1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 /* VM is sealed, in vm_flags */ 411 #define VM_SEALED _BITUL(63) 412 #endif 413 414 /* Bits set in the VMA until the stack is in its final location */ 415 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 416 417 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 418 419 /* Common data flag combinations */ 420 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 421 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 422 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 423 VM_MAYWRITE | VM_MAYEXEC) 424 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 425 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 426 427 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 428 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 429 #endif 430 431 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 432 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 433 #endif 434 435 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 436 437 #ifdef CONFIG_STACK_GROWSUP 438 #define VM_STACK VM_GROWSUP 439 #define VM_STACK_EARLY VM_GROWSDOWN 440 #else 441 #define VM_STACK VM_GROWSDOWN 442 #define VM_STACK_EARLY 0 443 #endif 444 445 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 446 447 /* VMA basic access permission flags */ 448 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 449 450 451 /* 452 * Special vmas that are non-mergable, non-mlock()able. 453 */ 454 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 455 456 /* This mask prevents VMA from being scanned with khugepaged */ 457 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 458 459 /* This mask defines which mm->def_flags a process can inherit its parent */ 460 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 461 462 /* This mask represents all the VMA flag bits used by mlock */ 463 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 464 465 /* Arch-specific flags to clear when updating VM flags on protection change */ 466 #ifndef VM_ARCH_CLEAR 467 # define VM_ARCH_CLEAR VM_NONE 468 #endif 469 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 470 471 /* 472 * mapping from the currently active vm_flags protection bits (the 473 * low four bits) to a page protection mask.. 474 */ 475 476 /* 477 * The default fault flags that should be used by most of the 478 * arch-specific page fault handlers. 479 */ 480 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 481 FAULT_FLAG_KILLABLE | \ 482 FAULT_FLAG_INTERRUPTIBLE) 483 484 /** 485 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 486 * @flags: Fault flags. 487 * 488 * This is mostly used for places where we want to try to avoid taking 489 * the mmap_lock for too long a time when waiting for another condition 490 * to change, in which case we can try to be polite to release the 491 * mmap_lock in the first round to avoid potential starvation of other 492 * processes that would also want the mmap_lock. 493 * 494 * Return: true if the page fault allows retry and this is the first 495 * attempt of the fault handling; false otherwise. 496 */ 497 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 498 { 499 return (flags & FAULT_FLAG_ALLOW_RETRY) && 500 (!(flags & FAULT_FLAG_TRIED)); 501 } 502 503 #define FAULT_FLAG_TRACE \ 504 { FAULT_FLAG_WRITE, "WRITE" }, \ 505 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 506 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 507 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 508 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 509 { FAULT_FLAG_TRIED, "TRIED" }, \ 510 { FAULT_FLAG_USER, "USER" }, \ 511 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 512 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 513 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 514 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 515 516 /* 517 * vm_fault is filled by the pagefault handler and passed to the vma's 518 * ->fault function. The vma's ->fault is responsible for returning a bitmask 519 * of VM_FAULT_xxx flags that give details about how the fault was handled. 520 * 521 * MM layer fills up gfp_mask for page allocations but fault handler might 522 * alter it if its implementation requires a different allocation context. 523 * 524 * pgoff should be used in favour of virtual_address, if possible. 