1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_TYPES_H 3 #define _LINUX_MM_TYPES_H 4 5 #include <linux/mm_types_task.h> 6 7 #include <linux/auxvec.h> 8 #include <linux/kref.h> 9 #include <linux/list.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/maple_tree.h> 13 #include <linux/rwsem.h> 14 #include <linux/completion.h> 15 #include <linux/cpumask.h> 16 #include <linux/uprobes.h> 17 #include <linux/rcupdate.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/workqueue.h> 20 #include <linux/seqlock.h> 21 #include <linux/percpu_counter.h> 22 23 #include <asm/mmu.h> 24 25 #ifndef AT_VECTOR_SIZE_ARCH 26 #define AT_VECTOR_SIZE_ARCH 0 27 #endif 28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30 #define INIT_PASID 0 31 32 struct address_space; 33 struct mem_cgroup; 34 35 /* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70 #else 71 #define _struct_page_alignment __aligned(sizeof(unsigned long)) 72 #endif 73 74 struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 union { 129 /** 130 * dma_addr_upper: might require a 64-bit 131 * value on 32-bit architectures. 132 */ 133 unsigned long dma_addr_upper; 134 /** 135 * For frag page support, not supported in 136 * 32-bit architectures with 64-bit DMA. 137 */ 138 atomic_long_t pp_frag_count; 139 }; 140 }; 141 struct { /* Tail pages of compound page */ 142 unsigned long compound_head; /* Bit zero is set */ 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 /* 148 * A PTE page table page might be freed by use of 149 * rcu_head: which overlays those two fields above. 150 */ 151 unsigned long _pt_pad_2; /* mapping */ 152 union { 153 struct mm_struct *pt_mm; /* x86 pgds only */ 154 atomic_t pt_frag_refcount; /* powerpc */ 155 }; 156 #if ALLOC_SPLIT_PTLOCKS 157 spinlock_t *ptl; 158 #else 159 spinlock_t ptl; 160 #endif 161 }; 162 struct { /* ZONE_DEVICE pages */ 163 /** @pgmap: Points to the hosting device page map. */ 164 struct dev_pagemap *pgmap; 165 void *zone_device_data; 166 /* 167 * ZONE_DEVICE private pages are counted as being 168 * mapped so the next 3 words hold the mapping, index, 169 * and private fields from the source anonymous or 170 * page cache page while the page is migrated to device 171 * private memory. 172 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 173 * use the mapping, index, and private fields when 174 * pmem backed DAX files are mapped. 175 */ 176 }; 177 178 /** @rcu_head: You can use this to free a page by RCU. */ 179 struct rcu_head rcu_head; 180 }; 181 182 union { /* This union is 4 bytes in size. */ 183 /* 184 * If the page can be mapped to userspace, encodes the number 185 * of times this page is referenced by a page table. 186 */ 187 atomic_t _mapcount; 188 189 /* 190 * If the page is neither PageSlab nor mappable to userspace, 191 * the value stored here may help determine what this page 192 * is used for. See page-flags.h for a list of page types 193 * which are currently stored here. 194 */ 195 unsigned int page_type; 196 }; 197 198 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 199 atomic_t _refcount; 200 201 #ifdef CONFIG_MEMCG 202 unsigned long memcg_data; 203 #endif 204 205 /* 206 * On machines where all RAM is mapped into kernel address space, 207 * we can simply calculate the virtual address. On machines with 208 * highmem some memory is mapped into kernel virtual memory 209 * dynamically, so we need a place to store that address. 210 * Note that this field could be 16 bits on x86 ... ;) 211 * 212 * Architectures with slow multiplication can define 213 * WANT_PAGE_VIRTUAL in asm/page.h 214 */ 215 #if defined(WANT_PAGE_VIRTUAL) 216 void *virtual; /* Kernel virtual address (NULL if 217 not kmapped, ie. highmem) */ 218 #endif /* WANT_PAGE_VIRTUAL */ 219 220 #ifdef CONFIG_KMSAN 221 /* 222 * KMSAN metadata for this page: 223 * - shadow page: every bit indicates whether the corresponding 224 * bit of the original page is initialized (0) or not (1); 225 * - origin page: every 4 bytes contain an id of the stack trace 226 * where the uninitialized value was created. 227 */ 228 struct page *kmsan_shadow; 229 struct page *kmsan_origin; 230 #endif 231 232 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 233 int _last_cpupid; 234 #endif 235 } _struct_page_alignment; 236 237 /* 238 * struct encoded_page - a nonexistent type marking this pointer 239 * 240 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 241 * with the low bits of the pointer indicating extra context-dependent 242 * information. Not super-common, but happens in mmu_gather and mlock 243 * handling, and this acts as a type system check on that use. 244 * 245 * We only really have two guaranteed bits in general, although you could 246 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 247 * for more. 248 * 249 * Use the supplied helper functions to endcode/decode the pointer and bits. 250 */ 251 struct encoded_page; 252 #define ENCODE_PAGE_BITS 3ul 253 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 254 { 255 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 256 return (struct encoded_page *)(flags | (unsigned long)page); 257 } 258 259 static inline unsigned long encoded_page_flags(struct encoded_page *page) 260 { 261 return ENCODE_PAGE_BITS & (unsigned long)page; 262 } 263 264 static inline struct page *encoded_page_ptr(struct encoded_page *page) 265 { 266 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 267 } 268 269 /** 270 * struct folio - Represents a contiguous set of bytes. 