xref: /linux-6.15/include/linux/mm_types.h (revision 151f4e2b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 
18 #include <asm/mmu.h>
19 
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24 
25 
26 struct address_space;
27 struct mem_cgroup;
28 struct hmm;
29 
30 /*
31  * Each physical page in the system has a struct page associated with
32  * it to keep track of whatever it is we are using the page for at the
33  * moment. Note that we have no way to track which tasks are using
34  * a page, though if it is a pagecache page, rmap structures can tell us
35  * who is mapping it.
36  *
37  * If you allocate the page using alloc_pages(), you can use some of the
38  * space in struct page for your own purposes.  The five words in the main
39  * union are available, except for bit 0 of the first word which must be
40  * kept clear.  Many users use this word to store a pointer to an object
41  * which is guaranteed to be aligned.  If you use the same storage as
42  * page->mapping, you must restore it to NULL before freeing the page.
43  *
44  * If your page will not be mapped to userspace, you can also use the four
45  * bytes in the mapcount union, but you must call page_mapcount_reset()
46  * before freeing it.
47  *
48  * If you want to use the refcount field, it must be used in such a way
49  * that other CPUs temporarily incrementing and then decrementing the
50  * refcount does not cause problems.  On receiving the page from
51  * alloc_pages(), the refcount will be positive.
52  *
53  * If you allocate pages of order > 0, you can use some of the fields
54  * in each subpage, but you may need to restore some of their values
55  * afterwards.
56  *
57  * SLUB uses cmpxchg_double() to atomically update its freelist and
58  * counters.  That requires that freelist & counters be adjacent and
59  * double-word aligned.  We align all struct pages to double-word
60  * boundaries, and ensure that 'freelist' is aligned within the
61  * struct.
62  */
63 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
64 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
65 #else
66 #define _struct_page_alignment
67 #endif
68 
69 struct page {
70 	unsigned long flags;		/* Atomic flags, some possibly
71 					 * updated asynchronously */
72 	/*
73 	 * Five words (20/40 bytes) are available in this union.
74 	 * WARNING: bit 0 of the first word is used for PageTail(). That
75 	 * means the other users of this union MUST NOT use the bit to
76 	 * avoid collision and false-positive PageTail().
77 	 */
78 	union {
79 		struct {	/* Page cache and anonymous pages */
80 			/**
81 			 * @lru: Pageout list, eg. active_list protected by
82 			 * pgdat->lru_lock.  Sometimes used as a generic list
83 			 * by the page owner.
84 			 */
85 			struct list_head lru;
86 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
87 			struct address_space *mapping;
88 			pgoff_t index;		/* Our offset within mapping. */
89 			/**
90 			 * @private: Mapping-private opaque data.
91 			 * Usually used for buffer_heads if PagePrivate.
92 			 * Used for swp_entry_t if PageSwapCache.
93 			 * Indicates order in the buddy system if PageBuddy.
94 			 */
95 			unsigned long private;
96 		};
97 		struct {	/* page_pool used by netstack */
98 			/**
99 			 * @dma_addr: might require a 64-bit value even on
100 			 * 32-bit architectures.
