xref: /linux-6.15/include/linux/mm_inline.h (revision 2ca7cd80)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef LINUX_MM_INLINE_H
3 #define LINUX_MM_INLINE_H
4 
5 #include <linux/atomic.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mm_types.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/userfaultfd_k.h>
11 #include <linux/swapops.h>
12 
13 /**
14  * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
15  * @folio: The folio to test.
16  *
17  * We would like to get this info without a page flag, but the state
18  * needs to survive until the folio is last deleted from the LRU, which
19  * could be as far down as __page_cache_release.
20  *
21  * Return: An integer (not a boolean!) used to sort a folio onto the
22  * right LRU list and to account folios correctly.
23  * 1 if @folio is a regular filesystem backed page cache folio
24  * or a lazily freed anonymous folio (e.g. via MADV_FREE).
25  * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
26  * ram or swap backed folio.
27  */
28 static inline int folio_is_file_lru(struct folio *folio)
29 {
30 	return !folio_test_swapbacked(folio);
31 }
32 
33 static inline int page_is_file_lru(struct page *page)
34 {
35 	return folio_is_file_lru(page_folio(page));
36 }
37 
38 static __always_inline void __update_lru_size(struct lruvec *lruvec,
39 				enum lru_list lru, enum zone_type zid,
40 				long nr_pages)
41 {
42 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
43 
44 	lockdep_assert_held(&lruvec->lru_lock);
45 	WARN_ON_ONCE(nr_pages != (int)nr_pages);
46 
47 	__mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
48 	__mod_zone_page_state(&pgdat->node_zones[zid],
49 				NR_ZONE_LRU_BASE + lru, nr_pages);
50 }
51 
52 static __always_inline void update_lru_size(struct lruvec *lruvec,
53 				enum lru_list lru, enum zone_type zid,
54 				long nr_pages)
55 {
56 	__update_lru_size(lruvec, lru, zid, nr_pages);
57 #ifdef CONFIG_MEMCG
58 	mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
59 #endif
60 }
61 
62 /**
63  * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
64  * @folio: The folio that was on lru and now has a zero reference.
65  */
66 static __always_inline void __folio_clear_lru_flags(struct folio *folio)
67 {
68 	VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
69 
70 	__folio_clear_lru(folio);
71 
72 	/* this shouldn't happen, so leave the flags to bad_page() */
73 	if (folio_test_active(folio) && folio_test_unevictable(folio))
74 		return;
75 
76 	__folio_clear_active(folio);
77 	__folio_clear_unevictable(folio);
78 }
79 
80 /**
81  * folio_lru_list - Which LRU list should a folio be on?
82  * @folio: The folio to test.
83  *
84  * Return: The LRU list a folio should be on, as an index
85  * into the array of LRU lists.
86  */
87 static __always_inline enum lru_list folio_lru_list(struct folio *folio)
88 {
89 	enum lru_list lru;
90 
91 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
92 
93 	if (folio_test_unevictable(folio))
94 		return LRU_UNEVICTABLE;
95 
96 	lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
97 	if (folio_test_active(folio))
98 		lru += LRU_ACTIVE;
99 
100 	return lru;
101 }
102 
103 #ifdef CONFIG_LRU_GEN
104 
105 #ifdef CONFIG_LRU_GEN_ENABLED
106 static inline bool lru_gen_enabled(void)
107 {
108 	DECLARE_STATIC_KEY_TRUE(lru_gen_caps[NR_LRU_GEN_CAPS]);
109 
110 	return static_branch_likely(&lru_gen_caps[LRU_GEN_CORE]);
111 }
112 #else
113 static inline bool lru_gen_enabled(void)
114 {
115 	DECLARE_STATIC_KEY_FALSE(lru_gen_caps[NR_LRU_GEN_CAPS]);
116 
117 	return static_branch_unlikely(&lru_gen_caps[LRU_GEN_CORE]);
118 }
119 #endif
120 
121 static inline bool lru_gen_in_fault(void)
122 {
123 	return current->in_lru_fault;
124 }
125 
126 static inline int lru_gen_from_seq(unsigned long seq)
127 {
128 	return seq % MAX_NR_GENS;
129 }
130 
131 static inline int lru_hist_from_seq(unsigned long seq)
132 {
133 	return seq % NR_HIST_GENS;
134 }
135 
136 static inline int lru_tier_from_refs(int refs)
137 {
138 	VM_WARN_ON_ONCE(refs > BIT(LRU_REFS_WIDTH));
139 
140 	/* see the comment in folio_lru_refs() */
141 	return order_base_2(refs + 1);
142 }
143 
144 static inline int folio_lru_refs(struct folio *folio)
145 {
146 	unsigned long flags = READ_ONCE(folio->flags);
147 	bool workingset = flags & BIT(PG_workingset);
148 
149 	/*
150 	 * Return the number of accesses beyond PG_referenced, i.e., N-1 if the
151 	 * total number of accesses is N>1, since N=0,1 both map to the first
152 	 * tier. lru_tier_from_refs() will account for this off-by-one. Also see
153 	 * the comment on MAX_NR_TIERS.
