xref: /linux-6.15/include/linux/mm_types.h (revision 3c8a23c2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 struct address_space;
26 struct mem_cgroup;
27 struct hmm;
28 
29 /*
30  * Each physical page in the system has a struct page associated with
31  * it to keep track of whatever it is we are using the page for at the
32  * moment. Note that we have no way to track which tasks are using
33  * a page, though if it is a pagecache page, rmap structures can tell us
34  * who is mapping it.
35  *
36  * The objects in struct page are organized in double word blocks in
37  * order to allows us to use atomic double word operations on portions
38  * of struct page. That is currently only used by slub but the arrangement
39  * allows the use of atomic double word operations on the flags/mapping
40  * and lru list pointers also.
41  */
42 struct page {
43 	/* First double word block */
44 	unsigned long flags;		/* Atomic flags, some possibly
45 					 * updated asynchronously */
46 	union {
47 		struct address_space *mapping;	/* If low bit clear, points to
48 						 * inode address_space, or NULL.
49 						 * If page mapped as anonymous
50 						 * memory, low bit is set, and
51 						 * it points to anon_vma object:
52 						 * see PAGE_MAPPING_ANON below.
53 						 */
54 		void *s_mem;			/* slab first object */
55 		atomic_t compound_mapcount;	/* first tail page */
56 		/* page_deferred_list().next	 -- second tail page */
57 	};
58 
59 	/* Second double word */
60 	union {
61 		pgoff_t index;		/* Our offset within mapping. */
62 		void *freelist;		/* sl[aou]b first free object */
63 		/* page_deferred_list().prev	-- second tail page */
64 	};
65 
66 	union {
67 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
68 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
69 		/* Used for cmpxchg_double in slub */
70 		unsigned long counters;
71 #else
72 		/*
73 		 * Keep _refcount separate from slub cmpxchg_double data.
74 		 * As the rest of the double word is protected by slab_lock
75 		 * but _refcount is not.
76 		 */
77 		unsigned counters;
78 #endif
79 		struct {
80 
81 			union {
82 				/*
83 				 * Count of ptes mapped in mms, to show when
84 				 * page is mapped & limit reverse map searches.
85 				 *
86 				 * Extra information about page type may be
87 				 * stored here for pages that are never mapped,
88 				 * in which case the value MUST BE <= -2.
89 				 * See page-flags.h for more details.
90 				 */
91 				atomic_t _mapcount;
92 
93 				unsigned int active;		/* SLAB */
94 				struct {			/* SLUB */
95 					unsigned inuse:16;
96 					unsigned objects:15;
97 					unsigned frozen:1;
98 				};
99 				int units;			/* SLOB */
100 			};
101 			/*
102 			 * Usage count, *USE WRAPPER FUNCTION* when manual
103 			 * accounting. See page_ref.h
104 			 */
105 			atomic_t _refcount;
106 		};
107 	};
108 
109 	/*
110 	 * Third double word block
111 	 *
112 	 * WARNING: bit 0 of the first word encode PageTail(). That means
113 	 * the rest users of the storage space MUST NOT use the bit to
114 	 * avoid collision and false-positive PageTail().
115 	 */
116 	union {
117 		struct list_head lru;	/* Pageout list, eg. active_list
118 					 * protected by zone_lru_lock !
119 					 * Can be used as a generic list
120 					 * by the page owner.
121 					 */
122 		struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
123 					    * lru or handled by a slab
124 					    * allocator, this points to the
125 					    * hosting device page map.
126 					    */
127 		struct {		/* slub per cpu partial pages */
128 			struct page *next;	/* Next partial slab */
129 #ifdef CONFIG_64BIT
130 			int pages;	/* Nr of partial slabs left */
131 			int pobjects;	/* Approximate # of objects */
132 #else
133 			short int pages;
134 			short int pobjects;
135 #endif
136 		};
137 
138 		struct rcu_head rcu_head;	/* Used by SLAB
139 						 * when destroying via RCU
140 						 */
141 		/* Tail pages of compound page */
142 		struct {
143 			unsigned long compound_head; /* If bit zero is set */
144 
145 			/* First tail page only */
146 #ifdef CONFIG_64BIT
147 			/*
148 			 * On 64 bit system we have enough space in struct page
149 			 * to encode compound_dtor and compound_order with
150 			 * unsigned int. It can help compiler generate better or
151 			 * smaller code on some archtectures.