101 			 */
102 			dma_addr_t dma_addr;
103 		};
104 		struct {	/* slab, slob and slub */
105 			union {
106 				struct list_head slab_list;
107 				struct {	/* Partial pages */
108 					struct page *next;
109 #ifdef CONFIG_64BIT
110 					int pages;	/* Nr of pages left */
111 					int pobjects;	/* Approximate count */
112 #else
113 					short int pages;
114 					short int pobjects;
115 #endif
116 				};
117 			};
118 			struct kmem_cache *slab_cache; /* not slob */
119 			/* Double-word boundary */
120 			void *freelist;		/* first free object */
121 			union {
122 				void *s_mem;	/* slab: first object */
123 				unsigned long counters;		/* SLUB */
124 				struct {			/* SLUB */
125 					unsigned inuse:16;
126 					unsigned objects:15;
127 					unsigned frozen:1;
128 				};
129 			};
130 		};
131 		struct {	/* Tail pages of compound page */
132 			unsigned long compound_head;	/* Bit zero is set */
133 
134 			/* First tail page only */
135 			unsigned char compound_dtor;
136 			unsigned char compound_order;
137 			atomic_t compound_mapcount;
138 		};
139 		struct {	/* Second tail page of compound page */
140 			unsigned long _compound_pad_1;	/* compound_head */
141 			unsigned long _compound_pad_2;
142 			struct list_head deferred_list;
143 		};
144 		struct {	/* Page table pages */
145 			unsigned long _pt_pad_1;	/* compound_head */
146 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 			unsigned long _pt_pad_2;	/* mapping */
148 			union {
149 				struct mm_struct *pt_mm; /* x86 pgds only */
150 				atomic_t pt_frag_refcount; /* powerpc */
151 			};
152 #if ALLOC_SPLIT_PTLOCKS
153 			spinlock_t *ptl;
154 #else
155 			spinlock_t ptl;
156 #endif
157 		};
158 		struct {	/* ZONE_DEVICE pages */
159 			/** @pgmap: Points to the hosting device page map. */
160 			struct dev_pagemap *pgmap;
161 			unsigned long hmm_data;
162 			unsigned long _zd_pad_1;	/* uses mapping */
163 		};
164 
165 		/** @rcu_head: You can use this to free a page by RCU. */
166 		struct rcu_head rcu_head;
167 	};
168 
169 	union {		/* This union is 4 bytes in size. */
170 		/*
171 		 * If the page can be mapped to userspace, encodes the number
172 		 * of times this page is referenced by a page table.
173 		 */
174 		atomic_t _mapcount;
175 
176 		/*
177 		 * If the page is neither PageSlab nor mappable to userspace,
178 		 * the value stored here may help determine what this page
179 		 * is used for.  See page-flags.h for a list of page types
180 		 * which are currently stored here.
181 		 */
182 		unsigned int page_type;
183 
184 		unsigned int active;		/* SLAB */
185 		int units;			/* SLOB */
186 	};
187 
188 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
189 	atomic_t _refcount;
190 
191 #ifdef CONFIG_MEMCG
192 	struct mem_cgroup *mem_cgroup;
193 #endif
194 
195 	/*
196 	 * On machines where all RAM is mapped into kernel address space,
197 	 * we can simply calculate the virtual address. On machines with
198 	 * highmem some memory is mapped into kernel virtual memory
199 	 * dynamically, so we need a place to store that address.
200 	 * Note that this field could be 16 bits on x86 ... ;)
201 	 *
202 	 * Architectures with slow multiplication can define
203 	 * WANT_PAGE_VIRTUAL in asm/page.h
204 	 */
205 #if defined(WANT_PAGE_VIRTUAL)
206 	void *virtual;			/* Kernel virtual address (NULL if
207 					   not kmapped, ie. highmem) */
208 #endif /* WANT_PAGE_VIRTUAL */
209 
210 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
211 	int _last_cpupid;
212 #endif
213 } _struct_page_alignment;
214 
215 /*
216  * Used for sizing the vmemmap region on some architectures
217  */
218 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
219 
220 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
221 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
222 
223 #define page_private(page)		((page)->private)
224 #define set_page_private(page, v)	((page)->private = (v))
225 
226 struct page_frag_cache {
227 	void * va;
228 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
229 	__u16 offset;
230 	__u16 size;
231 #else
232 	__u32 offset;
233 #endif
234 	/* we maintain a pagecount bias, so that we dont dirty cache line
235 	 * containing page->_refcount every time we allocate a fragment.
236 	 */
237 	unsigned int		pagecnt_bias;
238 	bool pfmemalloc;
239 };
240 
241 typedef unsigned long vm_flags_t;
242 
243 /*
244  * A region containing a mapping of a non-memory backed file under NOMMU
245  * conditions.  These are held in a global tree and are pinned by the VMAs that
246  * map parts of them.