271 * @flags: Identical to the page flags. 272 * @lru: Least Recently Used list; tracks how recently this folio was used. 273 * @mlock_count: Number of times this folio has been pinned by mlock(). 274 * @mapping: The file this page belongs to, or refers to the anon_vma for 275 * anonymous memory. 276 * @index: Offset within the file, in units of pages. For anonymous memory, 277 * this is the index from the beginning of the mmap. 278 * @private: Filesystem per-folio data (see folio_attach_private()). 279 * Used for swp_entry_t if folio_test_swapcache(). 280 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 281 * find out how many times this folio is mapped by userspace. 282 * @_refcount: Do not access this member directly. Use folio_ref_count() 283 * to find how many references there are to this folio. 284 * @memcg_data: Memory Control Group data. 285 * @_folio_dtor: Which destructor to use for this folio. 286 * @_folio_order: Do not use directly, call folio_order(). 287 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 288 * @_nr_pages_mapped: Do not use directly, call folio_mapcount(). 289 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 290 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 291 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 292 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 293 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 294 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 295 * @_deferred_list: Folios to be split under memory pressure. 296 * 297 * A folio is a physically, virtually and logically contiguous set 298 * of bytes. It is a power-of-two in size, and it is aligned to that 299 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 300 * in the page cache, it is at a file offset which is a multiple of that 301 * power-of-two. It may be mapped into userspace at an address which is 302 * at an arbitrary page offset, but its kernel virtual address is aligned 303 * to its size. 304 */ 305 struct folio { 306 /* private: don't document the anon union */ 307 union { 308 struct { 309 /* public: */ 310 unsigned long flags; 311 union { 312 struct list_head lru; 313 /* private: avoid cluttering the output */ 314 struct { 315 void *__filler; 316 /* public: */ 317 unsigned int mlock_count; 318 /* private: */ 319 }; 320 /* public: */ 321 }; 322 struct address_space *mapping; 323 pgoff_t index; 324 void *private; 325 atomic_t _mapcount; 326 atomic_t _refcount; 327 #ifdef CONFIG_MEMCG 328 unsigned long memcg_data; 329 #endif 330 /* private: the union with struct page is transitional */ 331 }; 332 struct page page; 333 }; 334 union { 335 struct { 336 unsigned long _flags_1; 337 unsigned long _head_1; 338 /* public: */ 339 unsigned char _folio_dtor; 340 unsigned char _folio_order; 341 atomic_t _entire_mapcount; 342 atomic_t _nr_pages_mapped; 343 atomic_t _pincount; 344 #ifdef CONFIG_64BIT 345 unsigned int _folio_nr_pages; 346 #endif 347 /* private: the union with struct page is transitional */ 348 }; 349 struct page __page_1; 350 }; 351 union { 352 struct { 353 unsigned long _flags_2; 354 unsigned long _head_2; 355 /* public: */ 356 void *_hugetlb_subpool; 357 void *_hugetlb_cgroup; 358 void *_hugetlb_cgroup_rsvd; 359 void *_hugetlb_hwpoison; 360 /* private: the union with struct page is transitional */ 361 }; 362 struct { 363 unsigned long _flags_2a; 364 unsigned long _head_2a; 365 /* public: */ 366 struct list_head _deferred_list; 367 /* private: the union with struct page is transitional */ 368 }; 369 struct page __page_2; 370 }; 371 }; 372 373 #define FOLIO_MATCH(pg, fl) \ 374 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 375 FOLIO_MATCH(flags, flags); 376 FOLIO_MATCH(lru, lru); 377 FOLIO_MATCH(mapping, mapping); 378 FOLIO_MATCH(compound_head, lru); 379 FOLIO_MATCH(index, index); 380 FOLIO_MATCH(private, private); 381 FOLIO_MATCH(_mapcount, _mapcount); 382 FOLIO_MATCH(_refcount, _refcount); 383 #ifdef CONFIG_MEMCG 384 FOLIO_MATCH(memcg_data, memcg_data); 385 #endif 386 #undef FOLIO_MATCH 387 #define FOLIO_MATCH(pg, fl) \ 388 static_assert(offsetof(struct folio, fl) == \ 389 offsetof(struct page, pg) + sizeof(struct page)) 390 FOLIO_MATCH(flags, _flags_1); 391 FOLIO_MATCH(compound_head, _head_1); 392 #undef FOLIO_MATCH 393 #define FOLIO_MATCH(pg, fl) \ 394 static_assert(offsetof(struct folio, fl) == \ 395 offsetof(struct page, pg) + 2 * sizeof(struct page)) 396 FOLIO_MATCH(flags, _flags_2); 397 FOLIO_MATCH(compound_head, _head_2); 