152 			 */
153 			unsigned int compound_dtor;
154 			unsigned int compound_order;
155 #else
156 			unsigned short int compound_dtor;
157 			unsigned short int compound_order;
158 #endif
159 		};
160 
161 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
162 		struct {
163 			unsigned long __pad;	/* do not overlay pmd_huge_pte
164 						 * with compound_head to avoid
165 						 * possible bit 0 collision.
166 						 */
167 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
168 		};
169 #endif
170 	};
171 
172 	/* Remainder is not double word aligned */
173 	union {
174 		unsigned long private;		/* Mapping-private opaque data:
175 					 	 * usually used for buffer_heads
176 						 * if PagePrivate set; used for
177 						 * swp_entry_t if PageSwapCache;
178 						 * indicates order in the buddy
179 						 * system if PG_buddy is set.
180 						 */
181 #if USE_SPLIT_PTE_PTLOCKS
182 #if ALLOC_SPLIT_PTLOCKS
183 		spinlock_t *ptl;
184 #else
185 		spinlock_t ptl;
186 #endif
187 #endif
188 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
189 	};
190 
191 #ifdef CONFIG_MEMCG
192 	struct mem_cgroup *mem_cgroup;
193 #endif
194 
195 	/*
196 	 * On machines where all RAM is mapped into kernel address space,
197 	 * we can simply calculate the virtual address. On machines with
198 	 * highmem some memory is mapped into kernel virtual memory
199 	 * dynamically, so we need a place to store that address.
200 	 * Note that this field could be 16 bits on x86 ... ;)
201 	 *
202 	 * Architectures with slow multiplication can define
203 	 * WANT_PAGE_VIRTUAL in asm/page.h
204 	 */
205 #if defined(WANT_PAGE_VIRTUAL)
206 	void *virtual;			/* Kernel virtual address (NULL if
207 					   not kmapped, ie. highmem) */
208 #endif /* WANT_PAGE_VIRTUAL */
209 
210 #ifdef CONFIG_KMEMCHECK
211 	/*
212 	 * kmemcheck wants to track the status of each byte in a page; this
213 	 * is a pointer to such a status block. NULL if not tracked.
214 	 */
215 	void *shadow;
216 #endif
217 
218 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
219 	int _last_cpupid;
220 #endif
221 }
222 /*
223  * The struct page can be forced to be double word aligned so that atomic ops
224  * on double words work. The SLUB allocator can make use of such a feature.
225  */
226 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
227 	__aligned(2 * sizeof(unsigned long))
228 #endif
229 ;
230 
231 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
232 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
233 
234 struct page_frag_cache {
235 	void * va;
236 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
237 	__u16 offset;
238 	__u16 size;
239 #else
240 	__u32 offset;
241 #endif
242 	/* we maintain a pagecount bias, so that we dont dirty cache line
243 	 * containing page->_refcount every time we allocate a fragment.
244 	 */
245 	unsigned int		pagecnt_bias;
246 	bool pfmemalloc;
247 };
248 
249 typedef unsigned long vm_flags_t;
250 
251 /*
252  * A region containing a mapping of a non-memory backed file under NOMMU
253  * conditions.  These are held in a global tree and are pinned by the VMAs that
254  * map parts of them.
255  */
256 struct vm_region {
257 	struct rb_node	vm_rb;		/* link in global region tree */
258 	vm_flags_t	vm_flags;	/* VMA vm_flags */
259 	unsigned long	vm_start;	/* start address of region */
260 	unsigned long	vm_end;		/* region initialised to here */
261 	unsigned long	vm_top;		/* region allocated to here */
262 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
263 	struct file	*vm_file;	/* the backing file or NULL */
264 
265 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
266 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
267 						* this region */
268 };
269 
270 #ifdef CONFIG_USERFAULTFD
271 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
272 struct vm_userfaultfd_ctx {
273 	struct userfaultfd_ctx *ctx;
274 };
275 #else /* CONFIG_USERFAULTFD */
276 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
277 struct vm_userfaultfd_ctx {};
278 #endif /* CONFIG_USERFAULTFD */
279 
280 /*
281  * This struct defines a memory VMM memory area. There is one of these
282  * per VM-area/task.  A VM area is any part of the process virtual memory
283  * space that has a special rule for the page-fault handlers (ie a shared
284  * library, the executable area etc).