247  */
248 struct vm_region {
249 	struct rb_node	vm_rb;		/* link in global region tree */
250 	vm_flags_t	vm_flags;	/* VMA vm_flags */
251 	unsigned long	vm_start;	/* start address of region */
252 	unsigned long	vm_end;		/* region initialised to here */
253 	unsigned long	vm_top;		/* region allocated to here */
254 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
255 	struct file	*vm_file;	/* the backing file or NULL */
256 
257 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
258 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
259 						* this region */
260 };
261 
262 #ifdef CONFIG_USERFAULTFD
263 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
264 struct vm_userfaultfd_ctx {
265 	struct userfaultfd_ctx *ctx;
266 };
267 #else /* CONFIG_USERFAULTFD */
268 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
269 struct vm_userfaultfd_ctx {};
270 #endif /* CONFIG_USERFAULTFD */
271 
272 /*
273  * This struct defines a memory VMM memory area. There is one of these
274  * per VM-area/task.  A VM area is any part of the process virtual memory
275  * space that has a special rule for the page-fault handlers (ie a shared
276  * library, the executable area etc).
277  */
278 struct vm_area_struct {
279 	/* The first cache line has the info for VMA tree walking. */
280 
281 	unsigned long vm_start;		/* Our start address within vm_mm. */
282 	unsigned long vm_end;		/* The first byte after our end address
283 					   within vm_mm. */
284 
285 	/* linked list of VM areas per task, sorted by address */
286 	struct vm_area_struct *vm_next, *vm_prev;
287 
288 	struct rb_node vm_rb;
289 
290 	/*
291 	 * Largest free memory gap in bytes to the left of this VMA.
292 	 * Either between this VMA and vma->vm_prev, or between one of the
293 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
294 	 * get_unmapped_area find a free area of the right size.
295 	 */
296 	unsigned long rb_subtree_gap;
297 
298 	/* Second cache line starts here. */
299 
300 	struct mm_struct *vm_mm;	/* The address space we belong to. */
301 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
302 	unsigned long vm_flags;		/* Flags, see mm.h. */
303 
304 	/*
305 	 * For areas with an address space and backing store,
306 	 * linkage into the address_space->i_mmap interval tree.
307 	 */
308 	struct {
309 		struct rb_node rb;
310 		unsigned long rb_subtree_last;
311 	} shared;
312 
313 	/*
314 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
315 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
316 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
317 	 * or brk vma (with NULL file) can only be in an anon_vma list.
318 	 */
319 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
320 					  * page_table_lock */
321 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
322 
323 	/* Function pointers to deal with this struct. */
324 	const struct vm_operations_struct *vm_ops;
325 
326 	/* Information about our backing store: */
327 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
328 					   units */
329 	struct file * vm_file;		/* File we map to (can be NULL). */
330 	void * vm_private_data;		/* was vm_pte (shared mem) */
331 
332 	atomic_long_t swap_readahead_info;
333 #ifndef CONFIG_MMU
334 	struct vm_region *vm_region;	/* NOMMU mapping region */
335 #endif
336 #ifdef CONFIG_NUMA
337 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
338 #endif
339 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
340 } __randomize_layout;
341 
342 struct core_thread {
343 	struct task_struct *task;
344 	struct core_thread *next;
345 };
346 
347 struct core_state {
348 	atomic_t nr_threads;
349 	struct core_thread dumper;
350 	struct completion startup;
351 };
352 
353 struct kioctx_table;
354 struct mm_struct {
355 	struct {
356 		struct vm_area_struct *mmap;		/* list of VMAs */
357 		struct rb_root mm_rb;
358 		u64 vmacache_seqnum;                   /* per-thread vmacache */
359 #ifdef CONFIG_MMU
360 		unsigned long (*get_unmapped_area) (struct file *filp,
361 				unsigned long addr, unsigned long len,
362 				unsigned long pgoff, unsigned long flags);
363 #endif
364 		unsigned long mmap_base;	/* base of mmap area */
365 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
366 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
367 		/* Base adresses for compatible mmap() */
368 		unsigned long mmap_compat_base;
369 		unsigned long mmap_compat_legacy_base;
370 #endif
371 		unsigned long task_size;	/* size of task vm space */
372 		unsigned long highest_vm_end;	/* highest vma end address */
373 		pgd_t * pgd;
374 
375 		/**
376 		 * @mm_users: The number of users including userspace.