154 	 */
155 	return ((flags & LRU_REFS_MASK) >> LRU_REFS_PGOFF) + workingset;
156 }
157 
158 static inline void folio_clear_lru_refs(struct folio *folio)
159 {
160 	set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
161 }
162 
163 static inline int folio_lru_gen(struct folio *folio)
164 {
165 	unsigned long flags = READ_ONCE(folio->flags);
166 
167 	return ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
168 }
169 
170 static inline bool lru_gen_is_active(struct lruvec *lruvec, int gen)
171 {
172 	unsigned long max_seq = lruvec->lrugen.max_seq;
173 
174 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
175 
176 	/* see the comment on MIN_NR_GENS */
177 	return gen == lru_gen_from_seq(max_seq) || gen == lru_gen_from_seq(max_seq - 1);
178 }
179 
180 static inline void lru_gen_update_size(struct lruvec *lruvec, struct folio *folio,
181 				       int old_gen, int new_gen)
182 {
183 	int type = folio_is_file_lru(folio);
184 	int zone = folio_zonenum(folio);
185 	int delta = folio_nr_pages(folio);
186 	enum lru_list lru = type * LRU_INACTIVE_FILE;
187 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
188 
189 	VM_WARN_ON_ONCE(old_gen != -1 && old_gen >= MAX_NR_GENS);
190 	VM_WARN_ON_ONCE(new_gen != -1 && new_gen >= MAX_NR_GENS);
191 	VM_WARN_ON_ONCE(old_gen == -1 && new_gen == -1);
192 
193 	if (old_gen >= 0)
194 		WRITE_ONCE(lrugen->nr_pages[old_gen][type][zone],
195 			   lrugen->nr_pages[old_gen][type][zone] - delta);
196 	if (new_gen >= 0)
197 		WRITE_ONCE(lrugen->nr_pages[new_gen][type][zone],
198 			   lrugen->nr_pages[new_gen][type][zone] + delta);
199 
200 	/* addition */
201 	if (old_gen < 0) {
202 		if (lru_gen_is_active(lruvec, new_gen))
203 			lru += LRU_ACTIVE;
204 		__update_lru_size(lruvec, lru, zone, delta);
205 		return;
206 	}
207 
208 	/* deletion */
209 	if (new_gen < 0) {
210 		if (lru_gen_is_active(lruvec, old_gen))
211 			lru += LRU_ACTIVE;
212 		__update_lru_size(lruvec, lru, zone, -delta);
213 		return;
214 	}
215 
216 	/* promotion */
217 	if (!lru_gen_is_active(lruvec, old_gen) && lru_gen_is_active(lruvec, new_gen)) {
218 		__update_lru_size(lruvec, lru, zone, -delta);
219 		__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, delta);
220 	}
221 
222 	/* demotion requires isolation, e.g., lru_deactivate_fn() */
223 	VM_WARN_ON_ONCE(lru_gen_is_active(lruvec, old_gen) && !lru_gen_is_active(lruvec, new_gen));
224 }
225 
226 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
227 {
228 	unsigned long seq;
229 	unsigned long flags;
230 	unsigned long mask;
231 	int gen = folio_lru_gen(folio);
232 	int type = folio_is_file_lru(folio);
233 	int zone = folio_zonenum(folio);
234 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
235 
236 	VM_WARN_ON_ONCE_FOLIO(gen != -1, folio);
237 
238 	if (folio_test_unevictable(folio) || !lrugen->enabled)
239 		return false;
240 	/*
241 	 * There are four common cases for this page:
242 	 * 1. If it's hot, i.e., freshly faulted in, add it to the youngest
243 	 *    generation, and it's protected over the rest below.