285  */
286 struct vm_area_struct {
287 	/* The first cache line has the info for VMA tree walking. */
288 
289 	unsigned long vm_start;		/* Our start address within vm_mm. */
290 	unsigned long vm_end;		/* The first byte after our end address
291 					   within vm_mm. */
292 
293 	/* linked list of VM areas per task, sorted by address */
294 	struct vm_area_struct *vm_next, *vm_prev;
295 
296 	struct rb_node vm_rb;
297 
298 	/*
299 	 * Largest free memory gap in bytes to the left of this VMA.
300 	 * Either between this VMA and vma->vm_prev, or between one of the
301 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
302 	 * get_unmapped_area find a free area of the right size.
303 	 */
304 	unsigned long rb_subtree_gap;
305 
306 	/* Second cache line starts here. */
307 
308 	struct mm_struct *vm_mm;	/* The address space we belong to. */
309 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
310 	unsigned long vm_flags;		/* Flags, see mm.h. */
311 
312 	/*
313 	 * For areas with an address space and backing store,
314 	 * linkage into the address_space->i_mmap interval tree.
315 	 */
316 	struct {
317 		struct rb_node rb;
318 		unsigned long rb_subtree_last;
319 	} shared;
320 
321 	/*
322 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
323 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
324 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
325 	 * or brk vma (with NULL file) can only be in an anon_vma list.
326 	 */
327 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
328 					  * page_table_lock */
329 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
330 
331 	/* Function pointers to deal with this struct. */
332 	const struct vm_operations_struct *vm_ops;
333 
334 	/* Information about our backing store: */
335 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
336 					   units */
337 	struct file * vm_file;		/* File we map to (can be NULL). */
338 	void * vm_private_data;		/* was vm_pte (shared mem) */
339 
340 	atomic_long_t swap_readahead_info;
341 #ifndef CONFIG_MMU
342 	struct vm_region *vm_region;	/* NOMMU mapping region */
343 #endif
344 #ifdef CONFIG_NUMA
345 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
346 #endif
347 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
348 } __randomize_layout;
349 
350 struct core_thread {
351 	struct task_struct *task;
352 	struct core_thread *next;
353 };
354 
355 struct core_state {
356 	atomic_t nr_threads;
357 	struct core_thread dumper;
358 	struct completion startup;
359 };
360 
361 struct kioctx_table;
362 struct mm_struct {
363 	struct vm_area_struct *mmap;		/* list of VMAs */
364 	struct rb_root mm_rb;
365 	u32 vmacache_seqnum;                   /* per-thread vmacache */
366 #ifdef CONFIG_MMU
367 	unsigned long (*get_unmapped_area) (struct file *filp,
368 				unsigned long addr, unsigned long len,
369 				unsigned long pgoff, unsigned long flags);
370 #endif
371 	unsigned long mmap_base;		/* base of mmap area */
372 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
373 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
374 	/* Base adresses for compatible mmap() */
375 	unsigned long mmap_compat_base;
376 	unsigned long mmap_compat_legacy_base;
377 #endif
378 	unsigned long task_size;		/* size of task vm space */
379 	unsigned long highest_vm_end;		/* highest vma end address */
380 	pgd_t * pgd;
381 
382 	/**
383 	 * @mm_users: The number of users including userspace.
384 	 *
385 	 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
386 	 * to 0 (i.e. when the task exits and there are no other temporary
387 	 * reference holders), we also release a reference on @mm_count
388 	 * (which may then free the &struct mm_struct if @mm_count also
389 	 * drops to 0).
390 	 */
391 	atomic_t mm_users;
392 
393 	/**
394 	 * @mm_count: The number of references to &struct mm_struct
395 	 * (@mm_users count as 1).
396 	 *
397 	 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
398 	 * &struct mm_struct is freed.