377 		 *
378 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
379 		 * drops to 0 (i.e. when the task exits and there are no other
380 		 * temporary reference holders), we also release a reference on
381 		 * @mm_count (which may then free the &struct mm_struct if
382 		 * @mm_count also drops to 0).
383 		 */
384 		atomic_t mm_users;
385 
386 		/**
387 		 * @mm_count: The number of references to &struct mm_struct
388 		 * (@mm_users count as 1).
389 		 *
390 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
391 		 * &struct mm_struct is freed.
392 		 */
393 		atomic_t mm_count;
394 
395 #ifdef CONFIG_MMU
396 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
397 #endif
398 		int map_count;			/* number of VMAs */
399 
400 		spinlock_t page_table_lock; /* Protects page tables and some
401 					     * counters
402 					     */
403 		struct rw_semaphore mmap_sem;
404 
405 		struct list_head mmlist; /* List of maybe swapped mm's.	These
406 					  * are globally strung together off
407 					  * init_mm.mmlist, and are protected
408 					  * by mmlist_lock
409 					  */
410 
411 
412 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
413 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
414 
415 		unsigned long total_vm;	   /* Total pages mapped */
416 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
417 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
418 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
419 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
420 		unsigned long stack_vm;	   /* VM_STACK */
421 		unsigned long def_flags;
422 
423 		spinlock_t arg_lock; /* protect the below fields */
424 		unsigned long start_code, end_code, start_data, end_data;
425 		unsigned long start_brk, brk, start_stack;
426 		unsigned long arg_start, arg_end, env_start, env_end;
427 
428 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
429 
430 		/*
431 		 * Special counters, in some configurations protected by the
432 		 * page_table_lock, in other configurations by being atomic.
433 		 */
434 		struct mm_rss_stat rss_stat;
435 
436 		struct linux_binfmt *binfmt;
437 
438 		/* Architecture-specific MM context */
439 		mm_context_t context;
440 
441 		unsigned long flags; /* Must use atomic bitops to access */
442 
443 		struct core_state *core_state; /* coredumping support */
444 #ifdef CONFIG_MEMBARRIER
445 		atomic_t membarrier_state;
446 #endif
447 #ifdef CONFIG_AIO
448 		spinlock_t			ioctx_lock;
449 		struct kioctx_table __rcu	*ioctx_table;
450 #endif
451 #ifdef CONFIG_MEMCG
452 		/*
453 		 * "owner" points to a task that is regarded as the canonical
454 		 * user/owner of this mm. All of the following must be true in
455 		 * order for it to be changed:
456 		 *
457 		 * current == mm->owner
458 		 * current->mm != mm
459 		 * new_owner->mm == mm
460 		 * new_owner->alloc_lock is held
461 		 */
462 		struct task_struct __rcu *owner;
463 #endif
464 		struct user_namespace *user_ns;
465 
466 		/* store ref to file /proc/<pid>/exe symlink points to */
467 		struct file __rcu *exe_file;
468 #ifdef CONFIG_MMU_NOTIFIER
469 		struct mmu_notifier_mm *mmu_notifier_mm;
470 #endif
471 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
472 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
473 #endif
474 #ifdef CONFIG_NUMA_BALANCING
475 		/*
476 		 * numa_next_scan is the next time that the PTEs will be marked
477 		 * pte_numa. NUMA hinting faults will gather statistics and
478 		 * migrate pages to new nodes if necessary.
