xref: /linux-6.15/include/linux/mm_types.h (revision 4eeec8c8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 #include <linux/types.h>
23 
24 #include <asm/mmu.h>
25 
26 #ifndef AT_VECTOR_SIZE_ARCH
27 #define AT_VECTOR_SIZE_ARCH 0
28 #endif
29 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
30 
31 #define INIT_PASID	0
32 
33 struct address_space;
34 struct mem_cgroup;
35 
36 /*
37  * Each physical page in the system has a struct page associated with
38  * it to keep track of whatever it is we are using the page for at the
39  * moment. Note that we have no way to track which tasks are using
40  * a page, though if it is a pagecache page, rmap structures can tell us
41  * who is mapping it.
42  *
43  * If you allocate the page using alloc_pages(), you can use some of the
44  * space in struct page for your own purposes.  The five words in the main
45  * union are available, except for bit 0 of the first word which must be
46  * kept clear.  Many users use this word to store a pointer to an object
47  * which is guaranteed to be aligned.  If you use the same storage as
48  * page->mapping, you must restore it to NULL before freeing the page.
49  *
50  * The mapcount field must not be used for own purposes.
51  *
52  * If you want to use the refcount field, it must be used in such a way
53  * that other CPUs temporarily incrementing and then decrementing the
54  * refcount does not cause problems.  On receiving the page from
55  * alloc_pages(), the refcount will be positive.
56  *
57  * If you allocate pages of order > 0, you can use some of the fields
58  * in each subpage, but you may need to restore some of their values
59  * afterwards.
60  *
61  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
62  * That requires that freelist & counters in struct slab be adjacent and
63  * double-word aligned. Because struct slab currently just reinterprets the
64  * bits of struct page, we align all struct pages to double-word boundaries,
65  * and ensure that 'freelist' is aligned within struct slab.
66  */
67 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
68 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
69 #else
70 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
71 #endif
72 
73 struct page {
74 	unsigned long flags;		/* Atomic flags, some possibly
75 					 * updated asynchronously */
76 	/*
77 	 * Five words (20/40 bytes) are available in this union.
78 	 * WARNING: bit 0 of the first word is used for PageTail(). That
79 	 * means the other users of this union MUST NOT use the bit to
80 	 * avoid collision and false-positive PageTail().
81 	 */
82 	union {
83 		struct {	/* Page cache and anonymous pages */
84 			/**
85 			 * @lru: Pageout list, eg. active_list protected by
86 			 * lruvec->lru_lock.  Sometimes used as a generic list
87 			 * by the page owner.
88 			 */
89 			union {
90 				struct list_head lru;
91 
92 				/* Or, for the Unevictable "LRU list" slot */
93 				struct {
94 					/* Always even, to negate PageTail */
95 					void *__filler;
96 					/* Count page's or folio's mlocks */
97 					unsigned int mlock_count;
98 				};
99 
100 				/* Or, free page */
101 				struct list_head buddy_list;
102 				struct list_head pcp_list;
103 			};
104 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
105 			struct address_space *mapping;
106 			union {
107 				pgoff_t index;		/* Our offset within mapping. */
108 				unsigned long share;	/* share count for fsdax */
109 			};
110 			/**
111 			 * @private: Mapping-private opaque data.
112 			 * Usually used for buffer_heads if PagePrivate.
113 			 * Used for swp_entry_t if swapcache flag set.
114 			 * Indicates order in the buddy system if PageBuddy.
115 			 */
116 			unsigned long private;
117 		};
118 		struct {	/* page_pool used by netstack */
119 			/**
120 			 * @pp_magic: magic value to avoid recycling non
121 			 * page_pool allocated pages.
122 			 */
123 			unsigned long pp_magic;
124 			struct page_pool *pp;
125 			unsigned long _pp_mapping_pad;
126 			unsigned long dma_addr;
127 			atomic_long_t pp_ref_count;
128 		};
129 		struct {	/* Tail pages of compound page */
130 			unsigned long compound_head;	/* Bit zero is set */
131 		};
132 		struct {	/* ZONE_DEVICE pages */
133 			/*
134 			 * The first word is used for compound_head or folio
135 			 * pgmap
136 			 */
137 			void *_unused_pgmap_compound_head;
138 			void *zone_device_data;
139 			/*
140 			 * ZONE_DEVICE private pages are counted as being
141 			 * mapped so the next 3 words hold the mapping, index,
142 			 * and private fields from the source anonymous or
143 			 * page cache page while the page is migrated to device
144 			 * private memory.
145 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
146 			 * use the mapping, index, and private fields when
147 			 * pmem backed DAX files are mapped.
148 			 */
149 		};
150 
151 		/** @rcu_head: You can use this to free a page by RCU. */
152 		struct rcu_head rcu_head;
153 	};
154 
155 	union {		/* This union is 4 bytes in size. */
156 		/*
157 		 * For head pages of typed folios, the value stored here
158 		 * allows for determining what this page is used for. The
159 		 * tail pages of typed folios will not store a type
160 		 * (page_type == _mapcount == -1).
161 		 *
162 		 * See page-flags.h for a list of page types which are currently
163 		 * stored here.
164 		 *
165 		 * Owners of typed folios may reuse the lower 16 bit of the
166 		 * head page page_type field after setting the page type,
167 		 * but must reset these 16 bit to -1 before clearing the
168 		 * page type.
169 		 */
170 		unsigned int page_type;
171 
172 		/*
173 		 * For pages that are part of non-typed folios for which mappings
174 		 * are tracked via the RMAP, encodes the number of times this page
175 		 * is directly referenced by a page table.
176 		 *
177 		 * Note that the mapcount is always initialized to -1, so that
178 		 * transitions both from it and to it can be tracked, using
179 		 * atomic_inc_and_test() and atomic_add_negative(-1).
180 		 */
181 		atomic_t _mapcount;
182 	};
183 
184 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
185 	atomic_t _refcount;
186 
187 #ifdef CONFIG_MEMCG
188 	unsigned long memcg_data;
189 #elif defined(CONFIG_SLAB_OBJ_EXT)
190 	unsigned long _unused_slab_obj_exts;
191 #endif
192 
193 	/*
194 	 * On machines where all RAM is mapped into kernel address space,
195 	 * we can simply calculate the virtual address. On machines with
196 	 * highmem some memory is mapped into kernel virtual memory
197 	 * dynamically, so we need a place to store that address.
198 	 * Note that this field could be 16 bits on x86 ... ;)
199 	 *
200 	 * Architectures with slow multiplication can define
201 	 * WANT_PAGE_VIRTUAL in asm/page.h
202 	 */
203 #if defined(WANT_PAGE_VIRTUAL)
204 	void *virtual;			/* Kernel virtual address (NULL if
205 					   not kmapped, ie. highmem) */
206 #endif /* WANT_PAGE_VIRTUAL */
207 
208 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
209 	int _last_cpupid;
210 #endif
211 
212 #ifdef CONFIG_KMSAN
213 	/*
214 	 * KMSAN metadata for this page:
215 	 *  - shadow page: every bit indicates whether the corresponding
216 	 *    bit of the original page is initialized (0) or not (1);
217 	 *  - origin page: every 4 bytes contain an id of the stack trace
218 	 *    where the uninitialized value was created.