399 	 */
400 	atomic_t mm_count;
401 
402 	atomic_long_t nr_ptes;			/* PTE page table pages */
403 #if CONFIG_PGTABLE_LEVELS > 2
404 	atomic_long_t nr_pmds;			/* PMD page table pages */
405 #endif
406 	int map_count;				/* number of VMAs */
407 
408 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
409 	struct rw_semaphore mmap_sem;
410 
411 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
412 						 * together off init_mm.mmlist, and are protected
413 						 * by mmlist_lock
414 						 */
415 
416 
417 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
418 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
419 
420 	unsigned long total_vm;		/* Total pages mapped */
421 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
422 	unsigned long pinned_vm;	/* Refcount permanently increased */
423 	unsigned long data_vm;		/* VM_WRITE & ~VM_SHARED & ~VM_STACK */
424 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE & ~VM_STACK */
425 	unsigned long stack_vm;		/* VM_STACK */
426 	unsigned long def_flags;
427 	unsigned long start_code, end_code, start_data, end_data;
428 	unsigned long start_brk, brk, start_stack;
429 	unsigned long arg_start, arg_end, env_start, env_end;
430 
431 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
432 
433 	/*
434 	 * Special counters, in some configurations protected by the
435 	 * page_table_lock, in other configurations by being atomic.
436 	 */
437 	struct mm_rss_stat rss_stat;
438 
439 	struct linux_binfmt *binfmt;
440 
441 	cpumask_var_t cpu_vm_mask_var;
442 
443 	/* Architecture-specific MM context */
444 	mm_context_t context;
445 
446 	unsigned long flags; /* Must use atomic bitops to access the bits */
447 
448 	struct core_state *core_state; /* coredumping support */
449 #ifdef CONFIG_MEMBARRIER
450 	atomic_t membarrier_state;
451 #endif
452 #ifdef CONFIG_AIO
453 	spinlock_t			ioctx_lock;
454 	struct kioctx_table __rcu	*ioctx_table;
455 #endif
456 #ifdef CONFIG_MEMCG
457 	/*
458 	 * "owner" points to a task that is regarded as the canonical
459 	 * user/owner of this mm. All of the following must be true in
460 	 * order for it to be changed:
461 	 *
462 	 * current == mm->owner
463 	 * current->mm != mm
464 	 * new_owner->mm == mm
465 	 * new_owner->alloc_lock is held
466 	 */
467 	struct task_struct __rcu *owner;
468 #endif
469 	struct user_namespace *user_ns;
470 
471 	/* store ref to file /proc/<pid>/exe symlink points to */
472 	struct file __rcu *exe_file;
473 #ifdef CONFIG_MMU_NOTIFIER
474 	struct mmu_notifier_mm *mmu_notifier_mm;
475 #endif
476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
477 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
478 #endif
479 #ifdef CONFIG_CPUMASK_OFFSTACK
480 	struct cpumask cpumask_allocation;
481 #endif
482 #ifdef CONFIG_NUMA_BALANCING
483 	/*
484 	 * numa_next_scan is the next time that the PTEs will be marked
485 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
486 	 * pages to new nodes if necessary.
487 	 */
488 	unsigned long numa_next_scan;
489 
490 	/* Restart point for scanning and setting pte_numa */
491 	unsigned long numa_scan_offset;
492 
493 	/* numa_scan_seq prevents two threads setting pte_numa */
494 	int numa_scan_seq;
495 #endif
496 	/*
497 	 * An operation with batched TLB flushing is going on. Anything that
498 	 * can move process memory needs to flush the TLB when moving a
499 	 * PROT_NONE or PROT_NUMA mapped page.
500 	 */
501 	atomic_t tlb_flush_pending;
502 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
503 	/* See flush_tlb_batched_pending() */
504 	bool tlb_flush_batched;
505 #endif
506 	struct uprobes_state uprobes_state;
507 #ifdef CONFIG_HUGETLB_PAGE
508 	atomic_long_t hugetlb_usage;
509 #endif
510 	struct work_struct async_put_work;
511 
512 #if IS_ENABLED(CONFIG_HMM)
513 	/* HMM needs to track a few things per mm */
514 	struct hmm *hmm;
515 #endif
516 } __randomize_layout;
517 
518 extern struct mm_struct init_mm;
519 
520 static inline void mm_init_cpumask(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_CPUMASK_OFFSTACK
523 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
524 #endif
525 	cpumask_clear(mm->cpu_vm_mask_var);
526 }
527 
528 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
529 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
530 {
531 	return mm->cpu_vm_mask_var;
532 }
533 
534 struct mmu_gather;
535 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
536 				unsigned long start, unsigned long end);
537 extern void tlb_finish_mmu(struct mmu_gather *tlb,
538 				unsigned long start, unsigned long end);
539 
540 static inline void init_tlb_flush_pending(struct mm_struct *mm)
541 {
542 	atomic_set(&mm->tlb_flush_pending, 0);
543 }
544 
545 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
546 {
547 	atomic_inc(&mm->tlb_flush_pending);
548 	/*
549 	 * The only time this value is relevant is when there are indeed pages
550 	 * to flush. And we'll only flush pages after changing them, which
551 	 * requires the PTL.
