xref: /linux-6.15/include/linux/mm_inline.h (revision 799fb82a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef LINUX_MM_INLINE_H
3 #define LINUX_MM_INLINE_H
4 
5 #include <linux/atomic.h>
6 #include <linux/huge_mm.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/userfaultfd_k.h>
10 #include <linux/swapops.h>
11 
12 /**
13  * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
14  * @folio: The folio to test.
15  *
16  * We would like to get this info without a page flag, but the state
17  * needs to survive until the folio is last deleted from the LRU, which
18  * could be as far down as __page_cache_release.
19  *
20  * Return: An integer (not a boolean!) used to sort a folio onto the
21  * right LRU list and to account folios correctly.
22  * 1 if @folio is a regular filesystem backed page cache folio
23  * or a lazily freed anonymous folio (e.g. via MADV_FREE).
24  * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
25  * ram or swap backed folio.
26  */
27 static inline int folio_is_file_lru(struct folio *folio)
28 {
29 	return !folio_test_swapbacked(folio);
30 }
31 
32 static inline int page_is_file_lru(struct page *page)
33 {
34 	return folio_is_file_lru(page_folio(page));
35 }
36 
37 static __always_inline void __update_lru_size(struct lruvec *lruvec,
38 				enum lru_list lru, enum zone_type zid,
39 				long nr_pages)
40 {
41 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
42 
43 	lockdep_assert_held(&lruvec->lru_lock);
44 	WARN_ON_ONCE(nr_pages != (int)nr_pages);
45 
46 	__mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
47 	__mod_zone_page_state(&pgdat->node_zones[zid],
48 				NR_ZONE_LRU_BASE + lru, nr_pages);
49 }
50 
51 static __always_inline void update_lru_size(struct lruvec *lruvec,
52 				enum lru_list lru, enum zone_type zid,
53 				long nr_pages)
54 {
55 	__update_lru_size(lruvec, lru, zid, nr_pages);
56 #ifdef CONFIG_MEMCG
57 	mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
58 #endif
59 }
60 
61 /**
62  * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
63  * @folio: The folio that was on lru and now has a zero reference.
64  */
65 static __always_inline void __folio_clear_lru_flags(struct folio *folio)
66 {
67 	VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
68 
69 	__folio_clear_lru(folio);
70 
71 	/* this shouldn't happen, so leave the flags to bad_page() */
72 	if (folio_test_active(folio) && folio_test_unevictable(folio))
73 		return;
74 
75 	__folio_clear_active(folio);
76 	__folio_clear_unevictable(folio);
77 }
78 
79 /**
80  * folio_lru_list - Which LRU list should a folio be on?
81  * @folio: The folio to test.
82  *
83  * Return: The LRU list a folio should be on, as an index
84  * into the array of LRU lists.
85  */
86 static __always_inline enum lru_list folio_lru_list(struct folio *folio)
87 {
88 	enum lru_list lru;
89 
90 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
91 
92 	if (folio_test_unevictable(folio))
93 		return LRU_UNEVICTABLE;
94 
95 	lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
96 	if (folio_test_active(folio))
97 		lru += LRU_ACTIVE;
98 
99 	return lru;
100 }
101 
102 #ifdef CONFIG_LRU_GEN
103 
104 #ifdef CONFIG_LRU_GEN_ENABLED
105 static inline bool lru_gen_enabled(void)
106 {
107 	DECLARE_STATIC_KEY_TRUE(lru_gen_caps[NR_LRU_GEN_CAPS]);
108 
109 	return static_branch_likely(&lru_gen_caps[LRU_GEN_CORE]);
110 }
111 #else
112 static inline bool lru_gen_enabled(void)
113 {
114 	DECLARE_STATIC_KEY_FALSE(lru_gen_caps[NR_LRU_GEN_CAPS]);
115 
116 	return static_branch_unlikely(&lru_gen_caps[LRU_GEN_CORE]);
117 }
118 #endif
119 
120 static inline bool lru_gen_in_fault(void)
121 {
122 	return current->in_lru_fault;
123 }
124 
125 #ifdef CONFIG_MEMCG
126 static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
127 {
128 	return READ_ONCE(lruvec->lrugen.seg);
129 }
130 #else
131 static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static inline int lru_gen_from_seq(unsigned long seq)
138 {
139 	return seq % MAX_NR_GENS;
140 }
141 
142 static inline int lru_hist_from_seq(unsigned long seq)
143 {
144 	return seq % NR_HIST_GENS;
145 }
146 
147 static inline int lru_tier_from_refs(int refs)
148 {
149 	VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH));
150 
151 	/* see the comment in folio_lru_refs() */
152 	return order_base_2(refs + 1);
153 }
154 
155 static inline int folio_lru_refs(struct folio *folio)
156 {
157 	unsigned long flags = READ_ONCE(folio->flags);
158 	bool workingset = flags & BIT(PG_workingset);
159 
160 	/*
161 	 * Return the number of accesses beyond PG_referenced, i.e., N-1 if the
162 	 * total number of accesses is N>1, since N=0,1 both map to the first
163 	 * tier. lru_tier_from_refs() will account for this off-by-one. Also see
164 	 * the comment on MAX_NR_TIERS.