219 	 */
220 	struct page *kmsan_shadow;
221 	struct page *kmsan_origin;
222 #endif
223 } _struct_page_alignment;
224 
225 /*
226  * struct encoded_page - a nonexistent type marking this pointer
227  *
228  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
229  * with the low bits of the pointer indicating extra context-dependent
230  * information. Only used in mmu_gather handling, and this acts as a type
231  * system check on that use.
232  *
233  * We only really have two guaranteed bits in general, although you could
234  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
235  * for more.
236  *
237  * Use the supplied helper functions to endcode/decode the pointer and bits.
238  */
239 struct encoded_page;
240 
241 #define ENCODED_PAGE_BITS			3ul
242 
243 /* Perform rmap removal after we have flushed the TLB. */
244 #define ENCODED_PAGE_BIT_DELAY_RMAP		1ul
245 
246 /*
247  * The next item in an encoded_page array is the "nr_pages" argument, specifying
248  * the number of consecutive pages starting from this page, that all belong to
249  * the same folio. For example, "nr_pages" corresponds to the number of folio
250  * references that must be dropped. If this bit is not set, "nr_pages" is
251  * implicitly 1.
252  */
253 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul
254 
255 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
256 {
257 	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
258 	return (struct encoded_page *)(flags | (unsigned long)page);
259 }
260 
261 static inline unsigned long encoded_page_flags(struct encoded_page *page)
262 {
263 	return ENCODED_PAGE_BITS & (unsigned long)page;
264 }
265 
266 static inline struct page *encoded_page_ptr(struct encoded_page *page)
267 {
268 	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
269 }
270 
271 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
272 {
273 	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
274 	return (struct encoded_page *)(nr << 2);
275 }
276 
277 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
278 {
279 	return ((unsigned long)page) >> 2;
280 }
281 
282 /*
283  * A swap entry has to fit into a "unsigned long", as the entry is hidden
284  * in the "index" field of the swapper address space.
285  */
286 typedef struct {
287 	unsigned long val;
288 } swp_entry_t;
289 
290 #if defined(CONFIG_MEMCG) || defined(CONFIG_SLAB_OBJ_EXT)
291 /* We have some extra room after the refcount in tail pages. */
292 #define NR_PAGES_IN_LARGE_FOLIO
293 #endif
294 
295 /**
296  * struct folio - Represents a contiguous set of bytes.
297  * @flags: Identical to the page flags.
298  * @lru: Least Recently Used list; tracks how recently this folio was used.
299  * @mlock_count: Number of times this folio has been pinned by mlock().
300  * @mapping: The file this page belongs to, or refers to the anon_vma for
301  *    anonymous memory.
302  * @index: Offset within the file, in units of pages.  For anonymous memory,
303  *    this is the index from the beginning of the mmap.
304  * @share: number of DAX mappings that reference this folio. See
305  *    dax_associate_entry.
306  * @private: Filesystem per-folio data (see folio_attach_private()).
307  * @swap: Used for swp_entry_t if folio_test_swapcache().
308  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
309  *    find out how many times this folio is mapped by userspace.
310  * @_refcount: Do not access this member directly.  Use folio_ref_count()
311  *    to find how many references there are to this folio.
312  * @memcg_data: Memory Control Group data.
313  * @pgmap: Metadata for ZONE_DEVICE mappings
314  * @virtual: Virtual address in the kernel direct map.
315  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
316  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
317  * @_large_mapcount: Do not use directly, call folio_mapcount().
318  * @_nr_pages_mapped: Do not use outside of rmap and debug code.
319  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
320  * @_nr_pages: Do not use directly, call folio_nr_pages().
321  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
322  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
323  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
324  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
325  * @_deferred_list: Folios to be split under memory pressure.
326  * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
327  *
328  * A folio is a physically, virtually and logically contiguous set
329  * of bytes.  It is a power-of-two in size, and it is aligned to that
330  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
331  * in the page cache, it is at a file offset which is a multiple of that
332  * power-of-two.  It may be mapped into userspace at an address which is
333  * at an arbitrary page offset, but its kernel virtual address is aligned
334  * to its size.
335  */
336 struct folio {
337 	/* private: don't document the anon union */
338 	union {
339 		struct {
340 	/* public: */
341 			unsigned long flags;
342 			union {
343 				struct list_head lru;
344 	/* private: avoid cluttering the output */
345 				struct {
346 					void *__filler;
347 	/* public: */
348 					unsigned int mlock_count;
349 	/* private: */
350 				};
351 	/* public: */
352 				struct dev_pagemap *pgmap;
353 			};
354 			struct address_space *mapping;
355 			union {
356 				pgoff_t index;
357 				unsigned long share;
358 			};
359 			union {
360 				void *private;
361 				swp_entry_t swap;
362 			};
363 			atomic_t _mapcount;
364 			atomic_t _refcount;
365 #ifdef CONFIG_MEMCG
366 			unsigned long memcg_data;
367 #elif defined(CONFIG_SLAB_OBJ_EXT)
368 			unsigned long _unused_slab_obj_exts;
369 #endif
370 #if defined(WANT_PAGE_VIRTUAL)
371 			void *virtual;
372 #endif
373 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
374 			int _last_cpupid;
375 #endif
376 	/* private: the union with struct page is transitional */
377 		};
378 		struct page page;
379 	};
380 	union {
381 		struct {
382 			unsigned long _flags_1;
383 			unsigned long _head_1;
384 			union {
385 				struct {
386 	/* public: */
387 					atomic_t _large_mapcount;
388 					atomic_t _entire_mapcount;
389 					atomic_t _nr_pages_mapped;
390 					atomic_t _pincount;
391 	/* private: the union with struct page is transitional */
392 				};
393 				unsigned long _usable_1[4];
394 			};
395 			atomic_t _mapcount_1;
396 			atomic_t _refcount_1;
397 	/* public: */
398 #ifdef NR_PAGES_IN_LARGE_FOLIO
399 			unsigned int _nr_pages;
400 #endif /* NR_PAGES_IN_LARGE_FOLIO */
401 	/* private: the union with struct page is transitional */
402 		};
403 		struct page __page_1;
404 	};
405 	union {
406 		struct {
407 			unsigned long _flags_2;
408 			unsigned long _head_2;
409 	/* public: */
410 			struct list_head _deferred_list;
411 	/* private: the union with struct page is transitional */
412 		};
413 		struct page __page_2;
414 	};
415 	union {
416 		struct {
417 			unsigned long _flags_3;
418 			unsigned long _head_3;
419 	/* public: */
420 			void *_hugetlb_subpool;
421 			void *_hugetlb_cgroup;
422 			void *_hugetlb_cgroup_rsvd;
423 			void *_hugetlb_hwpoison;
424 	/* private: the union with struct page is transitional */
425 		};
426 		struct page __page_3;
427 	};
428 };
429 
430 #define FOLIO_MATCH(pg, fl)						\
431 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
432 FOLIO_MATCH(flags, flags);
433 FOLIO_MATCH(lru, lru);
434 FOLIO_MATCH(mapping, mapping);
435 FOLIO_MATCH(compound_head, lru);
436 FOLIO_MATCH(index, index);
437 FOLIO_MATCH(private, private);
438 FOLIO_MATCH(_mapcount, _mapcount);
439 FOLIO_MATCH(_refcount, _refcount);
440 #ifdef CONFIG_MEMCG
441 FOLIO_MATCH(memcg_data, memcg_data);
442 #endif
443 #if defined(WANT_PAGE_VIRTUAL)
444 FOLIO_MATCH(virtual, virtual);
445 #endif
446 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
447 FOLIO_MATCH(_last_cpupid, _last_cpupid);
448 #endif
449 #undef FOLIO_MATCH
450 #define FOLIO_MATCH(pg, fl)						\
451 	static_assert(offsetof(struct folio, fl) ==			\
452 			offsetof(struct page, pg) + sizeof(struct page))
453 FOLIO_MATCH(flags, _flags_1);
454 FOLIO_MATCH(compound_head, _head_1);
455 FOLIO_MATCH(_mapcount, _mapcount_1);
456 FOLIO_MATCH(_refcount, _refcount_1);
457 #undef FOLIO_MATCH
458 #define FOLIO_MATCH(pg, fl)						\
459 	static_assert(offsetof(struct folio, fl) ==			\
460 			offsetof(struct page, pg) + 2 * sizeof(struct page))
461 FOLIO_MATCH(flags, _flags_2);
462 FOLIO_MATCH(compound_head, _head_2);
463 #undef FOLIO_MATCH
464 #define FOLIO_MATCH(pg, fl)						\
465 	static_assert(offsetof(struct folio, fl) ==			\
466 			offsetof(struct page, pg) + 3 * sizeof(struct page))
467 FOLIO_MATCH(flags, _flags_3);
468 FOLIO_MATCH(compound_head, _head_3);
469 #undef FOLIO_MATCH
470 
471 /**
472  * struct ptdesc -    Memory descriptor for page tables.