525 */ 526 struct vm_fault { 527 const struct { 528 struct vm_area_struct *vma; /* Target VMA */ 529 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 530 pgoff_t pgoff; /* Logical page offset based on vma */ 531 unsigned long address; /* Faulting virtual address - masked */ 532 unsigned long real_address; /* Faulting virtual address - unmasked */ 533 }; 534 enum fault_flag flags; /* FAULT_FLAG_xxx flags 535 * XXX: should really be 'const' */ 536 pmd_t *pmd; /* Pointer to pmd entry matching 537 * the 'address' */ 538 pud_t *pud; /* Pointer to pud entry matching 539 * the 'address' 540 */ 541 union { 542 pte_t orig_pte; /* Value of PTE at the time of fault */ 543 pmd_t orig_pmd; /* Value of PMD at the time of fault, 544 * used by PMD fault only. 545 */ 546 }; 547 548 struct page *cow_page; /* Page handler may use for COW fault */ 549 struct page *page; /* ->fault handlers should return a 550 * page here, unless VM_FAULT_NOPAGE 551 * is set (which is also implied by 552 * VM_FAULT_ERROR). 553 */ 554 /* These three entries are valid only while holding ptl lock */ 555 pte_t *pte; /* Pointer to pte entry matching 556 * the 'address'. NULL if the page 557 * table hasn't been allocated. 558 */ 559 spinlock_t *ptl; /* Page table lock. 560 * Protects pte page table if 'pte' 561 * is not NULL, otherwise pmd. 562 */ 563 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 564 * vm_ops->map_pages() sets up a page 565 * table from atomic context. 566 * do_fault_around() pre-allocates 567 * page table to avoid allocation from 568 * atomic context. 569 */ 570 }; 571 572 /* 573 * These are the virtual MM functions - opening of an area, closing and 574 * unmapping it (needed to keep files on disk up-to-date etc), pointer 575 * to the functions called when a no-page or a wp-page exception occurs. 576 */ 577 struct vm_operations_struct { 578 void (*open)(struct vm_area_struct * area); 579 /** 580 * @close: Called when the VMA is being removed from the MM. 581 * Context: User context. May sleep. Caller holds mmap_lock. 582 */ 583 void (*close)(struct vm_area_struct * area); 584 /* Called any time before splitting to check if it's allowed */ 585 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 586 int (*mremap)(struct vm_area_struct *area); 587 /* 588 * Called by mprotect() to make driver-specific permission 589 * checks before mprotect() is finalised. The VMA must not 590 * be modified. Returns 0 if mprotect() can proceed. 591 */ 592 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 593 unsigned long end, unsigned long newflags); 594 vm_fault_t (*fault)(struct vm_fault *vmf); 595 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 596 vm_fault_t (*map_pages)(struct vm_fault *vmf, 597 pgoff_t start_pgoff, pgoff_t end_pgoff); 598 unsigned long (*pagesize)(struct vm_area_struct * area); 599 600 /* notification that a previously read-only page is about to become 601 * writable, if an error is returned it will cause a SIGBUS */ 602 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 603 604 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 605 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 606 607 /* called by access_process_vm when get_user_pages() fails, typically 608 * for use by special VMAs. See also generic_access_phys() for a generic 609 * implementation useful for any iomem mapping. 610 */ 611 int (*access)(struct vm_area_struct *vma, unsigned long addr, 612 void *buf, int len, int write); 613 614 /* Called by the /proc/PID/maps code to ask the vma whether it 615 * has a special name. Returning non-NULL will also cause this 616 * vma to be dumped unconditionally. */ 617 const char *(*name)(struct vm_area_struct *vma); 618 619 #ifdef CONFIG_NUMA 620 /* 621 * set_policy() op must add a reference to any non-NULL @new mempolicy 622 * to hold the policy upon return. Caller should pass NULL @new to 623 * remove a policy and fall back to surrounding context--i.e. do not 624 * install a MPOL_DEFAULT policy, nor the task or system default 625 * mempolicy. 626 */ 627 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 628 629 /* 630 * get_policy() op must add reference [mpol_get()] to any policy at 631 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 632 * in mm/mempolicy.c will do this automatically. 633 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 634 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 635 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 636 * must return NULL--i.e., do not "fallback" to task or system default 637 * policy. 