479 		 */
480 		unsigned long numa_next_scan;
481 
482 		/* Restart point for scanning and setting pte_numa */
483 		unsigned long numa_scan_offset;
484 
485 		/* numa_scan_seq prevents two threads setting pte_numa */
486 		int numa_scan_seq;
487 #endif
488 		/*
489 		 * An operation with batched TLB flushing is going on. Anything
490 		 * that can move process memory needs to flush the TLB when
491 		 * moving a PROT_NONE or PROT_NUMA mapped page.
492 		 */
493 		atomic_t tlb_flush_pending;
494 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
495 		/* See flush_tlb_batched_pending() */
496 		bool tlb_flush_batched;
497 #endif
498 		struct uprobes_state uprobes_state;
499 #ifdef CONFIG_HUGETLB_PAGE
500 		atomic_long_t hugetlb_usage;
501 #endif
502 		struct work_struct async_put_work;
503 
504 #if IS_ENABLED(CONFIG_HMM)
505 		/* HMM needs to track a few things per mm */
506 		struct hmm *hmm;
507 #endif
508 	} __randomize_layout;
509 
510 	/*
511 	 * The mm_cpumask needs to be at the end of mm_struct, because it
512 	 * is dynamically sized based on nr_cpu_ids.
513 	 */
514 	unsigned long cpu_bitmap[];
515 };
516 
517 extern struct mm_struct init_mm;
518 
519 /* Pointer magic because the dynamic array size confuses some compilers. */
520 static inline void mm_init_cpumask(struct mm_struct *mm)
521 {
522 	unsigned long cpu_bitmap = (unsigned long)mm;
523 
524 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
525 	cpumask_clear((struct cpumask *)cpu_bitmap);
526 }
527 
528 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
529 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
530 {
531 	return (struct cpumask *)&mm->cpu_bitmap;
532 }
533 
534 struct mmu_gather;
535 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
536 				unsigned long start, unsigned long end);
537 extern void tlb_finish_mmu(struct mmu_gather *tlb,
538 				unsigned long start, unsigned long end);
539 
540 static inline void init_tlb_flush_pending(struct mm_struct *mm)
541 {
542 	atomic_set(&mm->tlb_flush_pending, 0);
543 }
544 
545 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
546 {
547 	atomic_inc(&mm->tlb_flush_pending);
548 	/*
549 	 * The only time this value is relevant is when there are indeed pages
550 	 * to flush. And we'll only flush pages after changing them, which
551 	 * requires the PTL.
552 	 *
553 	 * So the ordering here is:
554 	 *
555 	 *	atomic_inc(&mm->tlb_flush_pending);
556 	 *	spin_lock(&ptl);
557 	 *	...
558 	 *	set_pte_at();
559 	 *	spin_unlock(&ptl);
560 	 *
561 	 *				spin_lock(&ptl)
562 	 *				mm_tlb_flush_pending();
563 	 *				....
564 	 *				spin_unlock(&ptl);
565 	 *
566 	 *	flush_tlb_range();
567 	 *	atomic_dec(&mm->tlb_flush_pending);
568 	 *
569 	 * Where the increment if constrained by the PTL unlock, it thus
570 	 * ensures that the increment is visible if the PTE modification is
571 	 * visible. After all, if there is no PTE modification, nobody cares
572 	 * about TLB flushes either.
573 	 *
574 	 * This very much relies on users (mm_tlb_flush_pending() and
575 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
576 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
577 	 * locks (PPC) the unlock of one doesn't order against the lock of
578 	 * another PTL.
579 	 *
580 	 * The decrement is ordered by the flush_tlb_range(), such that
581 	 * mm_tlb_flush_pending() will not return false unless all flushes have
582 	 * completed.
583 	 */
584 }
585 
586 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
587 {
588 	/*
589 	 * See inc_tlb_flush_pending().
590 	 *
591 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
592 	 * not order against TLB invalidate completion, which is what we need.
593 	 *
594 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
595 	 */
596 	atomic_dec(&mm->tlb_flush_pending);
597 }
598 
599 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
600 {
601 	/*
602 	 * Must be called after having acquired the PTL; orders against that
603 	 * PTLs release and therefore ensures that if we observe the modified
604 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
605 	 *
606 	 * That is, it only guarantees to return true if there is a flush
607 	 * pending for _this_ PTL.