473  * @__page_flags:     Same as page flags. Powerpc only.
474  * @pt_rcu_head:      For freeing page table pages.
475  * @pt_list:          List of used page tables. Used for s390 gmap shadow pages
476  *                    (which are not linked into the user page tables) and x86
477  *                    pgds.
478  * @_pt_pad_1:        Padding that aliases with page's compound head.
479  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
480  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
481  * @pt_index:         Used for s390 gmap.
482  * @pt_mm:            Used for x86 pgds.
483  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
484  * @pt_share_count:   Used for HugeTLB PMD page table share count.
485  * @_pt_pad_2:        Padding to ensure proper alignment.
486  * @ptl:              Lock for the page table.
487  * @__page_type:      Same as page->page_type. Unused for page tables.
488  * @__page_refcount:  Same as page refcount.
489  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
490  *
491  * This struct overlays struct page for now. Do not modify without a good
492  * understanding of the issues.
493  */
494 struct ptdesc {
495 	unsigned long __page_flags;
496 
497 	union {
498 		struct rcu_head pt_rcu_head;
499 		struct list_head pt_list;
500 		struct {
501 			unsigned long _pt_pad_1;
502 			pgtable_t pmd_huge_pte;
503 		};
504 	};
505 	unsigned long __page_mapping;
506 
507 	union {
508 		pgoff_t pt_index;
509 		struct mm_struct *pt_mm;
510 		atomic_t pt_frag_refcount;
511 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
512 		atomic_t pt_share_count;
513 #endif
514 	};
515 
516 	union {
517 		unsigned long _pt_pad_2;
518 #if ALLOC_SPLIT_PTLOCKS
519 		spinlock_t *ptl;
520 #else
521 		spinlock_t ptl;
522 #endif
523 	};
524 	unsigned int __page_type;
525 	atomic_t __page_refcount;
526 #ifdef CONFIG_MEMCG
527 	unsigned long pt_memcg_data;
528 #endif
529 };
530 
531 #define TABLE_MATCH(pg, pt)						\
532 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
533 TABLE_MATCH(flags, __page_flags);
534 TABLE_MATCH(compound_head, pt_list);
535 TABLE_MATCH(compound_head, _pt_pad_1);
536 TABLE_MATCH(mapping, __page_mapping);
537 TABLE_MATCH(index, pt_index);
538 TABLE_MATCH(rcu_head, pt_rcu_head);
539 TABLE_MATCH(page_type, __page_type);
540 TABLE_MATCH(_refcount, __page_refcount);
541 #ifdef CONFIG_MEMCG
542 TABLE_MATCH(memcg_data, pt_memcg_data);
543 #endif
544 #undef TABLE_MATCH
545 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
546 
547 #define ptdesc_page(pt)			(_Generic((pt),			\
548 	const struct ptdesc *:		(const struct page *)(pt),	\
549 	struct ptdesc *:		(struct page *)(pt)))
550 
551 #define ptdesc_folio(pt)		(_Generic((pt),			\
552 	const struct ptdesc *:		(const struct folio *)(pt),	\
553 	struct ptdesc *:		(struct folio *)(pt)))
554 
555 #define page_ptdesc(p)			(_Generic((p),			\
556 	const struct page *:		(const struct ptdesc *)(p),	\
557 	struct page *:			(struct ptdesc *)(p)))
558 
559 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
560 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
561 {
562 	atomic_set(&ptdesc->pt_share_count, 0);
563 }
564 
565 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
566 {
567 	atomic_inc(&ptdesc->pt_share_count);
568 }
569 
570 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
571 {
572 	atomic_dec(&ptdesc->pt_share_count);
573 }
574 
575 static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
576 {
577 	return atomic_read(&ptdesc->pt_share_count);
578 }
579 #else
580 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
581 {
582 }
583 #endif
584 
585 /*
586  * Used for sizing the vmemmap region on some architectures
587  */
588 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
589 
590 /*
591  * page_private can be used on tail pages.  However, PagePrivate is only
592  * checked by the VM on the head page.  So page_private on the tail pages
593  * should be used for data that's ancillary to the head page (eg attaching
594  * buffer heads to tail pages after attaching buffer heads to the head page)
595  */
596 #define page_private(page)		((page)->private)
597 
598 static inline void set_page_private(struct page *page, unsigned long private)
599 {
600 	page->private = private;
601 }
602 
603 static inline void *folio_get_private(struct folio *folio)
604 {
605 	return folio->private;
606 }
607 
608 typedef unsigned long vm_flags_t;
609 
610 /*
611  * freeptr_t represents a SLUB freelist pointer, which might be encoded
612  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
613  */
614 typedef struct { unsigned long v; } freeptr_t;
615 
616 /*
617  * A region containing a mapping of a non-memory backed file under NOMMU
618  * conditions.  These are held in a global tree and are pinned by the VMAs that
619  * map parts of them.
620  */
621 struct vm_region {
622 	struct rb_node	vm_rb;		/* link in global region tree */
623 	vm_flags_t	vm_flags;	/* VMA vm_flags */
624 	unsigned long	vm_start;	/* start address of region */
625 	unsigned long	vm_end;		/* region initialised to here */
626 	unsigned long	vm_top;		/* region allocated to here */
627 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
628 	struct file	*vm_file;	/* the backing file or NULL */
629 
630 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
631 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
632 						* this region */
633 };
634 
635 #ifdef CONFIG_USERFAULTFD
636 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
637 struct vm_userfaultfd_ctx {
638 	struct userfaultfd_ctx *ctx;
639 };
640 #else /* CONFIG_USERFAULTFD */
641 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
642 struct vm_userfaultfd_ctx {};
643 #endif /* CONFIG_USERFAULTFD */
644 
645 struct anon_vma_name {
646 	struct kref kref;
647 	/* The name needs to be at the end because it is dynamically sized. */
648 	char name[];
649 };
650 
651 #ifdef CONFIG_ANON_VMA_NAME
652 /*
653  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
654  * either keep holding the lock while using the returned pointer or it should
655  * raise anon_vma_name refcount before releasing the lock.
