xref: /linux-6.15/include/linux/mm_inline.h (revision aa1b6790)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef LINUX_MM_INLINE_H
3 #define LINUX_MM_INLINE_H
4 
5 #include <linux/atomic.h>
6 #include <linux/huge_mm.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/userfaultfd_k.h>
10 #include <linux/swapops.h>
11 
12 /**
13  * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
14  * @folio: The folio to test.
15  *
16  * We would like to get this info without a page flag, but the state
17  * needs to survive until the folio is last deleted from the LRU, which
18  * could be as far down as __page_cache_release.
19  *
20  * Return: An integer (not a boolean!) used to sort a folio onto the
21  * right LRU list and to account folios correctly.
22  * 1 if @folio is a regular filesystem backed page cache folio
23  * or a lazily freed anonymous folio (e.g. via MADV_FREE).
24  * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
25  * ram or swap backed folio.
26  */
27 static inline int folio_is_file_lru(struct folio *folio)
28 {
29 	return !folio_test_swapbacked(folio);
30 }
31 
32 static inline int page_is_file_lru(struct page *page)
33 {
34 	return folio_is_file_lru(page_folio(page));
35 }
36 
37 static __always_inline void __update_lru_size(struct lruvec *lruvec,
38 				enum lru_list lru, enum zone_type zid,
39 				long nr_pages)
40 {
41 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
42 
43 	__mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
44 	__mod_zone_page_state(&pgdat->node_zones[zid],
45 				NR_ZONE_LRU_BASE + lru, nr_pages);
46 }
47 
48 static __always_inline void update_lru_size(struct lruvec *lruvec,
49 				enum lru_list lru, enum zone_type zid,
50 				long nr_pages)
51 {
52 	__update_lru_size(lruvec, lru, zid, nr_pages);
53 #ifdef CONFIG_MEMCG
54 	mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
55 #endif
56 }
57 
58 /**
59  * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
60  * @folio: The folio that was on lru and now has a zero reference.
61  */
62 static __always_inline void __folio_clear_lru_flags(struct folio *folio)
63 {
64 	VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
65 
66 	__folio_clear_lru(folio);
67 
68 	/* this shouldn't happen, so leave the flags to bad_page() */
69 	if (folio_test_active(folio) && folio_test_unevictable(folio))
70 		return;
71 
72 	__folio_clear_active(folio);
73 	__folio_clear_unevictable(folio);
74 }
75 
76 static __always_inline void __clear_page_lru_flags(struct page *page)
77 {
78 	__folio_clear_lru_flags(page_folio(page));
79 }
80 
81 /**
82  * folio_lru_list - Which LRU list should a folio be on?
83  * @folio: The folio to test.
84  *
85  * Return: The LRU list a folio should be on, as an index
86  * into the array of LRU lists.
87  */
88 static __always_inline enum lru_list folio_lru_list(struct folio *folio)
89 {
90 	enum lru_list lru;
91 
92 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
93 
94 	if (folio_test_unevictable(folio))
95 		return LRU_UNEVICTABLE;
96 
97 	lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
98 	if (folio_test_active(folio))
99 		lru += LRU_ACTIVE;
100 
101 	return lru;
102 }
103 
104 static __always_inline
105 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
106 {
107 	enum lru_list lru = folio_lru_list(folio);
108 
109 	update_lru_size(lruvec, lru, folio_zonenum(folio),
110 			folio_nr_pages(folio));
111 	if (lru != LRU_UNEVICTABLE)
112 		list_add(&folio->lru, &lruvec->lists[lru]);
113 }
114 
115 static __always_inline void add_page_to_lru_list(struct page *page,
116 				struct lruvec *lruvec)
117 {
118 	lruvec_add_folio(lruvec, page_folio(page));
119 }
120 
121 static __always_inline
122 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
123 {
124 	enum lru_list lru = folio_lru_list(folio);
125 
126 	update_lru_size(lruvec, lru, folio_zonenum(folio),
127 			folio_nr_pages(folio));
128 	/* This is not expected to be used on LRU_UNEVICTABLE */
129 	list_add_tail(&folio->lru, &lruvec->lists[lru]);
130 }
131 
132 static __always_inline void add_page_to_lru_list_tail(struct page *page,
133 				struct lruvec *lruvec)
134 {
135 	lruvec_add_folio_tail(lruvec, page_folio(page));
136 }
137 
138 static __always_inline
139 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
140 {
141 	enum lru_list lru = folio_lru_list(folio);
142 
143 	if (lru != LRU_UNEVICTABLE)
144 		list_del(&folio->lru);
145 	update_lru_size(lruvec, lru, folio_zonenum(folio),
146 			-folio_nr_pages(folio));
147 }
148 
149 static __always_inline void del_page_from_lru_list(struct page *page,
150 				struct lruvec *lruvec)
151 {
152 	lruvec_del_folio(lruvec, page_folio(page));
153 }
154 
155 #ifdef CONFIG_ANON_VMA_NAME
156 /*
157  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
158  * either keep holding the lock while using the returned pointer or it should
159  * raise anon_vma_name refcount before releasing the lock.
160  */
161 extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
162 extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
163 extern void anon_vma_name_free(struct kref *kref);
164 
165 /* mmap_lock should be read-locked */
166 static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
167 {
168 	if (anon_name)
169 		kref_get(&anon_name->kref);
170 }
171 
172 static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
173 {
174 	if (anon_name)
175 		kref_put(&anon_name->kref, anon_vma_name_free);
176 }
177 
178 static inline
179 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
180 {
181 	/* Prevent anon_name refcount saturation early on */
182 	if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
183 		anon_vma_name_get(anon_name);
184 		return anon_name;
185 
186 	}
187 	return anon_vma_name_alloc(anon_name->name);
188 }
189 
190 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
191 				     struct vm_area_struct *new_vma)
192 {
193 	struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
194 
195 	if (anon_name)
196 		new_vma->anon_name = anon_vma_name_reuse(anon_name);
197 }
198 
199 static inline void free_anon_vma_name(struct vm_area_struct *vma)
200 {
201 	/*
202 	 * Not using anon_vma_name because it generates a warning if mmap_lock
203 	 * is not held, which might be the case here.