244 	 * 2. If it can't be evicted immediately, i.e., a dirty page pending
245 	 *    writeback, add it to the second youngest generation.
246 	 * 3. If it should be evicted first, e.g., cold and clean from
247 	 *    folio_rotate_reclaimable(), add it to the oldest generation.
248 	 * 4. Everything else falls between 2 & 3 above and is added to the
249 	 *    second oldest generation if it's considered inactive, or the
250 	 *    oldest generation otherwise. See lru_gen_is_active().
251 	 */
252 	if (folio_test_active(folio))
253 		seq = lrugen->max_seq;
254 	else if ((type == LRU_GEN_ANON && !folio_test_swapcache(folio)) ||
255 		 (folio_test_reclaim(folio) &&
256 		  (folio_test_dirty(folio) || folio_test_writeback(folio))))
257 		seq = lrugen->max_seq - 1;
258 	else if (reclaiming || lrugen->min_seq[type] + MIN_NR_GENS >= lrugen->max_seq)
259 		seq = lrugen->min_seq[type];
260 	else
261 		seq = lrugen->min_seq[type] + 1;
262 
263 	gen = lru_gen_from_seq(seq);
264 	flags = (gen + 1UL) << LRU_GEN_PGOFF;
265 	/* see the comment on MIN_NR_GENS about PG_active */
266 	mask = LRU_GEN_MASK;
267 	/*
268 	 * Don't clear PG_workingset here because it can affect PSI accounting
269 	 * if the activation is due to workingset refault.
270 	 */
271 	if (folio_test_active(folio))
272 		mask |= LRU_REFS_MASK | BIT(PG_referenced) | BIT(PG_active);
273 	set_mask_bits(&folio->flags, mask, flags);
274 
275 	lru_gen_update_size(lruvec, folio, -1, gen);
276 	/* for folio_rotate_reclaimable() */
277 	if (reclaiming)
278 		list_add_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
279 	else
280 		list_add(&folio->lru, &lrugen->folios[gen][type][zone]);
281 
282 	return true;
283 }
284 
285 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
286 {
287 	unsigned long flags;
288 	int gen = folio_lru_gen(folio);
289 
290 	if (gen < 0)
291 		return false;
292 
293 	VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
294 	VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
295 
296 	/* for folio_migrate_flags() */
297 	flags = !reclaiming && lru_gen_is_active(lruvec, gen) ? BIT(PG_active) : 0;
298 	flags = set_mask_bits(&folio->flags, LRU_GEN_MASK, flags);
299 	gen = ((flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
300 
301 	lru_gen_update_size(lruvec, folio, gen, -1);
302 	list_del(&folio->lru);
303 
304 	return true;
305 }
306 
307 static inline void folio_migrate_refs(struct folio *new, struct folio *old)
308 {
309 	unsigned long refs = READ_ONCE(old->flags) & LRU_REFS_MASK;
310 
311 	set_mask_bits(&new->flags, LRU_REFS_MASK, refs);
312 }
313 #else /* !CONFIG_LRU_GEN */
314 
315 static inline bool lru_gen_enabled(void)
316 {
317 	return false;
318 }
319 
320 static inline bool lru_gen_in_fault(void)
321 {
322 	return false;
323 }
324 
325 static inline bool lru_gen_add_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
326 {
327 	return false;
328 }
329 
330 static inline bool lru_gen_del_folio(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
331 {
332 	return false;
333 }
334 
335 static inline void folio_migrate_refs(struct folio *new, struct folio *old)
336 {
337 
338 }
339 #endif /* CONFIG_LRU_GEN */
340 
341 static __always_inline
342 void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
343 {
344 	enum lru_list lru = folio_lru_list(folio);
345 
346 	if (lru_gen_add_folio(lruvec, folio, false))
347 		return;
348 
349 	update_lru_size(lruvec, lru, folio_zonenum(folio),
350 			folio_nr_pages(folio));
351 	if (lru != LRU_UNEVICTABLE)
352 		list_add(&folio->lru, &lruvec->lists[lru]);
353 }
354 
355 static __always_inline
356 void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
357 {
358 	enum lru_list lru = folio_lru_list(folio);
359 
360 	if (lru_gen_add_folio(lruvec, folio, true))
361 		return;
362 
363 	update_lru_size(lruvec, lru, folio_zonenum(folio),
364 			folio_nr_pages(folio));
365 	/* This is not expected to be used on LRU_UNEVICTABLE */
366 	list_add_tail(&folio->lru, &lruvec->lists[lru]);
367 }
368 
369 static __always_inline