398 #undef FOLIO_MATCH 399 400 /* 401 * Used for sizing the vmemmap region on some architectures 402 */ 403 #define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 404 405 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 406 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 407 408 /* 409 * page_private can be used on tail pages. However, PagePrivate is only 410 * checked by the VM on the head page. So page_private on the tail pages 411 * should be used for data that's ancillary to the head page (eg attaching 412 * buffer heads to tail pages after attaching buffer heads to the head page) 413 */ 414 #define page_private(page) ((page)->private) 415 416 static inline void set_page_private(struct page *page, unsigned long private) 417 { 418 page->private = private; 419 } 420 421 static inline void *folio_get_private(struct folio *folio) 422 { 423 return folio->private; 424 } 425 426 struct page_frag_cache { 427 void * va; 428 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 429 __u16 offset; 430 __u16 size; 431 #else 432 __u32 offset; 433 #endif 434 /* we maintain a pagecount bias, so that we dont dirty cache line 435 * containing page->_refcount every time we allocate a fragment. 436 */ 437 unsigned int pagecnt_bias; 438 bool pfmemalloc; 439 }; 440 441 typedef unsigned long vm_flags_t; 442 443 /* 444 * A region containing a mapping of a non-memory backed file under NOMMU 445 * conditions. These are held in a global tree and are pinned by the VMAs that 446 * map parts of them. 447 */ 448 struct vm_region { 449 struct rb_node vm_rb; /* link in global region tree */ 450 vm_flags_t vm_flags; /* VMA vm_flags */ 451 unsigned long vm_start; /* start address of region */ 452 unsigned long vm_end; /* region initialised to here */ 453 unsigned long vm_top; /* region allocated to here */ 454 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 455 struct file *vm_file; /* the backing file or NULL */ 456 457 int vm_usage; /* region usage count (access under nommu_region_sem) */ 458 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 459 * this region */ 460 }; 461 462 #ifdef CONFIG_USERFAULTFD 463 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 464 struct vm_userfaultfd_ctx { 465 struct userfaultfd_ctx *ctx; 466 }; 467 #else /* CONFIG_USERFAULTFD */ 468 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 469 struct vm_userfaultfd_ctx {}; 470 #endif /* CONFIG_USERFAULTFD */ 471 472 struct anon_vma_name { 473 struct kref kref; 474 /* The name needs to be at the end because it is dynamically sized. */ 475 char name[]; 476 }; 477 478 struct vma_lock { 479 struct rw_semaphore lock; 480 }; 481 482 struct vma_numab_state { 483 unsigned long next_scan; 484 unsigned long next_pid_reset; 485 unsigned long access_pids[2]; 486 }; 487 488 /* 489 * This struct describes a virtual memory area. There is one of these 490 * per VM-area/task. A VM area is any part of the process virtual memory 491 * space that has a special rule for the page-fault handlers (ie a shared 492 * library, the executable area etc). 493 */ 494 struct vm_area_struct { 495 /* The first cache line has the info for VMA tree walking. */ 496 497 union { 498 struct { 499 /* VMA covers [vm_start; vm_end) addresses within mm */ 500 unsigned long vm_start; 501 unsigned long vm_end; 502 }; 503 #ifdef CONFIG_PER_VMA_LOCK 504 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 505 #endif 506 }; 507 508 struct mm_struct *vm_mm; /* The address space we belong to. */ 509 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 510 511 /* 512 * Flags, see mm.h. 513 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 514 */ 515 union { 516 const vm_flags_t vm_flags; 517 vm_flags_t __private __vm_flags; 518 }; 519 520 #ifdef CONFIG_PER_VMA_LOCK 521 /* 522 * Can only be written (using WRITE_ONCE()) while holding both: 523 * - mmap_lock (in write mode) 524 * - vm_lock->lock (in write mode) 525 * Can be read reliably while holding one of: 526 * - mmap_lock (in read or write mode) 527 * - vm_lock->lock (in read or write mode) 528 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 529 * while holding nothing (except RCU to keep the VMA struct allocated). 530 * 531 * This sequence counter is explicitly allowed to overflow; sequence 532 * counter reuse can only lead to occasional unnecessary use of the 533 * slowpath. 