656  */
657 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
658 struct anon_vma_name *anon_vma_name_alloc(const char *name);
659 void anon_vma_name_free(struct kref *kref);
660 #else /* CONFIG_ANON_VMA_NAME */
661 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
662 {
663 	return NULL;
664 }
665 
666 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
667 {
668 	return NULL;
669 }
670 #endif
671 
672 #define VMA_LOCK_OFFSET	0x40000000
673 #define VMA_REF_LIMIT	(VMA_LOCK_OFFSET - 1)
674 
675 struct vma_numab_state {
676 	/*
677 	 * Initialised as time in 'jiffies' after which VMA
678 	 * should be scanned.  Delays first scan of new VMA by at
679 	 * least sysctl_numa_balancing_scan_delay:
680 	 */
681 	unsigned long next_scan;
682 
683 	/*
684 	 * Time in jiffies when pids_active[] is reset to
685 	 * detect phase change behaviour:
686 	 */
687 	unsigned long pids_active_reset;
688 
689 	/*
690 	 * Approximate tracking of PIDs that trapped a NUMA hinting
691 	 * fault. May produce false positives due to hash collisions.
692 	 *
693 	 *   [0] Previous PID tracking
694 	 *   [1] Current PID tracking
695 	 *
696 	 * Window moves after next_pid_reset has expired approximately
697 	 * every VMA_PID_RESET_PERIOD jiffies:
698 	 */
699 	unsigned long pids_active[2];
700 
701 	/* MM scan sequence ID when scan first started after VMA creation */
702 	int start_scan_seq;
703 
704 	/*
705 	 * MM scan sequence ID when the VMA was last completely scanned.
706 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
707 	 */
708 	int prev_scan_seq;
709 };
710 
711 /*
712  * This struct describes a virtual memory area. There is one of these
713  * per VM-area/task. A VM area is any part of the process virtual memory
714  * space that has a special rule for the page-fault handlers (ie a shared
715  * library, the executable area etc).
716  *
717  * Only explicitly marked struct members may be accessed by RCU readers before
718  * getting a stable reference.
719  *
720  * WARNING: when adding new members, please update vm_area_init_from() to copy
721  * them during vm_area_struct content duplication.
722  */
723 struct vm_area_struct {
724 	/* The first cache line has the info for VMA tree walking. */
725 
726 	union {
727 		struct {
728 			/* VMA covers [vm_start; vm_end) addresses within mm */
729 			unsigned long vm_start;
730 			unsigned long vm_end;
731 		};
732 		freeptr_t vm_freeptr; /* Pointer used by SLAB_TYPESAFE_BY_RCU */
733 	};
734 
735 	/*
736 	 * The address space we belong to.
737 	 * Unstable RCU readers are allowed to read this.
738 	 */
739 	struct mm_struct *vm_mm;
740 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
741 
742 	/*
743 	 * Flags, see mm.h.
744 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
745 	 */
746 	union {
747 		const vm_flags_t vm_flags;
748 		vm_flags_t __private __vm_flags;
749 	};
750 
751 #ifdef CONFIG_PER_VMA_LOCK
752 	/*
753 	 * Can only be written (using WRITE_ONCE()) while holding both:
754 	 *  - mmap_lock (in write mode)
755 	 *  - vm_refcnt bit at VMA_LOCK_OFFSET is set
756 	 * Can be read reliably while holding one of:
757 	 *  - mmap_lock (in read or write mode)
758 	 *  - vm_refcnt bit at VMA_LOCK_OFFSET is set or vm_refcnt > 1
759 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
760 	 * while holding nothing (except RCU to keep the VMA struct allocated).
761 	 *
762 	 * This sequence counter is explicitly allowed to overflow; sequence
763 	 * counter reuse can only lead to occasional unnecessary use of the
764 	 * slowpath.
765 	 */
766 	unsigned int vm_lock_seq;
767 #endif
768 	/*
769 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
770 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
771 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
772 	 * or brk vma (with NULL file) can only be in an anon_vma list.
773 	 */
774 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
775 					  * page_table_lock */
776 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
777 
778 	/* Function pointers to deal with this struct. */
779 	const struct vm_operations_struct *vm_ops;
780 
781 	/* Information about our backing store: */
782 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
783 					   units */
784 	struct file * vm_file;		/* File we map to (can be NULL). */
785 	void * vm_private_data;		/* was vm_pte (shared mem) */
786 
787 #ifdef CONFIG_SWAP
788 	atomic_long_t swap_readahead_info;
789 #endif
790 #ifndef CONFIG_MMU
791 	struct vm_region *vm_region;	/* NOMMU mapping region */
792 #endif
793 #ifdef CONFIG_NUMA
794 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
795 #endif
796 #ifdef CONFIG_NUMA_BALANCING
797 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
798 #endif
799 #ifdef CONFIG_PER_VMA_LOCK
800 	/* Unstable RCU readers are allowed to read this. */
801 	refcount_t vm_refcnt ____cacheline_aligned_in_smp;
802 #ifdef CONFIG_DEBUG_LOCK_ALLOC
803 	struct lockdep_map vmlock_dep_map;
804 #endif
805 #endif
806 	/*
807 	 * For areas with an address space and backing store,
808 	 * linkage into the address_space->i_mmap interval tree.
809 	 *
810 	 */
811 	struct {
812 		struct rb_node rb;
813 		unsigned long rb_subtree_last;
814 	} shared;
815 #ifdef CONFIG_ANON_VMA_NAME
816 	/*
817 	 * For private and shared anonymous mappings, a pointer to a null
818 	 * terminated string containing the name given to the vma, or NULL if
819 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
820 	 */
821 	struct anon_vma_name *anon_name;
822 #endif
823 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
824 } __randomize_layout;
825 
826 #ifdef CONFIG_NUMA
827 #define vma_policy(vma) ((vma)->vm_policy)
828 #else
829 #define vma_policy(vma) NULL
830 #endif
831 
832 #ifdef CONFIG_SCHED_MM_CID
833 struct mm_cid {
834 	u64 time;
835 	int cid;
836 	int recent_cid;
837 };
838 #endif
839 
840 struct kioctx_table;
841 struct iommu_mm_data;
842 struct mm_struct {
843 	struct {
844 		/*
845 		 * Fields which are often written to are placed in a separate
846 		 * cache line.
847 		 */
848 		struct {
849 			/**
850 			 * @mm_count: The number of references to &struct
851 			 * mm_struct (@mm_users count as 1).
852 			 *
853 			 * Use mmgrab()/mmdrop() to modify. When this drops to
854 			 * 0, the &struct mm_struct is freed.
855 			 */
856 			atomic_t mm_count;
857 		} ____cacheline_aligned_in_smp;
858 
859 		struct maple_tree mm_mt;
860 
861 		unsigned long mmap_base;	/* base of mmap area */
862 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
863 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
864 		/* Base addresses for compatible mmap() */
865 		unsigned long mmap_compat_base;
866 		unsigned long mmap_compat_legacy_base;
867 #endif
868 		unsigned long task_size;	/* size of task vm space */
869 		pgd_t * pgd;
870 
871 #ifdef CONFIG_MEMBARRIER
872 		/**
873 		 * @membarrier_state: Flags controlling membarrier behavior.
874 		 *
875 		 * This field is close to @pgd to hopefully fit in the same
876 		 * cache-line, which needs to be touched by switch_mm().