608 	 */
609 	return atomic_read(&mm->tlb_flush_pending);
610 }
611 
612 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
613 {
614 	/*
615 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
616 	 * for which there is a TLB flush pending in order to guarantee
617 	 * we've seen both that PTE modification and the increment.
618 	 *
619 	 * (no requirement on actually still holding the PTL, that is irrelevant)
620 	 */
621 	return atomic_read(&mm->tlb_flush_pending) > 1;
622 }
623 
624 struct vm_fault;
625 
626 /**
627  * typedef vm_fault_t - Return type for page fault handlers.
628  *
629  * Page fault handlers return a bitmask of %VM_FAULT values.
630  */
631 typedef __bitwise unsigned int vm_fault_t;
632 
633 /**
634  * enum vm_fault_reason - Page fault handlers return a bitmask of
635  * these values to tell the core VM what happened when handling the
636  * fault. Used to decide whether a process gets delivered SIGBUS or
637  * just gets major/minor fault counters bumped up.
638  *
639  * @VM_FAULT_OOM:		Out Of Memory
640  * @VM_FAULT_SIGBUS:		Bad access
641  * @VM_FAULT_MAJOR:		Page read from storage
642  * @VM_FAULT_WRITE:		Special case for get_user_pages
643  * @VM_FAULT_HWPOISON:		Hit poisoned small page
644  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
645  *				in upper bits
646  * @VM_FAULT_SIGSEGV:		segmentation fault
647  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
648  * @VM_FAULT_LOCKED:		->fault locked the returned page
649  * @VM_FAULT_RETRY:		->fault blocked, must retry
650  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
651  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
652  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
653  *				fsync() to complete (for synchronous page faults
654  *				in DAX)
655  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
656  *
657  */
658 enum vm_fault_reason {
659 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
660 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
661 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
662 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
663 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
664 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
665 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
666 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
667 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
668 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
669 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
670 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
671 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
672 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
673 };
674 
675 /* Encode hstate index for a hwpoisoned large page */
676 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
677 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
678 
679 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
680 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
681 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
682 
683 #define VM_FAULT_RESULT_TRACE \
684 	{ VM_FAULT_OOM,                 "OOM" },	\
685 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
686 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
687 	{ VM_FAULT_WRITE,               "WRITE" },	\
688 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
689 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
690 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
691 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
692 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
693 	{ VM_FAULT_RETRY,               "RETRY" },	\
694 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
695 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
696 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
697 
698 struct vm_special_mapping {
699 	const char *name;	/* The name, e.g. "[vdso]". */
700 
701 	/*
702 	 * If .fault is not provided, this points to a
703 	 * NULL-terminated array of pages that back the special mapping.
704 	 *
705 	 * This must not be NULL unless .fault is provided.
706 	 */
707 	struct page **pages;
708 
709 	/*
710 	 * If non-NULL, then this is called to resolve page faults
711 	 * on the special mapping.  If used, .pages is not checked.
712 	 */
713 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
714 				struct vm_area_struct *vma,
715 				struct vm_fault *vmf);
716 
717 	int (*mremap)(const struct vm_special_mapping *sm,
718 		     struct vm_area_struct *new_vma);
719 };
720 
721 enum tlb_flush_reason {
722 	TLB_FLUSH_ON_TASK_SWITCH,
723 	TLB_REMOTE_SHOOTDOWN,
724 	TLB_LOCAL_SHOOTDOWN,
725 	TLB_LOCAL_MM_SHOOTDOWN,
726 	TLB_REMOTE_SEND_IPI,
727 	NR_TLB_FLUSH_REASONS,
728 };
729 
730  /*
731   * A swap entry has to fit into a "unsigned long", as the entry is hidden
732   * in the "index" field of the swapper address space.
733   */
734 typedef struct {
735 	unsigned long val;
736 } swp_entry_t;
737 
738 #endif /* _LINUX_MM_TYPES_H */
739