534 */ 535 int vm_lock_seq; 536 struct vma_lock *vm_lock; 537 538 /* Flag to indicate areas detached from the mm->mm_mt tree */ 539 bool detached; 540 #endif 541 542 /* 543 * For areas with an address space and backing store, 544 * linkage into the address_space->i_mmap interval tree. 545 * 546 */ 547 struct { 548 struct rb_node rb; 549 unsigned long rb_subtree_last; 550 } shared; 551 552 /* 553 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 554 * list, after a COW of one of the file pages. A MAP_SHARED vma 555 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 556 * or brk vma (with NULL file) can only be in an anon_vma list. 557 */ 558 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 559 * page_table_lock */ 560 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 561 562 /* Function pointers to deal with this struct. */ 563 const struct vm_operations_struct *vm_ops; 564 565 /* Information about our backing store: */ 566 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 567 units */ 568 struct file * vm_file; /* File we map to (can be NULL). */ 569 void * vm_private_data; /* was vm_pte (shared mem) */ 570 571 #ifdef CONFIG_ANON_VMA_NAME 572 /* 573 * For private and shared anonymous mappings, a pointer to a null 574 * terminated string containing the name given to the vma, or NULL if 575 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 576 */ 577 struct anon_vma_name *anon_name; 578 #endif 579 #ifdef CONFIG_SWAP 580 atomic_long_t swap_readahead_info; 581 #endif 582 #ifndef CONFIG_MMU 583 struct vm_region *vm_region; /* NOMMU mapping region */ 584 #endif 585 #ifdef CONFIG_NUMA 586 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 587 #endif 588 #ifdef CONFIG_NUMA_BALANCING 589 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 590 #endif 591 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 592 } __randomize_layout; 593 594 #ifdef CONFIG_SCHED_MM_CID 595 struct mm_cid { 596 u64 time; 597 int cid; 598 }; 599 #endif 600 601 struct kioctx_table; 602 struct mm_struct { 603 struct { 604 /* 605 * Fields which are often written to are placed in a separate 606 * cache line. 607 */ 608 struct { 609 /** 610 * @mm_count: The number of references to &struct 611 * mm_struct (@mm_users count as 1). 612 * 613 * Use mmgrab()/mmdrop() to modify. When this drops to 614 * 0, the &struct mm_struct is freed. 615 */ 616 atomic_t mm_count; 617 } ____cacheline_aligned_in_smp; 618 619 struct maple_tree mm_mt; 620 #ifdef CONFIG_MMU 621 unsigned long (*get_unmapped_area) (struct file *filp, 622 unsigned long addr, unsigned long len, 623 unsigned long pgoff, unsigned long flags); 624 #endif 625 unsigned long mmap_base; /* base of mmap area */ 626 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 627 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 628 /* Base addresses for compatible mmap() */ 629 unsigned long mmap_compat_base; 630 unsigned long mmap_compat_legacy_base; 631 #endif 632 unsigned long task_size; /* size of task vm space */ 633 pgd_t * pgd; 634 635 #ifdef CONFIG_MEMBARRIER 636 /** 637 * @membarrier_state: Flags controlling membarrier behavior. 638 * 639 * This field is close to @pgd to hopefully fit in the same 640 * cache-line, which needs to be touched by switch_mm(). 641 */ 642 atomic_t membarrier_state; 643 #endif 644 645 /** 646 * @mm_users: The number of users including userspace. 647 * 648 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 649 * drops to 0 (i.e. when the task exits and there are no other 650 * temporary reference holders), we also release a reference on 651 * @mm_count (which may then free the &struct mm_struct if 652 * @mm_count also drops to 0). 653 */ 654 atomic_t mm_users; 655 656 #ifdef CONFIG_SCHED_MM_CID 657 /** 658 * @pcpu_cid: Per-cpu current cid. 659 * 660 * Keep track of the currently allocated mm_cid for each cpu. 661 * The per-cpu mm_cid values are serialized by their respective 662 * runqueue locks. 663 */ 664 struct mm_cid __percpu *pcpu_cid; 665 /* 666 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 667 * 668 * When the next mm_cid scan is due (in jiffies). 669 */ 670 unsigned long mm_cid_next_scan; 671 #endif 672 #ifdef CONFIG_MMU 673 atomic_long_t pgtables_bytes; /* size of all page tables */ 674 #endif 675 int map_count; /* number of VMAs */ 676 677 spinlock_t page_table_lock; /* Protects page tables and some 678 * counters 679 */ 680 /* 681 * With some kernel config, the current mmap_lock's offset 682 * inside 'mm_struct' is at 0x120, which is very optimal, as 683 * its two hot fields 'count' and 'owner' sit in 2 different 684 * cachelines, and when mmap_lock is highly contended, both 685 * of the 2 fields will be accessed frequently, current layout 686 * will help to reduce cache bouncing. 687 * 688 * So please be careful with adding new fields before 689 * mmap_lock, which can easily push the 2 fields into one 690 * cacheline. 691 */ 692 struct rw_semaphore mmap_lock; 693 694 struct list_head mmlist; /* List of maybe swapped mm's. These 695 * are globally strung together off 696 * init_mm.mmlist, and are protected 697 * by mmlist_lock 698 */ 699 #ifdef CONFIG_PER_VMA_LOCK 700 /* 701 * This field has lock-like semantics, meaning it is sometimes 702 * accessed with ACQUIRE/RELEASE semantics. 703 * Roughly speaking, incrementing the sequence number is 704 * equivalent to releasing locks on VMAs; reading the sequence 705 * number can be part of taking a read lock on a VMA. 706 * 707 * Can be modified under write mmap_lock using RELEASE 708 * semantics. 