165 	 */
166 	return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset;
167 }
168 
169 static inline int folio_lru_gen(struct folio *folio)
170 {
171 	unsigned long flags = READ_ONCE(folio->flags);
172 
173 	return ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
174 }
175 
176 static inline bool lru_gen_is_active(struct lruvec *lruvec, int gen)
177 {
178 	unsigned long max_seq = lruvec->lrugen.max_seq;
179 
180 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
181 
182 	/* see the comment on MIN_NR_GENS */
183 	return gen == lru_gen_from_seq(max_seq) || gen == lru_gen_from_seq(max_seq - 1);
184 }
185 
186 static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *folio,
187 				       int old_gen, int new_gen)
188 {
189 	int type = folio_is_file_lru(folio);
190 	int zone = folio_zonenum(folio);
191 	int delta = folio_nr_pages(folio);
192 	enum lru_list lru = type * LRU_INACTIVE_FILE;
193 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
194 
195 	VM_WARN_ON_ONCE(old_gen != -1 && old_gen >= MAX_NR_GENS);
196 	VM_WARN_ON_ONCE(new_gen != -1 && new_gen >= MAX_NR_GENS);
197 	VM_WARN_ON_ONCE(old_gen == -1 && new_gen == -1);
198 
199 	if (old_gen >= 0)
200 		WRITE_ONCE(lrugen->nr_pages[old_gen][type][zone],
201 			   lrugen->nr_pages[old_gen][type][zone] - delta);
202 	if (new_gen >= 0)
203 		WRITE_ONCE(lrugen->nr_pages[new_gen][type][zone],
204 			   lrugen->nr_pages[new_gen][type][zone] + delta);
205 
206 	/* addition */
207 	if (old_gen < 0) {
208 		if (lru_gen_is_active(lruvec, new_gen))
209 			lru += LRU_ACTIVE;
210 		__update_lru_size(lruvec, lru, zone, delta);
211 		return;
212 	}
213 
214 	/* deletion */
215 	if (new_gen < 0) {
216 		if (lru_gen_is_active(lruvec, old_gen))
217 			lru += LRU_ACTIVE;
218 		__update_lru_size(lruvec, lru, zone, -delta);
219 		return;
220 	}
221 
222 	/* promotion */
223 	if (!lru_gen_is_active(lruvec, old_gen) && lru_gen_is_active(lruvec, new_gen)) {
224 		__update_lru_size(lruvec, lru, zone, -delta);
225 		__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, delta);
226 	}
227 
228 	/* demotion requires isolation, e.g., lru_deactivate_fn() */
229 	VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen));
230 }
231 
232 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
233 {
234 	unsigned long seq;
235 	unsigned long flags;
236 	int gen = folio_lru_gen(folio);
237 	int type = folio_is_file_lru(folio);
238 	int zone = folio_zonenum(folio);
239 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
240 
241 	VM_WARN_ON_ONCE_FOLIO(gen != -1, folio);
242 
243 	if (folio_test_unevictable(folio) || !lrugen->enabled)
244 		return false;
245 	/*
246 	 * There are three common cases for this page:
247 	 * 1. If it's hot, e.g., freshly faulted in or previously hot and
248 	 *    migrated, add it to the youngest generation.
249 	 * 2. If it's cold but can't be evicted immediately, i.e., an anon page
250 	 *    not in swapcache or a dirty page pending writeback, add it to the
251 	 *    second oldest generation.
252 	 * 3. Everything else (clean, cold) is added to the oldest generation.
