 		 * numa_next_scan is the next time that the PTEs will be marked
631 		 * pte_numa. NUMA hinting faults will gather statistics and
632 		 * migrate pages to new nodes if necessary.
633 		 */
634 		unsigned long numa_next_scan;
635 
636 		/* Restart point for scanning and setting pte_numa */
637 		unsigned long numa_scan_offset;
638 
639 		/* numa_scan_seq prevents two threads setting pte_numa */
640 		int numa_scan_seq;
641 #endif
642 		/*
643 		 * An operation with batched TLB flushing is going on. Anything
644 		 * that can move process memory needs to flush the TLB when
645 		 * moving a PROT_NONE or PROT_NUMA mapped page.
646 		 */
647 		atomic_t tlb_flush_pending;
648 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
649 		/* See flush_tlb_batched_pending() */
650 		atomic_t tlb_flush_batched;
651 #endif
652 		struct uprobes_state uprobes_state;
653 #ifdef CONFIG_PREEMPT_RT
654 		struct rcu_head delayed_drop;
655 #endif
656 #ifdef CONFIG_HUGETLB_PAGE
657 		atomic_long_t hugetlb_usage;
658 #endif
659 		struct work_struct async_put_work;
660 
661 #ifdef CONFIG_IOMMU_SUPPORT
662 		u32 pasid;
663 #endif
664 	} __randomize_layout;
665 
666 	/*
667 	 * The mm_cpumask needs to be at the end of mm_struct, because it
668 	 * is dynamically sized based on nr_cpu_ids.
669 	 */
670 	unsigned long cpu_bitmap[];
671 };
672 
673 extern struct mm_struct init_mm;
674 
675 /* Pointer magic because the dynamic array size confuses some compilers. */
676 static inline void mm_init_cpumask(struct mm_struct *mm)
677 {
678 	unsigned long cpu_bitmap = (unsigned long)mm;
679 
680 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
681 	cpumask_clear((struct cpumask *)cpu_bitmap);
682 }
683 
684 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
685 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
686 {
687 	return (struct cpumask *)&mm->cpu_bitmap;
688 }
689 
690 struct mmu_gather;
691 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
692 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
693 extern void tlb_finish_mmu(struct mmu_gather *tlb);
694 
695 struct vm_fault;
696 
697 /**
698  * typedef vm_fault_t - Return type for page fault handlers.
699  *
700  * Page fault handlers return a bitmask of %VM_FAULT values.
701  */
702 typedef __bitwise unsigned int vm_fault_t;
703 
704 /**
705  * enum vm_fault_reason - Page fault handlers return a bitmask of
706  * these values to tell the core VM what happened when handling the
707  * fault. Used to decide whether a process gets delivered SIGBUS or
708  * just gets major/minor fault counters bumped up.
709  *
710  * @VM_FAULT_OOM:		Out Of Memory
711  * @VM_FAULT_SIGBUS:		Bad access
712  * @VM_FAULT_MAJOR:		Page read from storage
713  * @VM_FAULT_WRITE:		Special case for get_user_pages
714  * @VM_FAULT_HWPOISON:		Hit poisoned small page
715  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
716  *				in upper bits
717  * @VM_FAULT_SIGSEGV:		segmentation fault
718  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
719  * @VM_FAULT_LOCKED:		->fault locked the returned page
720  * @VM_FAULT_RETRY:		->fault blocked, must retry
721  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
722  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
723  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
724  *				fsync() to complete (for synchronous page faults
725  *				in DAX)
726  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
727  *
728  */
729 enum vm_fault_reason {
730 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
731 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
732 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
733 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
734 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
735 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
736 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
737 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
738 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
739 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
740 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
741 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
742 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
743 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
744 };
745 
746 /* Encode hstate index for a hwpoisoned large page */
747 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
748 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
749 
750 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
751 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
752 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
753 
754 #define VM_FAULT_RESULT_TRACE \
755 	{ VM_FAULT_OOM,                 "OOM" },	\
756 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
757 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
758 	{ VM_FAULT_WRITE,               "WRITE" },	\
759 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
760 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
761 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
762 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
763 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
764 	{ VM_FAULT_RETRY,               "RETRY" },	\
765 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
766 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
767 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
768 
769 struct vm_special_mapping {
770 	const char *name;	/* The name, e.g. "[vdso]". */
771 
772 	/*
773 	 * If .fault is not provided, this points to a
774 	 * NULL-terminated array of pages that back the special mapping.
775 	 *
776 	 * This must not be NULL unless .fault is provided.
777 	 */
778 	struct page **pages;
779 
780 	/*
781 	 * If non-NULL, then this is called to resolve page faults
782 	 * on the special mapping.  If used, .pages is not checked.
783 	 */
784 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
785 				struct vm_area_struct *vma,
786 				struct vm_fault *vmf);
787 
788 	int (*mremap)(const struct vm_special_mapping *sm,
789 		     struct vm_area_struct *new_vma);
790 };
791 
792 enum tlb_flush_reason {
793 	TLB_FLUSH_ON_TASK_SWITCH,
794 	TLB_REMOTE_SHOOTDOWN,
795 	TLB_LOCAL_SHOOTDOWN,
796 	TLB_LOCAL_MM_SHOOTDOWN,
797 	TLB_REMOTE_SEND_IPI,
798 	NR_TLB_FLUSH_REASONS,
799 };
800 
801  /*
802   * A swap entry has to fit into a "unsigned long", as the entry is hidden
803   * in the "index" field of the swapper address space.
804   */
805 typedef struct {
806 	unsigned long val;
807 } swp_entry_t;
808 
809 /**
810  * enum fault_flag - Fault flag definitions.
811  * @FAULT_FLAG_WRITE: Fault was a write fault.
812  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
813  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
814  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
815  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
816  * @FAULT_FLAG_TRIED: The fault has been tried once.
817  * @FAULT_FLAG_USER: The fault originated in userspace.
818  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
819  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
820  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
821  *
822  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
823  * whether we would allow page faults to retry by specifying these two
824  * fault flags correctly.  Currently there can be three legal combinations:
825  *
826  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
827  *                              this is the first try
828  *
829  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
830  *                              we've already tried at least once
831  *
832  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
833  *
834  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
835  * be used.  Note that page faults can be allowed to retry for multiple times,
836  * in which case we'll have an initial fault with flags (a) then later on
837  * continuous faults with flags (b).  We should always try to detect pending
838  * signals before a retry to make sure the continuous page faults can still be
839  * interrupted if necessary.
840  */
841 enum fault_flag {
842 	FAULT_FLAG_WRITE =		1 << 0,
843 	FAULT_FLAG_MKWRITE =		1 << 1,
844 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
845 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
846 	FAULT_FLAG_KILLABLE =		1 << 4,
847 	FAULT_FLAG_TRIED = 		1 << 5,
848 	FAULT_FLAG_USER =		1 << 6,
849 	FAULT_FLAG_REMOTE =		1 << 7,
850 	FAULT_FLAG_INSTRUCTION =	1 << 8,
851 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
852 };
853 
854 #endif /* _LINUX_MM_TYPES_H */
855