709 * Can be read with no other protection when holding write 710 * mmap_lock. 711 * Can be read with ACQUIRE semantics if not holding write 712 * mmap_lock. 713 */ 714 int mm_lock_seq; 715 #endif 716 717 718 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 719 unsigned long hiwater_vm; /* High-water virtual memory usage */ 720 721 unsigned long total_vm; /* Total pages mapped */ 722 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 723 atomic64_t pinned_vm; /* Refcount permanently increased */ 724 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 725 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 726 unsigned long stack_vm; /* VM_STACK */ 727 unsigned long def_flags; 728 729 /** 730 * @write_protect_seq: Locked when any thread is write 731 * protecting pages mapped by this mm to enforce a later COW, 732 * for instance during page table copying for fork(). 733 */ 734 seqcount_t write_protect_seq; 735 736 spinlock_t arg_lock; /* protect the below fields */ 737 738 unsigned long start_code, end_code, start_data, end_data; 739 unsigned long start_brk, brk, start_stack; 740 unsigned long arg_start, arg_end, env_start, env_end; 741 742 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 743 744 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 745 746 struct linux_binfmt *binfmt; 747 748 /* Architecture-specific MM context */ 749 mm_context_t context; 750 751 unsigned long flags; /* Must use atomic bitops to access */ 752 753 #ifdef CONFIG_AIO 754 spinlock_t ioctx_lock; 755 struct kioctx_table __rcu *ioctx_table; 756 #endif 757 #ifdef CONFIG_MEMCG 758 /* 759 * "owner" points to a task that is regarded as the canonical 760 * user/owner of this mm. All of the following must be true in 761 * order for it to be changed: 762 * 763 * current == mm->owner 764 * current->mm != mm 765 * new_owner->mm == mm 766 * new_owner->alloc_lock is held 767 */ 768 struct task_struct __rcu *owner; 769 #endif 770 struct user_namespace *user_ns; 771 772 /* store ref to file /proc/<pid>/exe symlink points to */ 773 struct file __rcu *exe_file; 774 #ifdef CONFIG_MMU_NOTIFIER 775 struct mmu_notifier_subscriptions *notifier_subscriptions; 776 #endif 777 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 778 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 779 #endif 780 #ifdef CONFIG_NUMA_BALANCING 781 /* 782 * numa_next_scan is the next time that PTEs will be remapped 783 * PROT_NONE to trigger NUMA hinting faults; such faults gather 784 * statistics and migrate pages to new nodes if necessary. 785 */ 786 unsigned long numa_next_scan; 787 788 /* Restart point for scanning and remapping PTEs. */ 789 unsigned long numa_scan_offset; 790 791 /* numa_scan_seq prevents two threads remapping PTEs. */ 792 int numa_scan_seq; 793 #endif 794 /* 795 * An operation with batched TLB flushing is going on. Anything 796 * that can move process memory needs to flush the TLB when 797 * moving a PROT_NONE mapped page. 798 */ 799 atomic_t tlb_flush_pending; 800 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 801 /* See flush_tlb_batched_pending() */ 802 atomic_t tlb_flush_batched; 803 #endif 804 struct uprobes_state uprobes_state; 805 #ifdef CONFIG_PREEMPT_RT 806 struct rcu_head delayed_drop; 807 #endif 808 #ifdef CONFIG_HUGETLB_PAGE 809 atomic_long_t hugetlb_usage; 810 #endif 811 struct work_struct async_put_work; 812 813 #ifdef CONFIG_IOMMU_SVA 814 u32 pasid; 815 #endif 816 #ifdef CONFIG_KSM 817 /* 818 * Represent how many pages of this process are involved in KSM 819 * merging (not including ksm_zero_pages). 820 */ 821 unsigned long ksm_merging_pages; 822 /* 823 * Represent how many pages are checked for ksm merging 824 * including merged and not merged. 825 */ 826 unsigned long ksm_rmap_items; 827 /* 828 * Represent how many empty pages are merged with kernel zero 829 * pages when enabling KSM use_zero_pages. 830 */ 831 unsigned long ksm_zero_pages; 832 #endif /* CONFIG_KSM */ 833 #ifdef CONFIG_LRU_GEN 834 struct { 835 /* this mm_struct is on lru_gen_mm_list */ 836 struct list_head list; 837 /* 838 * Set when switching to this mm_struct, as a hint of 839 * whether it has been used since the last time per-node 840 * page table walkers cleared the corresponding bits. 841 */ 842 unsigned long bitmap; 843 #ifdef CONFIG_MEMCG 844 /* points to the memcg of "owner" above */ 845 struct mem_cgroup *memcg; 846 #endif 847 } lru_gen; 848 #endif /* CONFIG_LRU_GEN */ 849 } __randomize_layout; 850 851 /* 852 * The mm_cpumask needs to be at the end of mm_struct, because it 853 * is dynamically sized based on nr_cpu_ids. 854 */ 855 unsigned long cpu_bitmap[]; 856 }; 857 858 #define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 859 MT_FLAGS_USE_RCU) 860 extern struct mm_struct init_mm; 861 862 /* Pointer magic because the dynamic array size confuses some compilers. */ 863 static inline void mm_init_cpumask(struct mm_struct *mm) 864 { 865 unsigned long cpu_bitmap = (unsigned long)mm; 866 867 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 