638 */ 639 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 640 unsigned long addr, pgoff_t *ilx); 641 #endif 642 /* 643 * Called by vm_normal_page() for special PTEs to find the 644 * page for @addr. This is useful if the default behavior 645 * (using pte_page()) would not find the correct page. 646 */ 647 struct page *(*find_special_page)(struct vm_area_struct *vma, 648 unsigned long addr); 649 }; 650 651 #ifdef CONFIG_NUMA_BALANCING 652 static inline void vma_numab_state_init(struct vm_area_struct *vma) 653 { 654 vma->numab_state = NULL; 655 } 656 static inline void vma_numab_state_free(struct vm_area_struct *vma) 657 { 658 kfree(vma->numab_state); 659 } 660 #else 661 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 662 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 663 #endif /* CONFIG_NUMA_BALANCING */ 664 665 #ifdef CONFIG_PER_VMA_LOCK 666 /* 667 * Try to read-lock a vma. The function is allowed to occasionally yield false 668 * locked result to avoid performance overhead, in which case we fall back to 669 * using mmap_lock. The function should never yield false unlocked result. 670 */ 671 static inline bool vma_start_read(struct vm_area_struct *vma) 672 { 673 /* 674 * Check before locking. A race might cause false locked result. 675 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 676 * ACQUIRE semantics, because this is just a lockless check whose result 677 * we don't rely on for anything - the mm_lock_seq read against which we 678 * need ordering is below. 679 */ 680 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 681 return false; 682 683 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 684 return false; 685 686 /* 687 * Overflow might produce false locked result. 688 * False unlocked result is impossible because we modify and check 689 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 690 * modification invalidates all existing locks. 691 * 692 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 693 * racing with vma_end_write_all(), we only start reading from the VMA 694 * after it has been unlocked. 695 * This pairs with RELEASE semantics in vma_end_write_all(). 696 */ 697 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 698 up_read(&vma->vm_lock->lock); 699 return false; 700 } 701 return true; 702 } 703 704 static inline void vma_end_read(struct vm_area_struct *vma) 705 { 706 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 707 up_read(&vma->vm_lock->lock); 708 rcu_read_unlock(); 709 } 710 711 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 712 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 713 { 714 mmap_assert_write_locked(vma->vm_mm); 715 716 /* 717 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 718 * mm->mm_lock_seq can't be concurrently modified. 719 */ 720 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 721 return (vma->vm_lock_seq == *mm_lock_seq); 722 } 723 724 /* 725 * Begin writing to a VMA. 726 * Exclude concurrent readers under the per-VMA lock until the currently 727 * write-locked mmap_lock is dropped or downgraded. 728 */ 729 static inline void vma_start_write(struct vm_area_struct *vma) 730 { 731 int mm_lock_seq; 732 733 if (__is_vma_write_locked(vma, &mm_lock_seq)) 734 return; 735 736 down_write(&vma->vm_lock->lock); 737 /* 738 * We should use WRITE_ONCE() here because we can have concurrent reads 739 * from the early lockless pessimistic check in vma_start_read(). 740 * We don't really care about the correctness of that early check, but 741 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 742 */ 743 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 744 up_write(&vma->vm_lock->lock); 745 } 746 747 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 748 { 749 int mm_lock_seq; 750 751 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 752 } 753 754 static inline void vma_assert_locked(struct vm_area_struct *vma) 755 { 756 if (!rwsem_is_locked(&vma->vm_lock->lock)) 757 vma_assert_write_locked(vma); 758 } 759 760 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 761 { 762 /* When detaching vma should be write-locked */ 763 if (detached) 764 vma_assert_write_locked(vma); 765 vma->detached = detached; 766 } 767 768 static inline void release_fault_lock(struct vm_fault *vmf) 769 { 770 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 771 vma_end_read(vmf->vma); 772 else 773 mmap_read_unlock(vmf->vma->vm_mm); 774 } 775 776 static inline void assert_fault_locked(struct vm_fault *vmf) 777 { 778 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 