1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef LINUX_MM_INLINE_H 3 #define LINUX_MM_INLINE_H 4 5 #include <linux/atomic.h> 6 #include <linux/huge_mm.h> 7 #include <linux/swap.h> 8 #include <linux/string.h> 9 10 /** 11 * folio_is_file_lru - Should the folio be on a file LRU or anon LRU? 12 * @folio: The folio to test. 13 * 14 * We would like to get this info without a page flag, but the state 15 * needs to survive until the folio is last deleted from the LRU, which 16 * could be as far down as __page_cache_release. 17 * 18 * Return: An integer (not a boolean!) used to sort a folio onto the 19 * right LRU list and to account folios correctly. 20 * 1 if @folio is a regular filesystem backed page cache folio 21 * or a lazily freed anonymous folio (e.g. via MADV_FREE). 22 * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise 23 * ram or swap backed folio. 24 */ 25 static inline int folio_is_file_lru(struct folio *folio) 26 { 27 return !folio_test_swapbacked(folio); 28 } 29 30 static inline int page_is_file_lru(struct page *page) 31 { 32 return folio_is_file_lru(page_folio(page)); 33 } 34 35 static __always_inline void update_lru_size(struct lruvec *lruvec, 36 enum lru_list lru, enum zone_type zid, 37 long nr_pages) 38 { 39 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 40 41 __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages); 42 __mod_zone_page_state(&pgdat->node_zones[zid], 43 NR_ZONE_LRU_BASE + lru, nr_pages); 44 #ifdef CONFIG_MEMCG 45 mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages); 46 #endif 47 } 48 49 /** 50 * __folio_clear_lru_flags - Clear page lru flags before releasing a page. 51 * @folio: The folio that was on lru and now has a zero reference. 52 */ 53 static __always_inline void __folio_clear_lru_flags(struct folio *folio) 54 { 55 VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio); 56 57 __folio_clear_lru(folio); 58 59 /* this shouldn't happen, so leave the flags to bad_page() */ 60 if (folio_test_active(folio) && folio_test_unevictable(folio)) 61 return; 62 63 __folio_clear_active(folio); 64 __folio_clear_unevictable(folio); 65 } 66 67 static __always_inline void __clear_page_lru_flags(struct page *page) 68 { 69 __folio_clear_lru_flags(page_folio(page)); 70 } 71 72 /** 73 * folio_lru_list - Which LRU list should a folio be on? 74 * @folio: The folio to test. 75 * 76 * Return: The LRU list a folio should be on, as an index 77 * into the array of LRU lists. 78 */ 79 static __always_inline enum lru_list folio_lru_list(struct folio *folio) 80 { 81 enum lru_list lru; 82 83 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); 84 85 if (folio_test_unevictable(folio)) 86 return LRU_UNEVICTABLE; 87 88 lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON; 89 if (folio_test_active(folio)) 90 lru += LRU_ACTIVE; 91 92 return lru; 93 } 94 95 static __always_inline 96 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio) 97 { 98 enum lru_list lru = folio_lru_list(folio); 99 100 update_lru_size(lruvec, lru, folio_zonenum(folio), 101 folio_nr_pages(folio)); 102 if (lru != LRU_UNEVICTABLE) 103 list_add(&folio->lru, &lruvec->lists[lru]); 104 } 105 106 static __always_inline void add_page_to_lru_list(struct page *page, 107 struct lruvec *lruvec) 108 { 109 lruvec_add_folio(lruvec, page_folio(page)); 110 } 111 112 static __always_inline 113 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio) 114 { 115 enum lru_list lru = folio_lru_list(folio); 116 117 update_lru_size(lruvec, lru, folio_zonenum(folio), 118 folio_nr_pages(folio)); 119 /* This is not expected to be used on LRU_UNEVICTABLE */ 120 list_add_tail(&folio->lru, &lruvec->lists[lru]); 121 } 122 123 static __always_inline void add_page_to_lru_list_tail(struct page *page, 124 struct lruvec *lruvec) 125 { 126 lruvec_add_folio_tail(lruvec, page_folio(page)); 127 } 128 129 static __always_inline 130 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio) 131 { 132 enum lru_list lru = folio_lru_list(folio); 133 134 if (lru != LRU_UNEVICTABLE) 135 list_del(&folio->lru); 136 update_lru_size(lruvec, lru, folio_zonenum(folio), 137 -folio_nr_pages(folio)); 138 } 139 140 static __always_inline void del_page_from_lru_list(struct page *page, 141 struct lruvec *lruvec) 142 { 143 lruvec_del_folio(lruvec, page_folio(page)); 144 } 145 146 #ifdef CONFIG_ANON_VMA_NAME 147 /* 148 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should 149 * either keep holding the lock while using the returned pointer or it should 150 * raise anon_vma_name refcount before releasing the lock. 151 */ 152 extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma); 153 extern struct anon_vma_name *anon_vma_name_alloc(const char *name); 154 extern void anon_vma_name_free(struct kref *kref); 155 156 /* mmap_lock should be read-locked */ 157 