204 	 */
205 	if (!vma->vm_file)
206 		anon_vma_name_put(vma->anon_name);
207 }
208 
209 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
210 				    struct anon_vma_name *anon_name2)
211 {
212 	if (anon_name1 == anon_name2)
213 		return true;
214 
215 	return anon_name1 && anon_name2 &&
216 		!strcmp(anon_name1->name, anon_name2->name);
217 }
218 
219 #else /* CONFIG_ANON_VMA_NAME */
220 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
221 {
222 	return NULL;
223 }
224 
225 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
226 {
227 	return NULL;
228 }
229 
230 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
231 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
232 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
233 				     struct vm_area_struct *new_vma) {}
234 static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
235 
236 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
237 				    struct anon_vma_name *anon_name2)
238 {
239 	return true;
240 }
241 
242 #endif  /* CONFIG_ANON_VMA_NAME */
243 
244 static inline void init_tlb_flush_pending(struct mm_struct *mm)
245 {
246 	atomic_set(&mm->tlb_flush_pending, 0);
247 }
248 
249 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
250 {
251 	atomic_inc(&mm->tlb_flush_pending);
252 	/*
253 	 * The only time this value is relevant is when there are indeed pages
254 	 * to flush. And we'll only flush pages after changing them, which
255 	 * requires the PTL.
256 	 *
257 	 * So the ordering here is:
258 	 *
259 	 *	atomic_inc(&mm->tlb_flush_pending);
260 	 *	spin_lock(&ptl);
261 	 *	...
262 	 *	set_pte_at();
263 	 *	spin_unlock(&ptl);
264 	 *
265 	 *				spin_lock(&ptl)
266 	 *				mm_tlb_flush_pending();
267 	 *				....
268 	 *				spin_unlock(&ptl);
269 	 *
270 	 *	flush_tlb_range();
271 	 *	atomic_dec(&mm->tlb_flush_pending);
272 	 *
273 	 * Where the increment if constrained by the PTL unlock, it thus
274 	 * ensures that the increment is visible if the PTE modification is
275 	 * visible. After all, if there is no PTE modification, nobody cares
276 	 * about TLB flushes either.
277 	 *
278 	 * This very much relies on users (mm_tlb_flush_pending() and
279 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
280 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
281 	 * locks (PPC) the unlock of one doesn't order against the lock of
282 	 * another PTL.
283 	 *
284 	 * The decrement is ordered by the flush_tlb_range(), such that
285 	 * mm_tlb_flush_pending() will not return false unless all flushes have
286 	 * completed.
287 	 */
288 }
289 
290 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
291 {
292 	/*
293 	 * See inc_tlb_flush_pending().
294 	 *
295 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
296 	 * not order against TLB invalidate completion, which is what we need.
297 	 *
298 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
299 	 */
300 	atomic_dec(&mm->tlb_flush_pending);
301 }
302 
303 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
304 {
305 	/*
306 	 * Must be called after having acquired the PTL; orders against that
307 	 * PTLs release and therefore ensures that if we observe the modified
308 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
309 	 *
310 	 * That is, it only guarantees to return true if there is a flush
311 	 * pending for _this_ PTL.
312 	 */
313 	return atomic_read(&mm->tlb_flush_pending);
314 }
315 
316 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
317 {
318 	/*
319 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
320 	 * for which there is a TLB flush pending in order to guarantee
321 	 * we've seen both that PTE modification and the increment.
322 	 *
323 	 * (no requirement on actually still holding the PTL, that is irrelevant)
324 	 */
325 	return atomic_read(&mm->tlb_flush_pending) > 1;
326 }
327 
328 /*
329  * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
330  * replace a none pte.  NOTE!  This should only be called when *pte is already
331  * cleared so we will never accidentally replace something valuable.  Meanwhile
332  * none pte also means we are not demoting the pte so tlb flushed is not needed.
333  * E.g., when pte cleared the caller should have taken care of the tlb flush.
334  *
335  * Must be called with pgtable lock held so that no thread will see the none
336  * pte, and if they see it, they'll fault and serialize at the pgtable lock.
337  *
338  * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
339  */
340 static inline void
341 pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
342 			      pte_t *pte, pte_t pteval)
343 {
344 #ifdef CONFIG_PTE_MARKER_UFFD_WP
345 	bool arm_uffd_pte = false;
346 
347 	/* The current status of the pte should be "cleared" before calling */
348 	WARN_ON_ONCE(!pte_none(*pte));
349 
350 	if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
351 		return;
352 
353 	/* A uffd-wp wr-protected normal pte */
354 	if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
355 		arm_uffd_pte = true;
356 
357 	/*
358 	 * A uffd-wp wr-protected swap pte.  Note: this should even cover an
359 	 * existing pte marker with uffd-wp bit set.
360 	 */
361 	if (unlikely(pte_swp_uffd_wp_any(pteval)))
362 		arm_uffd_pte = true;
363 
364 	if (unlikely(arm_uffd_pte))
365 		set_pte_at(vma->vm_mm, addr, pte,
366 			   make_pte_marker(PTE_MARKER_UFFD_WP));
367 #endif
368 }
369 
370 #endif
371