868 cpumask_clear((struct cpumask *)cpu_bitmap); 869 } 870 871 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 872 static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 873 { 874 return (struct cpumask *)&mm->cpu_bitmap; 875 } 876 877 #ifdef CONFIG_LRU_GEN 878 879 struct lru_gen_mm_list { 880 /* mm_struct list for page table walkers */ 881 struct list_head fifo; 882 /* protects the list above */ 883 spinlock_t lock; 884 }; 885 886 void lru_gen_add_mm(struct mm_struct *mm); 887 void lru_gen_del_mm(struct mm_struct *mm); 888 #ifdef CONFIG_MEMCG 889 void lru_gen_migrate_mm(struct mm_struct *mm); 890 #endif 891 892 static inline void lru_gen_init_mm(struct mm_struct *mm) 893 { 894 INIT_LIST_HEAD(&mm->lru_gen.list); 895 mm->lru_gen.bitmap = 0; 896 #ifdef CONFIG_MEMCG 897 mm->lru_gen.memcg = NULL; 898 #endif 899 } 900 901 static inline void lru_gen_use_mm(struct mm_struct *mm) 902 { 903 /* 904 * When the bitmap is set, page reclaim knows this mm_struct has been 905 * used since the last time it cleared the bitmap. So it might be worth 906 * walking the page tables of this mm_struct to clear the accessed bit. 907 */ 908 WRITE_ONCE(mm->lru_gen.bitmap, -1); 909 } 910 911 #else /* !CONFIG_LRU_GEN */ 912 913 static inline void lru_gen_add_mm(struct mm_struct *mm) 914 { 915 } 916 917 static inline void lru_gen_del_mm(struct mm_struct *mm) 918 { 919 } 920 921 #ifdef CONFIG_MEMCG 922 static inline void lru_gen_migrate_mm(struct mm_struct *mm) 923 { 924 } 925 #endif 926 927 static inline void lru_gen_init_mm(struct mm_struct *mm) 928 { 929 } 930 931 static inline void lru_gen_use_mm(struct mm_struct *mm) 932 { 933 } 934 935 #endif /* CONFIG_LRU_GEN */ 936 937 struct vma_iterator { 938 struct ma_state mas; 939 }; 940 941 #define VMA_ITERATOR(name, __mm, __addr) \ 942 struct vma_iterator name = { \ 943 .mas = { \ 944 .tree = &(__mm)->mm_mt, \ 945 .index = __addr, \ 946 .node = MAS_START, \ 947 }, \ 948 } 949 950 static inline void vma_iter_init(struct vma_iterator *vmi, 951 struct mm_struct *mm, unsigned long addr) 952 { 953 mas_init(&vmi->mas, &mm->mm_mt, addr); 954 } 955 956 #ifdef CONFIG_SCHED_MM_CID 957 958 enum mm_cid_state { 959 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 960 MM_CID_LAZY_PUT = (1U << 31), 961 }; 962 963 static inline bool mm_cid_is_unset(int cid) 964 { 965 return cid == MM_CID_UNSET; 966 } 967 968 static inline bool mm_cid_is_lazy_put(int cid) 969 { 970 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 971 } 972 973 static inline bool mm_cid_is_valid(int cid) 974 { 975 return !(cid & MM_CID_LAZY_PUT); 976 } 977 978 static inline int mm_cid_set_lazy_put(int cid) 979 { 980 return cid | MM_CID_LAZY_PUT; 981 } 982 983 static inline int mm_cid_clear_lazy_put(int cid) 984 { 985 return cid & ~MM_CID_LAZY_PUT; 986 } 987 988 /* Accessor for struct mm_struct's cidmask. */ 989 static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 990 { 991 unsigned long cid_bitmap = (unsigned long)mm; 992 993 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 994 /* Skip cpu_bitmap */ 995 cid_bitmap += cpumask_size(); 996 return (struct cpumask *)cid_bitmap; 997 } 998 999 static inline void mm_init_cid(struct mm_struct *mm) 1000 { 1001 int i; 1002 1003 for_each_possible_cpu(i) { 1004 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 1005 1006 pcpu_cid->cid = MM_CID_UNSET; 1007 pcpu_cid->time = 0; 1008 } 1009 cpumask_clear(mm_cidmask(mm)); 1010 } 1011 1012 static inline int mm_alloc_cid(struct mm_struct *mm) 1013 { 1014 mm->pcpu_cid = alloc_percpu(struct mm_cid); 1015 if (!mm->pcpu_cid) 1016 return -ENOMEM; 1017 mm_init_cid(mm); 1018 return 0; 1019 } 1020 1021 static inline void mm_destroy_cid(struct mm_struct *mm) 1022 { 1023 free_percpu(mm->pcpu_cid); 1024 mm->pcpu_cid = NULL; 1025 } 1026 1027 static inline unsigned int mm_cid_size(void) 1028 { 1029 return cpumask_size(); 1030 } 1031 #else /* CONFIG_SCHED_MM_CID */ 1032 static inline void mm_init_cid(struct mm_struct *mm) { } 1033 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } 1034 static inline void mm_destroy_cid(struct mm_struct *mm) { } 1035 static inline unsigned int mm_cid_size(void) 1036 { 1037 return 0; 1038 } 1039 #endif /* CONFIG_SCHED_MM_CID */ 1040 1041 struct mmu_gather; 1042 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1043 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1044 extern void tlb_finish_mmu(struct mmu_gather *tlb); 1045 1046 struct vm_fault; 1047 1048 /** 1049 * typedef vm_fault_t - Return type for page fault handlers. 1050 * 1051 * Page fault handlers return a bitmask of %VM_FAULT values. 