253 	 */
254 	if (folio_test_active(folio))
255 		seq = lrugen->max_seq;
256 	else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) ||
257 		 (folio_test_reclaim(folio) &&
258 		  (folio_test_dirty(folio) || folio_test_writeback(folio))))
259 		seq = lrugen->min_seq[type] + 1;
260 	else
261 		seq = lrugen->min_seq[type];
262 
263 	gen = lru_gen_from_seq(seq);
264 	flags = (gen + 1UL) << LRU_GEN_PGOFF;
265 	/* see the comment on MIN_NR_GENS about PG_active */
266 	set_mask_bits(&folio->flags, LRU_GEN_MASK | BIT(PG_active), flags);
267 
268 	lru_gen_update_size(lruvec, folio, -1, gen);
269 	/* for folio_rotate_reclaimable() */
270 	if (reclaiming)
271 		list_add_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
272 	else
273 		list_add(&folio->lru, &lrugen->folios[gen][type][zone]);
274 
275 	return true;
276 }
277 
278 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
279 {
280 	unsigned long flags;
281 	int gen = folio_lru_gen(folio);
282 
283 	if (gen < 0)
284 		return false;
285 
286 	VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
287 	VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
288 
289 	/* for folio_migrate_flags() */
290 	flags = !reclaiming && lru_gen_is_active(lruvec, gen) ? BIT(PG_active) : 0;
291 	flags = set_mask_bits(&folio->flags, LRU_GEN_MASK, flags);
292 	gen = ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
293 
294 	lru_gen_update_size(lruvec, folio, gen, -1);
295 	list_del(&folio->lru);
296 
297 	return true;
298 }
299 
300 #else /* !CONFIG_LRU_GEN */
301 
302 static inline bool lru_gen_enabled(void)
303 {
304 	return false;
305 }
306 
307 static inline bool lru_gen_in_fault(void)
308 {
309 	return false;
310 }
311 
312 static inline int lru_gen_memcg_seg(struct lruvec *lruvec)
313 {
314 	return 0;
315 }
316 
317 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
318 {
319 	return false;
320 }
321 
322 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
323 {
324 	return false;
325 }
326 
327 #endif /* CONFIG_LRU_GEN */
328 
329 static __always_inline
330 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
331 {
332 	enum lru_list lru = folio_lru_list(folio);
333 
334 	if (lru_gen_add_folio(lruvec, folio, false))
335 		return;
336 
337 	update_lru_size(lruvec, lru, folio_zonenum(folio),
338 			folio_nr_pages(folio));
339 	if (lru != LRU_UNEVICTABLE)
340 		list_add(&folio->lru, &lruvec->lists[lru]);
341 }
342 
343 static __always_inline void add_page_to_lru_list(struct page *page,
344 				struct lruvec *lruvec)
345 {
346 	lruvec_add_folio(lruvec, page_folio(page));
347 }
348 
349 static __always_inline
350 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
351 {
352 	enum lru_list lru = folio_lru_list(folio);
353 
354 	if (lru_gen_add_folio(lruvec, folio, true))
355 		return;
356 
357 	update_lru_size(lruvec, lru, folio_zonenum(folio),
358 			folio_nr_pages(folio));
359 	/* This is not expected to be used on LRU_UNEVICTABLE */
360 	list_add_tail(&folio->lru, &lruvec->lists[lru]);
361 }
362 
363 static __always_inline
364 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
365 {
366 	enum lru_list lru = folio_lru_list(folio);
367 
368 	if (lru_gen_del_folio(lruvec, folio, false))
369 		return;
370 
371 	if (lru != LRU_UNEVICTABLE)
372 		list_del(&folio->lru);
373 	update_lru_size(lruvec, lru, folio_zonenum(folio),
374 			-folio_nr_pages(folio));
375 }
376 
377 static __always_inline void del_page_from_lru_list(struct page *page,
378 				struct lruvec *lruvec)
379 {
380 	lruvec_del_folio(lruvec, page_folio(page));
381 }
382 
383 #ifdef CONFIG_ANON_VMA_NAME
384 /*
385  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
386  * either keep holding the lock while using the returned pointer or it should
387  * raise anon_vma_name refcount before releasing the lock.
388  */
389 extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
390 extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
391 extern void anon_vma_name_free(struct kref *kref);
392 
393 /* mmap_lock should be read-locked */
394 static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
395 {
396 	if (anon_name)
397 		kref_get(&anon_name->kref);
398 }
399 
400 static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
401 {
402 	if (anon_name)
403 		kref_put(&anon_name->kref, anon_vma_name_free);
404 }
405 
406 static inline
407 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
408 {
409 	/* Prevent anon_name refcount saturation early on */
410 	if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
411 		anon_vma_name_get(anon_name);
412 		return anon_name;
413 
414 	}
415 	return anon_vma_name_alloc(anon_name->name);
416 }
417 
418 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
419 				     struct vm_area_struct *new_vma)
420 {
421 	struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
422 
423 	if (anon_name)
424 		new_vma->anon_name = anon_vma_name_reuse(anon_name);
425 }
426 
427 static inline void free_anon_vma_name(struct vm_area_struct *vma)
428 {
429 	/*
430 	 * Not using anon_vma_name because it generates a warning if mmap_lock
431 	 * is not held, which might be the case here.