877 		 */
878 		atomic_t membarrier_state;
879 #endif
880 
881 		/**
882 		 * @mm_users: The number of users including userspace.
883 		 *
884 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
885 		 * drops to 0 (i.e. when the task exits and there are no other
886 		 * temporary reference holders), we also release a reference on
887 		 * @mm_count (which may then free the &struct mm_struct if
888 		 * @mm_count also drops to 0).
889 		 */
890 		atomic_t mm_users;
891 
892 #ifdef CONFIG_SCHED_MM_CID
893 		/**
894 		 * @pcpu_cid: Per-cpu current cid.
895 		 *
896 		 * Keep track of the currently allocated mm_cid for each cpu.
897 		 * The per-cpu mm_cid values are serialized by their respective
898 		 * runqueue locks.
899 		 */
900 		struct mm_cid __percpu *pcpu_cid;
901 		/*
902 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
903 		 *
904 		 * When the next mm_cid scan is due (in jiffies).
905 		 */
906 		unsigned long mm_cid_next_scan;
907 		/**
908 		 * @nr_cpus_allowed: Number of CPUs allowed for mm.
909 		 *
910 		 * Number of CPUs allowed in the union of all mm's
911 		 * threads allowed CPUs.
912 		 */
913 		unsigned int nr_cpus_allowed;
914 		/**
915 		 * @max_nr_cid: Maximum number of allowed concurrency
916 		 *              IDs allocated.
917 		 *
918 		 * Track the highest number of allowed concurrency IDs
919 		 * allocated for the mm.
920 		 */
921 		atomic_t max_nr_cid;
922 		/**
923 		 * @cpus_allowed_lock: Lock protecting mm cpus_allowed.
924 		 *
925 		 * Provide mutual exclusion for mm cpus_allowed and
926 		 * mm nr_cpus_allowed updates.
927 		 */
928 		raw_spinlock_t cpus_allowed_lock;
929 #endif
930 #ifdef CONFIG_MMU
931 		atomic_long_t pgtables_bytes;	/* size of all page tables */
932 #endif
933 		int map_count;			/* number of VMAs */
934 
935 		spinlock_t page_table_lock; /* Protects page tables and some
936 					     * counters
937 					     */
938 		/*
939 		 * With some kernel config, the current mmap_lock's offset
940 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
941 		 * its two hot fields 'count' and 'owner' sit in 2 different
942 		 * cachelines,  and when mmap_lock is highly contended, both
943 		 * of the 2 fields will be accessed frequently, current layout
944 		 * will help to reduce cache bouncing.
945 		 *
946 		 * So please be careful with adding new fields before
947 		 * mmap_lock, which can easily push the 2 fields into one
948 		 * cacheline.
949 		 */
950 		struct rw_semaphore mmap_lock;
951 
952 		struct list_head mmlist; /* List of maybe swapped mm's.	These
953 					  * are globally strung together off
954 					  * init_mm.mmlist, and are protected
955 					  * by mmlist_lock
956 					  */
957 #ifdef CONFIG_PER_VMA_LOCK
958 		struct rcuwait vma_writer_wait;
959 		/*
960 		 * This field has lock-like semantics, meaning it is sometimes
961 		 * accessed with ACQUIRE/RELEASE semantics.
962 		 * Roughly speaking, incrementing the sequence number is
963 		 * equivalent to releasing locks on VMAs; reading the sequence
964 		 * number can be part of taking a read lock on a VMA.
965 		 * Incremented every time mmap_lock is write-locked/unlocked.
966 		 * Initialized to 0, therefore odd values indicate mmap_lock
967 		 * is write-locked and even values that it's released.
968 		 *
969 		 * Can be modified under write mmap_lock using RELEASE
970 		 * semantics.
971 		 * Can be read with no other protection when holding write
972 		 * mmap_lock.
973 		 * Can be read with ACQUIRE semantics if not holding write
974 		 * mmap_lock.
975 		 */
976 		seqcount_t mm_lock_seq;
977 #endif
978 
979 
980 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
981 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
982 
983 		unsigned long total_vm;	   /* Total pages mapped */
984 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
985 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
986 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
987 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
988 		unsigned long stack_vm;	   /* VM_STACK */
989 		unsigned long def_flags;
990 
991 		/**
992 		 * @write_protect_seq: Locked when any thread is write
993 		 * protecting pages mapped by this mm to enforce a later COW,
994 		 * for instance during page table copying for fork().
995 		 */
996 		seqcount_t write_protect_seq;
997 
998 		spinlock_t arg_lock; /* protect the below fields */
999 
1000 		unsigned long start_code, end_code, start_data, end_data;
1001 		unsigned long start_brk, brk, start_stack;
1002 		unsigned long arg_start, arg_end, env_start, env_end;
1003 
1004 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
1005 
1006 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
1007 
1008 		struct linux_binfmt *binfmt;
1009 
1010 		/* Architecture-specific MM context */
1011 		mm_context_t context;
1012 
1013 		unsigned long flags; /* Must use atomic bitops to access */
1014 
1015 #ifdef CONFIG_AIO
1016 		spinlock_t			ioctx_lock;
1017 		struct kioctx_table __rcu	*ioctx_table;
1018 #endif
1019 #ifdef CONFIG_MEMCG
1020 		/*
1021 		 * "owner" points to a task that is regarded as the canonical
1022 		 * user/owner of this mm. All of the following must be true in
1023 		 * order for it to be changed:
1024 		 *
1025 		 * current == mm->owner
1026 		 * current->mm != mm
1027 		 * new_owner->mm == mm
1028 		 * new_owner->alloc_lock is held
1029 		 */
1030 		struct task_struct __rcu *owner;
1031 #endif
1032 		struct user_namespace *user_ns;
1033 
1034 		/* store ref to file /proc/<pid>/exe symlink points to */
1035 		struct file __rcu *exe_file;
1036 #ifdef CONFIG_MMU_NOTIFIER
1037 		struct mmu_notifier_subscriptions *notifier_subscriptions;
1038 #endif
1039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1040 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
1041 #endif
1042 #ifdef CONFIG_NUMA_BALANCING
1043 		/*
1044 		 * numa_next_scan is the next time that PTEs will be remapped
1045 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
1046 		 * statistics and migrate pages to new nodes if necessary.
1047 		 */
1048 		unsigned long numa_next_scan;
1049 
1050 		/* Restart point for scanning and remapping PTEs. */
1051 		unsigned long numa_scan_offset;
1052 
1053 		/* numa_scan_seq prevents two threads remapping PTEs. */
1054 		int numa_scan_seq;
1055 #endif
1056 		/*
1057 		 * An operation with batched TLB flushing is going on. Anything
1058 		 * that can move process memory needs to flush the TLB when
1059 		 * moving a PROT_NONE mapped page.
1060 		 */
1061 		atomic_t tlb_flush_pending;
1062 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1063 		/* See flush_tlb_batched_pending() */
1064 		atomic_t tlb_flush_batched;
1065 #endif
1066 		struct uprobes_state uprobes_state;
1067 #ifdef CONFIG_PREEMPT_RT
1068 		struct rcu_head delayed_drop;
1069 #endif
1070 #ifdef CONFIG_HUGETLB_PAGE
1071 		atomic_long_t hugetlb_usage;
1072 #endif
1073 		struct work_struct async_put_work;
1074 
1075 #ifdef CONFIG_IOMMU_MM_DATA
1076 		struct iommu_mm_data *iommu_mm;
1077 #endif
1078 #ifdef CONFIG_KSM
1079 		/*
1080 		 * Represent how many pages of this process are involved in KSM
1081 		 * merging (not including ksm_zero_pages).