1052 */ 1053 typedef __bitwise unsigned int vm_fault_t; 1054 1055 /** 1056 * enum vm_fault_reason - Page fault handlers return a bitmask of 1057 * these values to tell the core VM what happened when handling the 1058 * fault. Used to decide whether a process gets delivered SIGBUS or 1059 * just gets major/minor fault counters bumped up. 1060 * 1061 * @VM_FAULT_OOM: Out Of Memory 1062 * @VM_FAULT_SIGBUS: Bad access 1063 * @VM_FAULT_MAJOR: Page read from storage 1064 * @VM_FAULT_HWPOISON: Hit poisoned small page 1065 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1066 * in upper bits 1067 * @VM_FAULT_SIGSEGV: segmentation fault 1068 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1069 * @VM_FAULT_LOCKED: ->fault locked the returned page 1070 * @VM_FAULT_RETRY: ->fault blocked, must retry 1071 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1072 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1073 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1074 * fsync() to complete (for synchronous page faults 1075 * in DAX) 1076 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1077 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1078 * 1079 */ 1080 enum vm_fault_reason { 1081 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1082 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1083 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1084 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1085 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1086 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1087 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1088 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1089 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1090 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1091 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1092 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1093 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1094 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1095 }; 1096 1097 /* Encode hstate index for a hwpoisoned large page */ 1098 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1099 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1100 1101 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1102 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1103 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1104 1105 #define VM_FAULT_RESULT_TRACE \ 1106 { VM_FAULT_OOM, "OOM" }, \ 1107 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1108 { VM_FAULT_MAJOR, "MAJOR" }, \ 1109 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1110 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1111 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1112 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1113 { VM_FAULT_LOCKED, "LOCKED" }, \ 1114 { VM_FAULT_RETRY, "RETRY" }, \ 1115 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1116 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1117 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1118 1119 struct vm_special_mapping { 1120 const char *name; /* The name, e.g. "[vdso]". */ 1121 1122 /* 1123 * If .fault is not provided, this points to a 1124 * NULL-terminated array of pages that back the special mapping. 1125 * 1126 * This must not be NULL unless .fault is provided. 1127 */ 1128 struct page **pages; 1129 1130 /* 1131 * If non-NULL, then this is called to resolve page faults 1132 * on the special mapping. If used, .pages is not checked. 1133 */ 1134 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1135 struct vm_area_struct *vma, 1136 struct vm_fault *vmf); 1137 1138 int (*mremap)(const struct vm_special_mapping *sm, 1139 struct vm_area_struct *new_vma); 1140 }; 1141 1142 enum tlb_flush_reason { 1143 TLB_FLUSH_ON_TASK_SWITCH, 1144 TLB_REMOTE_SHOOTDOWN, 1145 TLB_LOCAL_SHOOTDOWN, 1146 TLB_LOCAL_MM_SHOOTDOWN, 1147 TLB_REMOTE_SEND_IPI, 1148 NR_TLB_FLUSH_REASONS, 1149 }; 1150 1151 /* 1152 * A swap entry has to fit into a "unsigned long", as the entry is hidden 1153 * in the "index" field of the swapper address space. 1154 */ 1155 typedef struct { 1156 unsigned long val; 1157 } swp_entry_t; 1158 1159 /** 1160 * enum fault_flag - Fault flag definitions. 1161 * @FAULT_FLAG_WRITE: Fault was a write fault. 1162 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1163 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1164 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1165 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1166 * @FAULT_FLAG_TRIED: The fault has been tried once. 1167 * @FAULT_FLAG_USER: The fault originated in userspace. 1168 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1169 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1170 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1171 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1172 * COW mapping, making sure that an exclusive anon page is 1173 * mapped after the fault. 