370 void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
371 {
372 	enum lru_list lru = folio_lru_list(folio);
373 
374 	if (lru_gen_del_folio(lruvec, folio, false))
375 		return;
376 
377 	if (lru != LRU_UNEVICTABLE)
378 		list_del(&folio->lru);
379 	update_lru_size(lruvec, lru, folio_zonenum(folio),
380 			-folio_nr_pages(folio));
381 }
382 
383 #ifdef CONFIG_ANON_VMA_NAME
384 /* mmap_lock should be read-locked */
385 static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
386 {
387 	if (anon_name)
388 		kref_get(&anon_name->kref);
389 }
390 
391 static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
392 {
393 	if (anon_name)
394 		kref_put(&anon_name->kref, anon_vma_name_free);
395 }
396 
397 static inline
398 struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
399 {
400 	/* Prevent anon_name refcount saturation early on */
401 	if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
402 		anon_vma_name_get(anon_name);
403 		return anon_name;
404 
405 	}
406 	return anon_vma_name_alloc(anon_name->name);
407 }
408 
409 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
410 				     struct vm_area_struct *new_vma)
411 {
412 	struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
413 
414 	if (anon_name)
415 		new_vma->anon_name = anon_vma_name_reuse(anon_name);
416 }
417 
418 static inline void free_anon_vma_name(struct vm_area_struct *vma)
419 {
420 	/*
421 	 * Not using anon_vma_name because it generates a warning if mmap_lock
422 	 * is not held, which might be the case here.
423 	 */
424 	anon_vma_name_put(vma->anon_name);
425 }
426 
427 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
428 				    struct anon_vma_name *anon_name2)
429 {
430 	if (anon_name1 == anon_name2)
431 		return true;
432 
433 	return anon_name1 && anon_name2 &&
434 		!strcmp(anon_name1->name, anon_name2->name);
435 }
436 
437 #else /* CONFIG_ANON_VMA_NAME */
438 static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
439 static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
440 static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
441 				     struct vm_area_struct *new_vma) {}
442 static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
443 
444 static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
445 				    struct anon_vma_name *anon_name2)
446 {
447 	return true;
448 }
449 
450 #endif  /* CONFIG_ANON_VMA_NAME */
451 
452 static inline void init_tlb_flush_pending(struct mm_struct *mm)
453 {
454 	atomic_set(&mm->tlb_flush_pending, 0);
455 }
456 
457 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
458 {
459 	atomic_inc(&mm->tlb_flush_pending);
460 	/*
461 	 * The only time this value is relevant is when there are indeed pages
462 	 * to flush. And we'll only flush pages after changing them, which
463 	 * requires the PTL.
464 	 *
465 	 * So the ordering here is:
466 	 *
467 	 *	atomic_inc(&mm->tlb_flush_pending);
468 	 *	spin_lock(&ptl);
469 	 *	...
470 	 *	set_pte_at();
471 	 *	spin_unlock(&ptl);
472 	 *
473 	 *				spin_lock(&ptl)
474 	 *				mm_tlb_flush_pending();
475 	 *				....
476 	 *				spin_unlock(&ptl);
477 	 *
478 	 *	flush_tlb_range();
479 	 *	atomic_dec(&mm->tlb_flush_pending);
480 	 *
481 	 * Where the increment if constrained by the PTL unlock, it thus
482 	 * ensures that the increment is visible if the PTE modification is
483 	 * visible. After all, if there is no PTE modification, nobody cares
484 	 * about TLB flushes either.
485 	 *
486 	 * This very much relies on users (mm_tlb_flush_pending() and
487 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
488 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
489 	 * locks (PPC) the unlock of one doesn't order against the lock of
490 	 * another PTL.
491 	 *
492 	 * The decrement is ordered by the flush_tlb_range(), such that
493 	 * mm_tlb_flush_pending() will not return false unless all flushes have
494 	 * completed.
495 	 */
496 }
497 
498 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
499 {
500 	/*
501 	 * See inc_tlb_flush_pending().