1082 		 */
1083 		unsigned long ksm_merging_pages;
1084 		/*
1085 		 * Represent how many pages are checked for ksm merging
1086 		 * including merged and not merged.
1087 		 */
1088 		unsigned long ksm_rmap_items;
1089 		/*
1090 		 * Represent how many empty pages are merged with kernel zero
1091 		 * pages when enabling KSM use_zero_pages.
1092 		 */
1093 		atomic_long_t ksm_zero_pages;
1094 #endif /* CONFIG_KSM */
1095 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1096 		struct {
1097 			/* this mm_struct is on lru_gen_mm_list */
1098 			struct list_head list;
1099 			/*
1100 			 * Set when switching to this mm_struct, as a hint of
1101 			 * whether it has been used since the last time per-node
1102 			 * page table walkers cleared the corresponding bits.
1103 			 */
1104 			unsigned long bitmap;
1105 #ifdef CONFIG_MEMCG
1106 			/* points to the memcg of "owner" above */
1107 			struct mem_cgroup *memcg;
1108 #endif
1109 		} lru_gen;
1110 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1111 	} __randomize_layout;
1112 
1113 	/*
1114 	 * The mm_cpumask needs to be at the end of mm_struct, because it
1115 	 * is dynamically sized based on nr_cpu_ids.
1116 	 */
1117 	unsigned long cpu_bitmap[];
1118 };
1119 
1120 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1121 			 MT_FLAGS_USE_RCU)
1122 extern struct mm_struct init_mm;
1123 
1124 /* Pointer magic because the dynamic array size confuses some compilers. */
1125 static inline void mm_init_cpumask(struct mm_struct *mm)
1126 {
1127 	unsigned long cpu_bitmap = (unsigned long)mm;
1128 
1129 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1130 	cpumask_clear((struct cpumask *)cpu_bitmap);
1131 }
1132 
1133 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
1134 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1135 {
1136 	return (struct cpumask *)&mm->cpu_bitmap;
1137 }
1138 
1139 #ifdef CONFIG_LRU_GEN
1140 
1141 struct lru_gen_mm_list {
1142 	/* mm_struct list for page table walkers */
1143 	struct list_head fifo;
1144 	/* protects the list above */
1145 	spinlock_t lock;
1146 };
1147 
1148 #endif /* CONFIG_LRU_GEN */
1149 
1150 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1151 
1152 void lru_gen_add_mm(struct mm_struct *mm);
1153 void lru_gen_del_mm(struct mm_struct *mm);
1154 void lru_gen_migrate_mm(struct mm_struct *mm);
1155 
1156 static inline void lru_gen_init_mm(struct mm_struct *mm)
1157 {
1158 	INIT_LIST_HEAD(&mm->lru_gen.list);
1159 	mm->lru_gen.bitmap = 0;
1160 #ifdef CONFIG_MEMCG
1161 	mm->lru_gen.memcg = NULL;
1162 #endif
1163 }
1164 
1165 static inline void lru_gen_use_mm(struct mm_struct *mm)
1166 {
1167 	/*
1168 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1169 	 * used since the last time it cleared the bitmap. So it might be worth
1170 	 * walking the page tables of this mm_struct to clear the accessed bit.
1171 	 */
1172 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1173 }
1174 
1175 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1176 
1177 static inline void lru_gen_add_mm(struct mm_struct *mm)
1178 {
1179 }
1180 
1181 static inline void lru_gen_del_mm(struct mm_struct *mm)
1182 {
1183 }
1184 
1185 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1186 {
1187 }
1188 
1189 static inline void lru_gen_init_mm(struct mm_struct *mm)
1190 {
1191 }
1192 
1193 static inline void lru_gen_use_mm(struct mm_struct *mm)
1194 {
1195 }
1196 
1197 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1198 
1199 struct vma_iterator {
1200 	struct ma_state mas;
1201 };
1202 
1203 #define VMA_ITERATOR(name, __mm, __addr)				\
1204 	struct vma_iterator name = {					\
1205 		.mas = {						\
1206 			.tree = &(__mm)->mm_mt,				\
1207 			.index = __addr,				\
1208 			.node = NULL,					\
1209 			.status = ma_start,				\
1210 		},							\
1211 	}
1212 
1213 static inline void vma_iter_init(struct vma_iterator *vmi,
1214 		struct mm_struct *mm, unsigned long addr)
1215 {
1216 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1217 }
1218 
1219 #ifdef CONFIG_SCHED_MM_CID
1220 
1221 enum mm_cid_state {
1222 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1223 	MM_CID_LAZY_PUT = (1U << 31),
1224 };
1225 
1226 static inline bool mm_cid_is_unset(int cid)
1227 {
1228 	return cid == MM_CID_UNSET;
1229 }
1230 
1231 static inline bool mm_cid_is_lazy_put(int cid)
1232 {
1233 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1234 }
1235 
1236 static inline bool mm_cid_is_valid(int cid)
1237 {
1238 	return !(cid & MM_CID_LAZY_PUT);
1239 }
1240 
1241 static inline int mm_cid_set_lazy_put(int cid)
1242 {
1243 	return cid | MM_CID_LAZY_PUT;
1244 }
1245 
1246 static inline int mm_cid_clear_lazy_put(int cid)
1247 {
1248 	return cid & ~MM_CID_LAZY_PUT;
1249 }
1250 
1251 /*
1252  * mm_cpus_allowed: Union of all mm's threads allowed CPUs.