779 vma_assert_locked(vmf->vma); 780 else 781 mmap_assert_locked(vmf->vma->vm_mm); 782 } 783 784 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 785 unsigned long address); 786 787 #else /* CONFIG_PER_VMA_LOCK */ 788 789 static inline bool vma_start_read(struct vm_area_struct *vma) 790 { return false; } 791 static inline void vma_end_read(struct vm_area_struct *vma) {} 792 static inline void vma_start_write(struct vm_area_struct *vma) {} 793 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 794 { mmap_assert_write_locked(vma->vm_mm); } 795 static inline void vma_mark_detached(struct vm_area_struct *vma, 796 bool detached) {} 797 798 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 799 unsigned long address) 800 { 801 return NULL; 802 } 803 804 static inline void vma_assert_locked(struct vm_area_struct *vma) 805 { 806 mmap_assert_locked(vma->vm_mm); 807 } 808 809 static inline void release_fault_lock(struct vm_fault *vmf) 810 { 811 mmap_read_unlock(vmf->vma->vm_mm); 812 } 813 814 static inline void assert_fault_locked(struct vm_fault *vmf) 815 { 816 mmap_assert_locked(vmf->vma->vm_mm); 817 } 818 819 #endif /* CONFIG_PER_VMA_LOCK */ 820 821 extern const struct vm_operations_struct vma_dummy_vm_ops; 822 823 /* 824 * WARNING: vma_init does not initialize vma->vm_lock. 825 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 826 */ 827 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 828 { 829 memset(vma, 0, sizeof(*vma)); 830 vma->vm_mm = mm; 831 vma->vm_ops = &vma_dummy_vm_ops; 832 INIT_LIST_HEAD(&vma->anon_vma_chain); 833 vma_mark_detached(vma, false); 834 vma_numab_state_init(vma); 835 } 836 837 /* Use when VMA is not part of the VMA tree and needs no locking */ 838 static inline void vm_flags_init(struct vm_area_struct *vma, 839 vm_flags_t flags) 840 { 841 ACCESS_PRIVATE(vma, __vm_flags) = flags; 842 } 843 844 /* 845 * Use when VMA is part of the VMA tree and modifications need coordination 846 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 847 * it should be locked explicitly beforehand. 848 */ 849 static inline void vm_flags_reset(struct vm_area_struct *vma, 850 vm_flags_t flags) 851 { 852 vma_assert_write_locked(vma); 853 vm_flags_init(vma, flags); 854 } 855 856 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 857 vm_flags_t flags) 858 { 859 vma_assert_write_locked(vma); 860 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 861 } 862 863 static inline void vm_flags_set(struct vm_area_struct *vma, 864 vm_flags_t flags) 865 { 866 vma_start_write(vma); 867 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 868 } 869 870 static inline void vm_flags_clear(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_start_write(vma); 874 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 875 } 876 877 /* 878 * Use only if VMA is not part of the VMA tree or has no other users and 879 * therefore needs no locking. 880 */ 881 static inline void __vm_flags_mod(struct vm_area_struct *vma, 882 vm_flags_t set, vm_flags_t clear) 883 { 884 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 885 } 886 887 /* 888 * Use only when the order of set/clear operations is unimportant, otherwise 889 * use vm_flags_{set|clear} explicitly. 890 */ 891 static inline void vm_flags_mod(struct vm_area_struct *vma, 892 vm_flags_t set, vm_flags_t clear) 893 { 894 vma_start_write(vma); 895 __vm_flags_mod(vma, set, clear); 896 } 897 898 static inline void vma_set_anonymous(struct vm_area_struct *vma) 899 { 900 vma->vm_ops = NULL; 901 } 902 903 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 904 { 905 return !vma->vm_ops; 906 } 907 908 /* 909 * Indicate if the VMA is a heap for the given task; for 910 * /proc/PID/maps that is the heap of the main task. 911 */ 912 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 913 { 914 return vma->vm_start < vma->vm_mm->brk && 915 vma->vm_end > vma->vm_mm->start_brk; 916 } 917 918 /* 919 * Indicate if the VMA is a stack for the given task; for 920 * /proc/PID/maps that is the stack of the main task. 921 */ 922 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 923 { 924 /* 925 * We make no effort to guess what a given thread considers to be 926 * its "stack". It's not even well-defined for programs written 927 * languages like Go. 928 */ 929 return vma->vm_start <= vma->vm_mm->start_stack && 930 vma->vm_end >= vma->vm_mm->start_stack; 931 } 932 933 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 934 { 935 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 