552 	 *
553 	 * So the ordering here is:
554 	 *
555 	 *	atomic_inc(&mm->tlb_flush_pending);
556 	 *	spin_lock(&ptl);
557 	 *	...
558 	 *	set_pte_at();
559 	 *	spin_unlock(&ptl);
560 	 *
561 	 *				spin_lock(&ptl)
562 	 *				mm_tlb_flush_pending();
563 	 *				....
564 	 *				spin_unlock(&ptl);
565 	 *
566 	 *	flush_tlb_range();
567 	 *	atomic_dec(&mm->tlb_flush_pending);
568 	 *
569 	 * Where the increment if constrained by the PTL unlock, it thus
570 	 * ensures that the increment is visible if the PTE modification is
571 	 * visible. After all, if there is no PTE modification, nobody cares
572 	 * about TLB flushes either.
573 	 *
574 	 * This very much relies on users (mm_tlb_flush_pending() and
575 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
576 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
577 	 * locks (PPC) the unlock of one doesn't order against the lock of
578 	 * another PTL.
579 	 *
580 	 * The decrement is ordered by the flush_tlb_range(), such that
581 	 * mm_tlb_flush_pending() will not return false unless all flushes have
582 	 * completed.
583 	 */
584 }
585 
586 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
587 {
588 	/*
589 	 * See inc_tlb_flush_pending().
590 	 *
591 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
592 	 * not order against TLB invalidate completion, which is what we need.
593 	 *
594 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
595 	 */
596 	atomic_dec(&mm->tlb_flush_pending);
597 }
598 
599 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
600 {
601 	/*
602 	 * Must be called after having acquired the PTL; orders against that
603 	 * PTLs release and therefore ensures that if we observe the modified
604 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
605 	 *
606 	 * That is, it only guarantees to return true if there is a flush
607 	 * pending for _this_ PTL.
608 	 */
609 	return atomic_read(&mm->tlb_flush_pending);
610 }
611 
612 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
613 {
614 	/*
615 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
616 	 * for which there is a TLB flush pending in order to guarantee
617 	 * we've seen both that PTE modification and the increment.
618 	 *
619 	 * (no requirement on actually still holding the PTL, that is irrelevant)
620 	 */
621 	return atomic_read(&mm->tlb_flush_pending) > 1;
622 }
623 
624 struct vm_fault;
625 
626 struct vm_special_mapping {
627 	const char *name;	/* The name, e.g. "[vdso]". */
628 
629 	/*
630 	 * If .fault is not provided, this points to a
631 	 * NULL-terminated array of pages that back the special mapping.
632 	 *
633 	 * This must not be NULL unless .fault is provided.
634 	 */
635 	struct page **pages;
636 
637 	/*
638 	 * If non-NULL, then this is called to resolve page faults
639 	 * on the special mapping.  If used, .pages is not checked.
640 	 */
641 	int (*fault)(const struct vm_special_mapping *sm,
642 		     struct vm_area_struct *vma,
643 		     struct vm_fault *vmf);
644 
645 	int (*mremap)(const struct vm_special_mapping *sm,
646 		     struct vm_area_struct *new_vma);
647 };
648 
649 enum tlb_flush_reason {
650 	TLB_FLUSH_ON_TASK_SWITCH,
651 	TLB_REMOTE_SHOOTDOWN,
652 	TLB_LOCAL_SHOOTDOWN,
653 	TLB_LOCAL_MM_SHOOTDOWN,
654 	TLB_REMOTE_SEND_IPI,
655 	NR_TLB_FLUSH_REASONS,
656 };
657 
658  /*
659   * A swap entry has to fit into a "unsigned long", as the entry is hidden
660   * in the "index" field of the swapper address space.
661   */
662 typedef struct {
663 	unsigned long val;
664 } swp_entry_t;
665 
666 #endif /* _LINUX_MM_TYPES_H */
667