1253  */
1254 static inline cpumask_t *mm_cpus_allowed(struct mm_struct *mm)
1255 {
1256 	unsigned long bitmap = (unsigned long)mm;
1257 
1258 	bitmap += offsetof(struct mm_struct, cpu_bitmap);
1259 	/* Skip cpu_bitmap */
1260 	bitmap += cpumask_size();
1261 	return (struct cpumask *)bitmap;
1262 }
1263 
1264 /* Accessor for struct mm_struct's cidmask. */
1265 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1266 {
1267 	unsigned long cid_bitmap = (unsigned long)mm_cpus_allowed(mm);
1268 
1269 	/* Skip mm_cpus_allowed */
1270 	cid_bitmap += cpumask_size();
1271 	return (struct cpumask *)cid_bitmap;
1272 }
1273 
1274 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p)
1275 {
1276 	int i;
1277 
1278 	for_each_possible_cpu(i) {
1279 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1280 
1281 		pcpu_cid->cid = MM_CID_UNSET;
1282 		pcpu_cid->recent_cid = MM_CID_UNSET;
1283 		pcpu_cid->time = 0;
1284 	}
1285 	mm->nr_cpus_allowed = p->nr_cpus_allowed;
1286 	atomic_set(&mm->max_nr_cid, 0);
1287 	raw_spin_lock_init(&mm->cpus_allowed_lock);
1288 	cpumask_copy(mm_cpus_allowed(mm), &p->cpus_mask);
1289 	cpumask_clear(mm_cidmask(mm));
1290 }
1291 
1292 static inline int mm_alloc_cid_noprof(struct mm_struct *mm, struct task_struct *p)
1293 {
1294 	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1295 	if (!mm->pcpu_cid)
1296 		return -ENOMEM;
1297 	mm_init_cid(mm, p);
1298 	return 0;
1299 }
1300 #define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1301 
1302 static inline void mm_destroy_cid(struct mm_struct *mm)
1303 {
1304 	free_percpu(mm->pcpu_cid);
1305 	mm->pcpu_cid = NULL;
1306 }
1307 
1308 static inline unsigned int mm_cid_size(void)
1309 {
1310 	return 2 * cpumask_size();	/* mm_cpus_allowed(), mm_cidmask(). */
1311 }
1312 
1313 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask)
1314 {
1315 	struct cpumask *mm_allowed = mm_cpus_allowed(mm);
1316 
1317 	if (!mm)
1318 		return;
1319 	/* The mm_cpus_allowed is the union of each thread allowed CPUs masks. */
1320 	raw_spin_lock(&mm->cpus_allowed_lock);
1321 	cpumask_or(mm_allowed, mm_allowed, cpumask);
1322 	WRITE_ONCE(mm->nr_cpus_allowed, cpumask_weight(mm_allowed));
1323 	raw_spin_unlock(&mm->cpus_allowed_lock);
1324 }
1325 #else /* CONFIG_SCHED_MM_CID */
1326 static inline void mm_init_cid(struct mm_struct *mm, struct task_struct *p) { }
1327 static inline int mm_alloc_cid(struct mm_struct *mm, struct task_struct *p) { return 0; }
1328 static inline void mm_destroy_cid(struct mm_struct *mm) { }
1329 
1330 static inline unsigned int mm_cid_size(void)
1331 {
1332 	return 0;
1333 }
1334 static inline void mm_set_cpus_allowed(struct mm_struct *mm, const struct cpumask *cpumask) { }
1335 #endif /* CONFIG_SCHED_MM_CID */
1336 
1337 struct mmu_gather;
1338 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1339 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1340 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1341 
1342 struct vm_fault;
1343 
1344 /**
1345  * typedef vm_fault_t - Return type for page fault handlers.
1346  *
1347  * Page fault handlers return a bitmask of %VM_FAULT values.
1348  */
1349 typedef __bitwise unsigned int vm_fault_t;
1350 
1351 /**
1352  * enum vm_fault_reason - Page fault handlers return a bitmask of
1353  * these values to tell the core VM what happened when handling the
1354  * fault. Used to decide whether a process gets delivered SIGBUS or
1355  * just gets major/minor fault counters bumped up.
1356  *
1357  * @VM_FAULT_OOM:		Out Of Memory
1358  * @VM_FAULT_SIGBUS:		Bad access
1359  * @VM_FAULT_MAJOR:		Page read from storage
1360  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1361  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1362  *				in upper bits
1363  * @VM_FAULT_SIGSEGV:		segmentation fault
1364  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1365  * @VM_FAULT_LOCKED:		->fault locked the returned page
1366  * @VM_FAULT_RETRY:		->fault blocked, must retry
1367  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1368  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1369  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1370  *				fsync() to complete (for synchronous page faults
1371  *				in DAX)
1372  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1373  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1374  *
1375  */
1376 enum vm_fault_reason {
1377 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1378 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1379 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1380 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1381 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1382 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1383 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1384 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1385 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1386 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1387 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1388 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1389 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1390 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1391 };
1392 
1393 /* Encode hstate index for a hwpoisoned large page */
1394 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1395 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1396 
1397 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1398 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1399 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1400 
1401 #define VM_FAULT_RESULT_TRACE \
1402 	{ VM_FAULT_OOM,                 "OOM" },	\
1403 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1404 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1405 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1406 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1407 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1408 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1409 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1410 	{ VM_FAULT_RETRY,               "RETRY" },	\
1411 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1412 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1413 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1414 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1415 
1416 struct vm_special_mapping {
1417 	const char *name;	/* The name, e.g. "[vdso]". */
1418 
1419 	/*
1420 	 * If .fault is not provided, this points to a
1421 	 * NULL-terminated array of pages that back the special mapping.
1422 	 *
1423 	 * This must not be NULL unless .fault is provided.
1424 	 */
1425 	struct page **pages;
1426 
1427 	/*
1428 	 * If non-NULL, then this is called to resolve page faults
1429 	 * on the special mapping.  If used, .pages is not checked.
1430 	 */
1431 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1432 				struct vm_area_struct *vma,
1433 				struct vm_fault *vmf);
1434 
1435 	int (*mremap)(const struct vm_special_mapping *sm,
1436 		     struct vm_area_struct *new_vma);
1437 
1438 	void (*close)(const struct vm_special_mapping *sm,
1439 		      struct vm_area_struct *vma);
1440 };
1441 
1442 enum tlb_flush_reason {
1443 	TLB_FLUSH_ON_TASK_SWITCH,
1444 	TLB_REMOTE_SHOOTDOWN,
1445 	TLB_LOCAL_SHOOTDOWN,
1446 	TLB_LOCAL_MM_SHOOTDOWN,
1447 	TLB_REMOTE_SEND_IPI,
1448 	TLB_REMOTE_WRONG_CPU,
1449 	NR_TLB_FLUSH_REASONS,
1450 };
1451 
1452 /**
1453  * enum fault_flag - Fault flag definitions.
1454  * @FAULT_FLAG_WRITE: Fault was a write fault.
1455  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1456  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1457  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1458  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1459  * @FAULT_FLAG_TRIED: The fault has been tried once.
1460  * @FAULT_FLAG_USER: The fault originated in userspace.
1461  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1462  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1463  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1464  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1465  *                      COW mapping, making sure that an exclusive anon page is
1466  *                      mapped after the fault.
1467  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1468  *                        We should only access orig_pte if this flag set.
1469  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1470  *
1471  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1472  * whether we would allow page faults to retry by specifying these two
1473  * fault flags correctly.  Currently there can be three legal combinations:
1474  *
1475  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1476  *                              this is the first try
1477  *
1478  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1479  *                              we've already tried at least once
1480  *
1481  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1482  *
1483  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1484  * be used.  Note that page faults can be allowed to retry for multiple times,
1485  * in which case we'll have an initial fault with flags (a) then later on
1486  * continuous faults with flags (b).  We should always try to detect pending
1487  * signals before a retry to make sure the continuous page faults can still be
1488  * interrupted if necessary.
1489  *
1490  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1491  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1492  * applied to mappings that are not COW mappings.
1493  */
1494 enum fault_flag {
1495 	FAULT_FLAG_WRITE =		1 << 0,
1496 	FAULT_FLAG_MKWRITE =		1 << 1,
1497 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1498 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1499 	FAULT_FLAG_KILLABLE =		1 << 4,
1500 	FAULT_FLAG_TRIED = 		1 << 5,
1501 	FAULT_FLAG_USER =		1 << 6,
1502 	FAULT_FLAG_REMOTE =		1 << 7,
1503 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1504 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1505 	FAULT_FLAG_UNSHARE =		1 << 10,
1506 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1507 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1508 };
1509 
1510 typedef unsigned int __bitwise zap_flags_t;
1511 
1512 /* Flags for clear_young_dirty_ptes(). */
1513 typedef int __bitwise cydp_t;
1514 
1515 /* Clear the access bit */
1516 #define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))
1517 
1518 /* Clear the dirty bit */
1519 #define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))
1520 
1521 /*
1522  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1523  * other. Here is what they mean, and how to use them:
1524  *
1525  *
1526  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1527  * lifetime enforced by the filesystem and we need guarantees that longterm
1528  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1529  * the filesystem.  Ideas for this coordination include revoking the longterm
1530  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1531  * added after the problem with filesystems was found FS DAX VMAs are
1532  * specifically failed.  Filesystem pages are still subject to bugs and use of
1533  * FOLL_LONGTERM should be avoided on those pages.