936 937 if (!maybe_stack) 938 return false; 939 940 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 941 VM_STACK_INCOMPLETE_SETUP) 942 return true; 943 944 return false; 945 } 946 947 static inline bool vma_is_foreign(struct vm_area_struct *vma) 948 { 949 if (!current->mm) 950 return true; 951 952 if (current->mm != vma->vm_mm) 953 return true; 954 955 return false; 956 } 957 958 static inline bool vma_is_accessible(struct vm_area_struct *vma) 959 { 960 return vma->vm_flags & VM_ACCESS_FLAGS; 961 } 962 963 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 964 { 965 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 966 (VM_SHARED | VM_MAYWRITE); 967 } 968 969 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 970 { 971 return is_shared_maywrite(vma->vm_flags); 972 } 973 974 static inline 975 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 976 { 977 return mas_find(&vmi->mas, max - 1); 978 } 979 980 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 981 { 982 /* 983 * Uses mas_find() to get the first VMA when the iterator starts. 984 * Calling mas_next() could skip the first entry. 985 */ 986 return mas_find(&vmi->mas, ULONG_MAX); 987 } 988 989 static inline 990 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 991 { 992 return mas_next_range(&vmi->mas, ULONG_MAX); 993 } 994 995 996 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 997 { 998 return mas_prev(&vmi->mas, 0); 999 } 1000 1001 static inline 1002 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 1003 { 1004 return mas_prev_range(&vmi->mas, 0); 1005 } 1006 1007 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1008 { 1009 return vmi->mas.index; 1010 } 1011 1012 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1013 { 1014 return vmi->mas.last + 1; 1015 } 1016 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1017 unsigned long count) 1018 { 1019 return mas_expected_entries(&vmi->mas, count); 1020 } 1021 1022 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1023 unsigned long start, unsigned long end, gfp_t gfp) 1024 { 1025 __mas_set_range(&vmi->mas, start, end - 1); 1026 mas_store_gfp(&vmi->mas, NULL, gfp); 1027 if (unlikely(mas_is_err(&vmi->mas))) 1028 return -ENOMEM; 1029 1030 return 0; 1031 } 1032 1033 /* Free any unused preallocations */ 1034 static inline void vma_iter_free(struct vma_iterator *vmi) 1035 { 1036 mas_destroy(&vmi->mas); 1037 } 1038 1039 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1040 struct vm_area_struct *vma) 1041 { 1042 vmi->mas.index = vma->vm_start; 1043 vmi->mas.last = vma->vm_end - 1; 1044 mas_store(&vmi->mas, vma); 1045 if (unlikely(mas_is_err(&vmi->mas))) 1046 return -ENOMEM; 1047 1048 return 0; 1049 } 1050 1051 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1052 { 1053 mas_pause(&vmi->mas); 1054 } 1055 1056 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1057 { 1058 mas_set(&vmi->mas, addr); 1059 } 1060 1061 #define for_each_vma(__vmi, __vma) \ 1062 while (((__vma) = vma_next(&(__vmi))) != NULL) 1063 1064 /* The MM code likes to work with exclusive end addresses */ 1065 #define for_each_vma_range(__vmi, __vma, __end) \ 1066 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1067 1068 #ifdef CONFIG_SHMEM 1069 /* 1070 * The vma_is_shmem is not inline because it is used only by slow 1071 * paths in userfault. 1072 */ 1073 bool vma_is_shmem(struct vm_area_struct *vma); 1074 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1075 #else 1076 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1077 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1078 #endif 1079 1080 int vma_is_stack_for_current(struct vm_area_struct *vma); 1081 1082 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1083 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1084 1085 struct mmu_gather; 1086 struct inode; 1087 1088 /* 1089 * compound_order() can be called without holding a reference, which means 1090 * that niceties like page_folio() don't work. These callers should be 1091 * prepared to handle wild return values. For example, PG_head may be 1092 * set before the order is initialised, or this may be a tail page. 1093 * See compaction.c for some good examples. 1094 */ 1095 static inline unsigned int compound_order(struct page *page) 1096 { 1097 struct folio *folio = (struct folio *)page; 1098 1099 if (!test_bit(PG_head, &folio->flags)) 1100 return 0; 1101 return folio->_flags_1 & 0xff; 1102 } 1103 1104 /** 1105 * folio_order - The allocation order of a folio. 