432 	 */
433 	anon_vma_name_put(vma->anon_name);
434 }
435 
436 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
437 				    struct anon_vma_name *anon_name2)
438 {
439 	if (anon_name1 == anon_name2)
440 		return true;
441 
442 	return anon_name1 && anon_name2 &&
443 		!strcmp(anon_name1->name, anon_name2->name);
444 }
445 
446 #else /* CONFIG_ANON_VMA_NAME */
447 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
448 {
449 	return NULL;
450 }
451 
452 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
453 {
454 	return NULL;
455 }
456 
457 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
458 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
459 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
460 				     struct vm_area_struct *new_vma) {}
461 static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
462 
463 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
464 				    struct anon_vma_name *anon_name2)
465 {
466 	return true;
467 }
468 
469 #endif  /* CONFIG_ANON_VMA_NAME */
470 
471 static inline void init_tlb_flush_pending(struct mm_struct *mm)
472 {
473 	atomic_set(&mm->tlb_flush_pending, 0);
474 }
475 
476 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
477 {
478 	atomic_inc(&mm->tlb_flush_pending);
479 	/*
480 	 * The only time this value is relevant is when there are indeed pages
481 	 * to flush. And we'll only flush pages after changing them, which
482 	 * requires the PTL.
483 	 *
484 	 * So the ordering here is:
485 	 *
486 	 *	atomic_inc(&mm->tlb_flush_pending);
487 	 *	spin_lock(&ptl);
488 	 *	...
489 	 *	set_pte_at();
490 	 *	spin_unlock(&ptl);
491 	 *
492 	 *				spin_lock(&ptl)
493 	 *				mm_tlb_flush_pending();
494 	 *				....
495 	 *				spin_unlock(&ptl);
496 	 *
497 	 *	flush_tlb_range();
498 	 *	atomic_dec(&mm->tlb_flush_pending);
499 	 *
500 	 * Where the increment if constrained by the PTL unlock, it thus
501 	 * ensures that the increment is visible if the PTE modification is
502 	 * visible. After all, if there is no PTE modification, nobody cares
503 	 * about TLB flushes either.
504 	 *
505 	 * This very much relies on users (mm_tlb_flush_pending() and
506 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
507 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
508 	 * locks (PPC) the unlock of one doesn't order against the lock of
509 	 * another PTL.
510 	 *
511 	 * The decrement is ordered by the flush_tlb_range(), such that
512 	 * mm_tlb_flush_pending() will not return false unless all flushes have
513 	 * completed.
514 	 */
515 }
516 
517 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
518 {
519 	/*
520 	 * See inc_tlb_flush_pending().
521 	 *
522 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
523 	 * not order against TLB invalidate completion, which is what we need.
524 	 *
525 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
526 	 */
527 	atomic_dec(&mm->tlb_flush_pending);
528 }
529 
530 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
531 {
532 	/*
533 	 * Must be called after having acquired the PTL; orders against that
534 	 * PTLs release and therefore ensures that if we observe the modified
535 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
536 	 *
537 	 * That is, it only guarantees to return true if there is a flush
538 	 * pending for _this_ PTL.
539 	 */
540 	return atomic_read(&mm->tlb_flush_pending);
541 }
542 
543 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
544 {
545 	/*
546 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
547 	 * for which there is a TLB flush pending in order to guarantee
548 	 * we've seen both that PTE modification and the increment.
549 	 *
550 	 * (no requirement on actually still holding the PTL, that is irrelevant)
551 	 */
552 	return atomic_read(&mm->tlb_flush_pending) > 1;
553 }
554 
555 /*
556  * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
557  * replace a none pte.  NOTE!  This should only be called when *pte is already
558  * cleared so we will never accidentally replace something valuable.  Meanwhile
559  * none pte also means we are not demoting the pte so tlb flushed is not needed.
560  * E.g., when pte cleared the caller should have taken care of the tlb flush.
561  *
562  * Must be called with pgtable lock held so that no thread will see the none
563  * pte, and if they see it, they'll fault and serialize at the pgtable lock.
564  *
565  * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
566  */
567 static inline void
568 pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
569 			      pte_t *pte, pte_t pteval)
570 {
571 #ifdef CONFIG_PTE_MARKER_UFFD_WP
572 	bool arm_uffd_pte = false;
573 
574 	/* The current status of the pte should be "cleared" before calling */
575 	WARN_ON_ONCE(!pte_none(*pte));
576 
577 	if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
578 		return;
579 
580 	/* A uffd-wp wr-protected normal pte */
581 	if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
582 		arm_uffd_pte = true;
583 
584 	/*
585 	 * A uffd-wp wr-protected swap pte.  Note: this should even cover an
586 	 * existing pte marker with uffd-wp bit set.
587 	 */
588 	if (unlikely(pte_swp_uffd_wp_any(pteval)))
589 		arm_uffd_pte = true;
590 
591 	if (unlikely(arm_uffd_pte))
592 		set_pte_at(vma->vm_mm, addr, pte,
593 			   make_pte_marker(PTE_MARKER_UFFD_WP));
594 #endif
595 }
596 
597 #endif
598