1534  *
1535  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1536  * that region.  And so, CMA attempts to migrate the page before pinning, when
1537  * FOLL_LONGTERM is specified.
1538  *
1539  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1540  * but an additional pin counting system) will be invoked. This is intended for
1541  * anything that gets a page reference and then touches page data (for example,
1542  * Direct IO). This lets the filesystem know that some non-file-system entity is
1543  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1544  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1545  * a call to unpin_user_page().
1546  *
1547  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1548  * and separate refcounting mechanisms, however, and that means that each has
1549  * its own acquire and release mechanisms:
1550  *
1551  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1552  *
1553  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1554  *
1555  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1556  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1557  * calls applied to them, and that's perfectly OK. This is a constraint on the
1558  * callers, not on the pages.)
1559  *
1560  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1561  * directly by the caller. That's in order to help avoid mismatches when
1562  * releasing pages: get_user_pages*() pages must be released via put_page(),
1563  * while pin_user_pages*() pages must be released via unpin_user_page().
1564  *
1565  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1566  */
1567 
1568 enum {
1569 	/* check pte is writable */
1570 	FOLL_WRITE = 1 << 0,
1571 	/* do get_page on page */
1572 	FOLL_GET = 1 << 1,
1573 	/* give error on hole if it would be zero */
1574 	FOLL_DUMP = 1 << 2,
1575 	/* get_user_pages read/write w/o permission */
1576 	FOLL_FORCE = 1 << 3,
1577 	/*
1578 	 * if a disk transfer is needed, start the IO and return without waiting
1579 	 * upon it
1580 	 */
1581 	FOLL_NOWAIT = 1 << 4,
1582 	/* do not fault in pages */
1583 	FOLL_NOFAULT = 1 << 5,
1584 	/* check page is hwpoisoned */
1585 	FOLL_HWPOISON = 1 << 6,
1586 	/* don't do file mappings */
1587 	FOLL_ANON = 1 << 7,
1588 	/*
1589 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1590 	 * time period _often_ under userspace control.  This is in contrast to
1591 	 * iov_iter_get_pages(), whose usages are transient.
1592 	 */
1593 	FOLL_LONGTERM = 1 << 8,
1594 	/* split huge pmd before returning */
1595 	FOLL_SPLIT_PMD = 1 << 9,
1596 	/* allow returning PCI P2PDMA pages */
1597 	FOLL_PCI_P2PDMA = 1 << 10,
1598 	/* allow interrupts from generic signals */
1599 	FOLL_INTERRUPTIBLE = 1 << 11,
1600 	/*
1601 	 * Always honor (trigger) NUMA hinting faults.
1602 	 *
1603 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1604 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1605 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1606 	 * hinting faults.
1607 	 */
1608 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1609 
1610 	/* See also internal only FOLL flags in mm/internal.h */
1611 };
1612 
1613 /* mm flags */
1614 
1615 /*
1616  * The first two bits represent core dump modes for set-user-ID,
1617  * the modes are SUID_DUMP_* defined in linux/sched/coredump.h
1618  */
1619 #define MMF_DUMPABLE_BITS 2
1620 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
1621 /* coredump filter bits */
1622 #define MMF_DUMP_ANON_PRIVATE	2
1623 #define MMF_DUMP_ANON_SHARED	3
1624 #define MMF_DUMP_MAPPED_PRIVATE	4
1625 #define MMF_DUMP_MAPPED_SHARED	5
1626 #define MMF_DUMP_ELF_HEADERS	6
1627 #define MMF_DUMP_HUGETLB_PRIVATE 7
1628 #define MMF_DUMP_HUGETLB_SHARED  8
1629 #define MMF_DUMP_DAX_PRIVATE	9
1630 #define MMF_DUMP_DAX_SHARED	10
1631 
1632 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
1633 #define MMF_DUMP_FILTER_BITS	9
1634 #define MMF_DUMP_FILTER_MASK \
1635 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
1636 #define MMF_DUMP_FILTER_DEFAULT \
1637 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
1638 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
1639 
1640 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
1641 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
1642 #else
1643 # define MMF_DUMP_MASK_DEFAULT_ELF	0
1644 #endif
1645 					/* leave room for more dump flags */
1646 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
1647 #define MMF_VM_HUGEPAGE		17	/* set when mm is available for khugepaged */
1648 
1649 /*
1650  * This one-shot flag is dropped due to necessity of changing exe once again
1651  * on NFS restore
1652  */
1653 //#define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
1654 
1655 #define MMF_HAS_UPROBES		19	/* has uprobes */
1656 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
1657 #define MMF_OOM_SKIP		21	/* mm is of no interest for the OOM killer */
1658 #define MMF_UNSTABLE		22	/* mm is unstable for copy_from_user */
1659 #define MMF_HUGE_ZERO_PAGE	23      /* mm has ever used the global huge zero page */
1660 #define MMF_DISABLE_THP		24	/* disable THP for all VMAs */
1661 #define MMF_DISABLE_THP_MASK	(1 << MMF_DISABLE_THP)
1662 #define MMF_OOM_REAP_QUEUED	25	/* mm was queued for oom_reaper */
1663 #define MMF_MULTIPROCESS	26	/* mm is shared between processes */
1664 /*
1665  * MMF_HAS_PINNED: Whether this mm has pinned any pages.  This can be either
1666  * replaced in the future by mm.pinned_vm when it becomes stable, or grow into
1667  * a counter on its own. We're aggresive on this bit for now: even if the
1668  * pinned pages were unpinned later on, we'll still keep this bit set for the
1669  * lifecycle of this mm, just for simplicity.
1670  */
1671 #define MMF_HAS_PINNED		27	/* FOLL_PIN has run, never cleared */
1672 
1673 #define MMF_HAS_MDWE		28
1674 #define MMF_HAS_MDWE_MASK	(1 << MMF_HAS_MDWE)
1675 
1676 
1677 #define MMF_HAS_MDWE_NO_INHERIT	29
1678 
1679 #define MMF_VM_MERGE_ANY	30
1680 #define MMF_VM_MERGE_ANY_MASK	(1 << MMF_VM_MERGE_ANY)
1681 
1682 #define MMF_TOPDOWN		31	/* mm searches top down by default */
1683 #define MMF_TOPDOWN_MASK	(1 << MMF_TOPDOWN)
1684 
1685 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\
1686 				 MMF_DISABLE_THP_MASK | MMF_HAS_MDWE_MASK |\
1687 				 MMF_VM_MERGE_ANY_MASK | MMF_TOPDOWN_MASK)
1688 
1689 static inline unsigned long mmf_init_flags(unsigned long flags)
1690 {
1691 	if (flags & (1UL << MMF_HAS_MDWE_NO_INHERIT))
1692 		flags &= ~((1UL << MMF_HAS_MDWE) |
1693 			   (1UL << MMF_HAS_MDWE_NO_INHERIT));
1694 	return flags & MMF_INIT_MASK;
1695 }
1696 
1697 #endif /* _LINUX_MM_TYPES_H */
1698