1106 * @folio: The folio. 1107 * 1108 * A folio is composed of 2^order pages. See get_order() for the definition 1109 * of order. 1110 * 1111 * Return: The order of the folio. 1112 */ 1113 static inline unsigned int folio_order(struct folio *folio) 1114 { 1115 if (!folio_test_large(folio)) 1116 return 0; 1117 return folio->_flags_1 & 0xff; 1118 } 1119 1120 #include <linux/huge_mm.h> 1121 1122 /* 1123 * Methods to modify the page usage count. 1124 * 1125 * What counts for a page usage: 1126 * - cache mapping (page->mapping) 1127 * - private data (page->private) 1128 * - page mapped in a task's page tables, each mapping 1129 * is counted separately 1130 * 1131 * Also, many kernel routines increase the page count before a critical 1132 * routine so they can be sure the page doesn't go away from under them. 1133 */ 1134 1135 /* 1136 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1137 */ 1138 static inline int put_page_testzero(struct page *page) 1139 { 1140 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1141 return page_ref_dec_and_test(page); 1142 } 1143 1144 static inline int folio_put_testzero(struct folio *folio) 1145 { 1146 return put_page_testzero(&folio->page); 1147 } 1148 1149 /* 1150 * Try to grab a ref unless the page has a refcount of zero, return false if 1151 * that is the case. 1152 * This can be called when MMU is off so it must not access 1153 * any of the virtual mappings. 1154 */ 1155 static inline bool get_page_unless_zero(struct page *page) 1156 { 1157 return page_ref_add_unless(page, 1, 0); 1158 } 1159 1160 static inline struct folio *folio_get_nontail_page(struct page *page) 1161 { 1162 if (unlikely(!get_page_unless_zero(page))) 1163 return NULL; 1164 return (struct folio *)page; 1165 } 1166 1167 extern int page_is_ram(unsigned long pfn); 1168 1169 enum { 1170 REGION_INTERSECTS, 1171 REGION_DISJOINT, 1172 REGION_MIXED, 1173 }; 1174 1175 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1176 unsigned long desc); 1177 1178 /* Support for virtually mapped pages */ 1179 struct page *vmalloc_to_page(const void *addr); 1180 unsigned long vmalloc_to_pfn(const void *addr); 1181 1182 /* 1183 * Determine if an address is within the vmalloc range 1184 * 1185 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1186 * is no special casing required. 1187 */ 1188 #ifdef CONFIG_MMU 1189 extern bool is_vmalloc_addr(const void *x); 1190 extern int is_vmalloc_or_module_addr(const void *x); 1191 #else 1192 static inline bool is_vmalloc_addr(const void *x) 1193 { 1194 return false; 1195 } 1196 static inline int is_vmalloc_or_module_addr(const void *x) 1197 { 1198 return 0; 1199 } 1200 #endif 1201 1202 /* 1203 * How many times the entire folio is mapped as a single unit (eg by a 1204 * PMD or PUD entry). This is probably not what you want, except for 1205 * debugging purposes - it does not include PTE-mapped sub-pages; look 1206 * at folio_mapcount() or page_mapcount() instead. 1207 */ 1208 static inline int folio_entire_mapcount(const struct folio *folio) 1209 { 1210 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1211 return atomic_read(&folio->_entire_mapcount) + 1; 1212 } 1213 1214 /* 1215 * The atomic page->_mapcount, starts from -1: so that transitions 1216 * both from it and to it can be tracked, using atomic_inc_and_test 1217 * and atomic_add_negative(-1). 1218 */ 1219 static inline void page_mapcount_reset(struct page *page) 1220 { 1221 atomic_set(&(page)->_mapcount, -1); 1222 } 1223 1224 /** 1225 * page_mapcount() - Number of times this precise page is mapped. 1226 * @page: The page. 1227 * 1228 * The number of times this page is mapped. If this page is part of 1229 * a large folio, it includes the number of times this page is mapped 1230 * as part of that folio. 1231 * 1232 * Will report 0 for pages which cannot be mapped into userspace, eg 1233 * slab, page tables and similar. 1234 */ 1235 static inline int page_mapcount(struct page *page) 1236 { 1237 int mapcount = atomic_read(&page->_mapcount) + 1; 1238 1239 /* Handle page_has_type() pages */ 1240 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1241 mapcount = 0; 1242 if (unlikely(PageCompound(page))) 1243 mapcount += folio_entire_mapcount(page_folio(page)); 1244 1245 return mapcount; 1246 } 1247 1248 static inline int folio_large_mapcount(const struct folio *folio) 1249 { 1250 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1251 return atomic_read(&folio->_large_mapcount) + 1; 1252 } 1253 1254 /** 1255 * folio_mapcount() - Number of mappings of this folio. 