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) 158 { 159 if (anon_name) 160 kref_get(&anon_name->kref); 161 } 162 163 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) 164 { 165 if (anon_name) 166 kref_put(&anon_name->kref, anon_vma_name_free); 167 } 168 169 static inline 170 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name) 171 { 172 /* Prevent anon_name refcount saturation early on */ 173 if (kref_read(&anon_name->kref) < REFCOUNT_MAX) { 174 anon_vma_name_get(anon_name); 175 return anon_name; 176 177 } 178 return anon_vma_name_alloc(anon_name->name); 179 } 180 181 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma, 182 struct vm_area_struct *new_vma) 183 { 184 struct anon_vma_name *anon_name = anon_vma_name(orig_vma); 185 186 if (anon_name) 187 new_vma->anon_name = anon_vma_name_reuse(anon_name); 188 } 189 190 static inline void free_anon_vma_name(struct vm_area_struct *vma) 191 { 192 /* 193 * Not using anon_vma_name because it generates a warning if mmap_lock 194 * is not held, which might be the case here. 195 */ 196 if (!vma->vm_file) 197 anon_vma_name_put(vma->anon_name); 198 } 199 200 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1, 201 struct anon_vma_name *anon_name2) 202 { 203 if (anon_name1 == anon_name2) 204 return true; 205 206 return anon_name1 && anon_name2 && 207 !strcmp(anon_name1->name, anon_name2->name); 208 } 209 210 #else /* CONFIG_ANON_VMA_NAME */ 211 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma) 212 { 213 return NULL; 214 } 215 216 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name) 217 { 218 return NULL; 219 } 220 221 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {} 222 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {} 223 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma, 224 struct vm_area_struct *new_vma) {} 225 static inline void free_anon_vma_name(struct vm_area_struct *vma) {} 226 227 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1, 228 struct anon_vma_name *anon_name2) 229 { 230 return true; 231 } 232 233 #endif /* CONFIG_ANON_VMA_NAME */ 234 235 static inline void init_tlb_flush_pending(struct mm_struct *mm) 236 { 237 atomic_set(&mm->tlb_flush_pending, 0); 238 } 239 240 static inline void inc_tlb_flush_pending(struct mm_struct *mm) 241 { 242 atomic_inc(&mm->tlb_flush_pending); 243 /* 244 * The only time this value is relevant is when there are indeed pages 245 * to flush. And we'll only flush pages after changing them, which 246 * requires the PTL. 247 * 248 * So the ordering here is: 249 * 250 * atomic_inc(&mm->tlb_flush_pending); 251 * spin_lock(&ptl); 252 * ... 253 * set_pte_at(); 254 * spin_unlock(&ptl); 255 * 256 * spin_lock(&ptl) 257 * mm_tlb_flush_pending(); 258 * .... 259 * spin_unlock(&ptl); 260 * 261 * flush_tlb_range(); 262 * atomic_dec(&mm->tlb_flush_pending); 263 * 264 * Where the increment if constrained by the PTL unlock, it thus 265 * ensures that the increment is visible if the PTE modification is 266 * visible. After all, if there is no PTE modification, nobody cares 267 * about TLB flushes either. 268 * 269 * This very much relies on users (mm_tlb_flush_pending() and 270 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 271 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 272 * locks (PPC) the unlock of one doesn't order against the lock of 273 * another PTL. 274 * 275 * The decrement is ordered by the flush_tlb_range(), such that 276 * mm_tlb_flush_pending() will not return false unless all flushes have 277 * completed. 278 */ 279 } 280 281 static inline void dec_tlb_flush_pending(struct mm_struct *mm) 282 { 283 /* 284 * See inc_tlb_flush_pending(). 285 * 286 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 287 * not order against TLB invalidate completion, which is what we need. 288 * 289 * Therefore we must rely on tlb_flush_*() to guarantee order. 290 */ 291 atomic_dec(&mm->tlb_flush_pending); 292 } 293 294 static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 295 { 296 /* 297 * Must be called after having acquired the PTL; orders against that 298 * PTLs release and therefore ensures that if we observe the modified 299 * PTE we must also observe the increment from inc_tlb_flush_pending(). 300 * 301 * That is, it only guarantees to return true if there is a flush 302 * pending for _this_ PTL. 303 */ 304 return atomic_read(&mm->tlb_flush_pending); 305 } 306 307 static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 308 { 309 /* 310 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 311 * for which there is a TLB flush pending in order to guarantee 312 * we've seen both that PTE modification and the increment. 313 * 314 * (no requirement on actually still holding the PTL, that is irrelevant) 315 */ 316 return atomic_read(&mm->tlb_flush_pending) > 1; 317 } 318 319 320 #endif 321