502 	 *
503 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
504 	 * not order against TLB invalidate completion, which is what we need.
505 	 *
506 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
507 	 */
508 	atomic_dec(&mm->tlb_flush_pending);
509 }
510 
511 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
512 {
513 	/*
514 	 * Must be called after having acquired the PTL; orders against that
515 	 * PTLs release and therefore ensures that if we observe the modified
516 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
517 	 *
518 	 * That is, it only guarantees to return true if there is a flush
519 	 * pending for _this_ PTL.
520 	 */
521 	return atomic_read(&mm->tlb_flush_pending);
522 }
523 
524 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
525 {
526 	/*
527 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
528 	 * for which there is a TLB flush pending in order to guarantee
529 	 * we've seen both that PTE modification and the increment.
530 	 *
531 	 * (no requirement on actually still holding the PTL, that is irrelevant)
532 	 */
533 	return atomic_read(&mm->tlb_flush_pending) > 1;
534 }
535 
536 #ifdef CONFIG_MMU
537 /*
538  * Computes the pte marker to copy from the given source entry into dst_vma.
539  * If no marker should be copied, returns 0.
540  * The caller should insert a new pte created with make_pte_marker().
541  */
542 static inline pte_marker copy_pte_marker(
543 		swp_entry_t entry, struct vm_area_struct *dst_vma)
544 {
545 	pte_marker srcm = pte_marker_get(entry);
546 	/* Always copy error entries. */
547 	pte_marker dstm = srcm & (PTE_MARKER_POISONED | PTE_MARKER_GUARD);
548 
549 	/* Only copy PTE markers if UFFD register matches. */
550 	if ((srcm & PTE_MARKER_UFFD_WP) && userfaultfd_wp(dst_vma))
551 		dstm |= PTE_MARKER_UFFD_WP;
552 
553 	return dstm;
554 }
555 #endif
556 
557 /*
558  * If this pte is wr-protected by uffd-wp in any form, arm the special pte to
559  * replace a none pte.  NOTE!  This should only be called when *pte is already
560  * cleared so we will never accidentally replace something valuable.  Meanwhile
561  * none pte also means we are not demoting the pte so tlb flushed is not needed.
562  * E.g., when pte cleared the caller should have taken care of the tlb flush.
563  *
564  * Must be called with pgtable lock held so that no thread will see the none
565  * pte, and if they see it, they'll fault and serialize at the pgtable lock.
566  *
567  * This function is a no-op if PTE_MARKER_UFFD_WP is not enabled.
568  */
569 static inline void
570 pte_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr,
571 			      pte_t *pte, pte_t pteval)
572 {
573 #ifdef CONFIG_PTE_MARKER_UFFD_WP
574 	bool arm_uffd_pte = false;
575 
576 	/* The current status of the pte should be "cleared" before calling */
577 	WARN_ON_ONCE(!pte_none(ptep_get(pte)));
578 
579 	/*
580 	 * NOTE: userfaultfd_wp_unpopulated() doesn't need this whole
581 	 * thing, because when zapping either it means it's dropping the
582 	 * page, or in TTU where the present pte will be quickly replaced
583 	 * with a swap pte.  There's no way of leaking the bit.
584 	 */
585 	if (vma_is_anonymous(vma) || !userfaultfd_wp(vma))
586 		return;
587 
588 	/* A uffd-wp wr-protected normal pte */
589 	if (unlikely(pte_present(pteval) && pte_uffd_wp(pteval)))
590 		arm_uffd_pte = true;
591 
592 	/*
593 	 * A uffd-wp wr-protected swap pte.  Note: this should even cover an
594 	 * existing pte marker with uffd-wp bit set.
595 	 */
596 	if (unlikely(pte_swp_uffd_wp_any(pteval)))
597 		arm_uffd_pte = true;
598 
599 	if (unlikely(arm_uffd_pte))
600 		set_pte_at(vma->vm_mm, addr, pte,
601 			   make_pte_marker(PTE_MARKER_UFFD_WP));
602 #endif
603 }
604 
605 static inline bool vma_has_recency(struct vm_area_struct *vma)
606 {
607 	if (vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))
608 		return false;
609 
610 	if (vma->vm_file && (vma->vm_file->f_mode & FMODE_NOREUSE))
611 		return false;
612 
613 	return true;
614 }
615 
616 #endif
617