1256 * @folio: The folio. 1257 * 1258 * The folio mapcount corresponds to the number of present user page table 1259 * entries that reference any part of a folio. Each such present user page 1260 * table entry must be paired with exactly on folio reference. 1261 * 1262 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1263 * exactly once. 1264 * 1265 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1266 * references the entire folio counts exactly once, even when such special 1267 * page table entries are comprised of multiple ordinary page table entries. 1268 * 1269 * Will report 0 for pages which cannot be mapped into userspace, such as 1270 * slab, page tables and similar. 1271 * 1272 * Return: The number of times this folio is mapped. 1273 */ 1274 static inline int folio_mapcount(const struct folio *folio) 1275 { 1276 int mapcount; 1277 1278 if (likely(!folio_test_large(folio))) { 1279 mapcount = atomic_read(&folio->_mapcount) + 1; 1280 /* Handle page_has_type() pages */ 1281 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1282 mapcount = 0; 1283 return mapcount; 1284 } 1285 return folio_large_mapcount(folio); 1286 } 1287 1288 /** 1289 * folio_mapped - Is this folio mapped into userspace? 1290 * @folio: The folio. 1291 * 1292 * Return: True if any page in this folio is referenced by user page tables. 1293 */ 1294 static inline bool folio_mapped(const struct folio *folio) 1295 { 1296 return folio_mapcount(folio) >= 1; 1297 } 1298 1299 /* 1300 * Return true if this page is mapped into pagetables. 1301 * For compound page it returns true if any sub-page of compound page is mapped, 1302 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1303 */ 1304 static inline bool page_mapped(const struct page *page) 1305 { 1306 return folio_mapped(page_folio(page)); 1307 } 1308 1309 static inline struct page *virt_to_head_page(const void *x) 1310 { 1311 struct page *page = virt_to_page(x); 1312 1313 return compound_head(page); 1314 } 1315 1316 static inline struct folio *virt_to_folio(const void *x) 1317 { 1318 struct page *page = virt_to_page(x); 1319 1320 return page_folio(page); 1321 } 1322 1323 void __folio_put(struct folio *folio); 1324 1325 void put_pages_list(struct list_head *pages); 1326 1327 void split_page(struct page *page, unsigned int order); 1328 void folio_copy(struct folio *dst, struct folio *src); 1329 1330 unsigned long nr_free_buffer_pages(void); 1331 1332 /* Returns the number of bytes in this potentially compound page. */ 1333 static inline unsigned long page_size(struct page *page) 1334 { 1335 return PAGE_SIZE << compound_order(page); 1336 } 1337 1338 /* Returns the number of bits needed for the number of bytes in a page */ 1339 static inline unsigned int page_shift(struct page *page) 1340 { 1341 return PAGE_SHIFT + compound_order(page); 1342 } 1343 1344 /** 1345 * thp_order - Order of a transparent huge page. 1346 * @page: Head page of a transparent huge page. 1347 */ 1348 static inline unsigned int thp_order(struct page *page) 1349 { 1350 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1351 return compound_order(page); 1352 } 1353 1354 /** 1355 * thp_size - Size of a transparent huge page. 1356 * @page: Head page of a transparent huge page. 1357 * 1358 * Return: Number of bytes in this page. 1359 */ 1360 static inline unsigned long thp_size(struct page *page) 1361 { 1362 return PAGE_SIZE << thp_order(page); 1363 } 1364 1365 #ifdef CONFIG_MMU 1366 /* 1367 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1368 * servicing faults for write access. In the normal case, do always want 1369 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1370 * that do not have writing enabled, when used by access_process_vm. 1371 */ 1372 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1373 { 1374 if (likely(vma->vm_flags & VM_WRITE)) 1375 pte = pte_mkwrite(pte, vma); 1376 return pte; 1377 } 1378 1379 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1380 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1381 struct page *page, unsigned int nr, unsigned long addr); 1382 1383 vm_fault_t finish_fault(struct vm_fault *vmf); 1384 #endif 1385 1386 /* 1387 * Multiple processes may "see" the same page. E.g. for untouched 1388 * mappings of /dev/null, all processes see the same page full of 1389 * zeroes, and text pages of executables and shared libraries have 1390 * only one copy in memory, at most, normally. 