1174 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1175 * We should only access orig_pte if this flag set. 1176 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1177 * 1178 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1179 * whether we would allow page faults to retry by specifying these two 1180 * fault flags correctly. Currently there can be three legal combinations: 1181 * 1182 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1183 * this is the first try 1184 * 1185 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1186 * we've already tried at least once 1187 * 1188 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1189 * 1190 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1191 * be used. Note that page faults can be allowed to retry for multiple times, 1192 * in which case we'll have an initial fault with flags (a) then later on 1193 * continuous faults with flags (b). We should always try to detect pending 1194 * signals before a retry to make sure the continuous page faults can still be 1195 * interrupted if necessary. 1196 * 1197 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1198 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1199 * applied to mappings that are not COW mappings. 1200 */ 1201 enum fault_flag { 1202 FAULT_FLAG_WRITE = 1 << 0, 1203 FAULT_FLAG_MKWRITE = 1 << 1, 1204 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1205 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1206 FAULT_FLAG_KILLABLE = 1 << 4, 1207 FAULT_FLAG_TRIED = 1 << 5, 1208 FAULT_FLAG_USER = 1 << 6, 1209 FAULT_FLAG_REMOTE = 1 << 7, 1210 FAULT_FLAG_INSTRUCTION = 1 << 8, 1211 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1212 FAULT_FLAG_UNSHARE = 1 << 10, 1213 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1214 FAULT_FLAG_VMA_LOCK = 1 << 12, 1215 }; 1216 1217 typedef unsigned int __bitwise zap_flags_t; 1218 1219 /* 1220 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1221 * other. Here is what they mean, and how to use them: 1222 * 1223 * 1224 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1225 * lifetime enforced by the filesystem and we need guarantees that longterm 1226 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1227 * the filesystem. Ideas for this coordination include revoking the longterm 1228 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1229 * added after the problem with filesystems was found FS DAX VMAs are 1230 * specifically failed. Filesystem pages are still subject to bugs and use of 1231 * FOLL_LONGTERM should be avoided on those pages. 1232 * 1233 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1234 * that region. And so, CMA attempts to migrate the page before pinning, when 1235 * FOLL_LONGTERM is specified. 1236 * 1237 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1238 * but an additional pin counting system) will be invoked. This is intended for 1239 * anything that gets a page reference and then touches page data (for example, 1240 * Direct IO). This lets the filesystem know that some non-file-system entity is 1241 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1242 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1243 * a call to unpin_user_page(). 1244 * 1245 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1246 * and separate refcounting mechanisms, however, and that means that each has 1247 * its own acquire and release mechanisms: 1248 * 1249 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1250 * 1251 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1252 * 1253 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1254 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1255 * calls applied to them, and that's perfectly OK. This is a constraint on the 1256 * callers, not on the pages.) 1257 * 1258 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1259 * directly by the caller. That's in order to help avoid mismatches when 1260 * releasing pages: get_user_pages*() pages must be released via put_page(), 1261 * while pin_user_pages*() pages must be released via unpin_user_page(). 1262 * 1263 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1264 */ 1265 1266 enum { 1267 /* check pte is writable */ 1268 FOLL_WRITE = 1 << 0, 1269 /* do get_page on page */ 1270 FOLL_GET = 1 << 1, 1271 /* give error on hole if it would be zero */ 1272 FOLL_DUMP = 1 << 2, 1273 /* get_user_pages read/write w/o permission */ 1274 FOLL_FORCE = 1 << 3, 1275 /* 1276 * if a disk transfer is needed, start the IO and return without waiting 1277 * upon it 1278 */ 1279 FOLL_NOWAIT = 1 << 4, 1280 /* do not fault in pages */ 1281 FOLL_NOFAULT = 1 << 5, 1282 /* check page is hwpoisoned */ 1283 FOLL_HWPOISON = 1 << 6, 1284 /* don't do file mappings */ 1285 FOLL_ANON = 1 << 7, 1286 /* 1287 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1288 * time period _often_ under userspace control. This is in contrast to 1289 * iov_iter_get_pages(), whose usages are transient. 1290 */ 1291 FOLL_LONGTERM = 1 << 8, 1292 /* split huge pmd before returning */ 1293 FOLL_SPLIT_PMD = 1 << 9, 1294 /* allow returning PCI P2PDMA pages */ 1295 FOLL_PCI_P2PDMA = 1 << 10, 1296 /* allow interrupts from generic signals */ 1297 FOLL_INTERRUPTIBLE = 1 << 11, 1298 1299 /* See also internal only FOLL flags in mm/internal.h */ 1300 }; 1301 1302 #endif /* _LINUX_MM_TYPES_H */ 1303