1391 * 1392 * For the non-reserved pages, page_count(page) denotes a reference count. 1393 * page_count() == 0 means the page is free. page->lru is then used for 1394 * freelist management in the buddy allocator. 1395 * page_count() > 0 means the page has been allocated. 1396 * 1397 * Pages are allocated by the slab allocator in order to provide memory 1398 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1399 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1400 * unless a particular usage is carefully commented. (the responsibility of 1401 * freeing the kmalloc memory is the caller's, of course). 1402 * 1403 * A page may be used by anyone else who does a __get_free_page(). 1404 * In this case, page_count still tracks the references, and should only 1405 * be used through the normal accessor functions. The top bits of page->flags 1406 * and page->virtual store page management information, but all other fields 1407 * are unused and could be used privately, carefully. The management of this 1408 * page is the responsibility of the one who allocated it, and those who have 1409 * subsequently been given references to it. 1410 * 1411 * The other pages (we may call them "pagecache pages") are completely 1412 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1413 * The following discussion applies only to them. 1414 * 1415 * A pagecache page contains an opaque `private' member, which belongs to the 1416 * page's address_space. Usually, this is the address of a circular list of 1417 * the page's disk buffers. PG_private must be set to tell the VM to call 1418 * into the filesystem to release these pages. 1419 * 1420 * A page may belong to an inode's memory mapping. In this case, page->mapping 1421 * is the pointer to the inode, and page->index is the file offset of the page, 1422 * in units of PAGE_SIZE. 1423 * 1424 * If pagecache pages are not associated with an inode, they are said to be 1425 * anonymous pages. These may become associated with the swapcache, and in that 1426 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1427 * 1428 * In either case (swapcache or inode backed), the pagecache itself holds one 1429 * reference to the page. Setting PG_private should also increment the 1430 * refcount. The each user mapping also has a reference to the page. 1431 * 1432 * The pagecache pages are stored in a per-mapping radix tree, which is 1433 * rooted at mapping->i_pages, and indexed by offset. 1434 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1435 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1436 * 1437 * All pagecache pages may be subject to I/O: 1438 * - inode pages may need to be read from disk, 1439 * - inode pages which have been modified and are MAP_SHARED may need 1440 * to be written back to the inode on disk, 1441 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1442 * modified may need to be swapped out to swap space and (later) to be read 1443 * back into memory. 1444 */ 1445 1446 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1447 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1448 1449 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1450 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1451 { 1452 if (!static_branch_unlikely(&devmap_managed_key)) 1453 return false; 1454 if (!folio_is_zone_device(folio)) 1455 return false; 1456 return __put_devmap_managed_folio_refs(folio, refs); 1457 } 1458 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1459 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1460 { 1461 return false; 1462 } 1463 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1464 1465 /* 127: arbitrary random number, small enough to assemble well */ 1466 #define folio_ref_zero_or_close_to_overflow(folio) \ 1467 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1468 1469 /** 1470 * folio_get - Increment the reference count on a folio. 1471 * @folio: The folio. 1472 * 1473 * Context: May be called in any context, as long as you know that 1474 * you have a refcount on the folio. If you do not already have one, 1475 * folio_try_get() may be the right interface for you to use. 1476 */ 1477 static inline void folio_get(struct folio *folio) 1478 { 1479 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1480 folio_ref_inc(folio); 1481 } 1482 1483 static inline void get_page(struct page *page) 1484 { 1485 folio_get(page_folio(page)); 1486 } 1487 1488 static inline __must_check bool try_get_page(struct page *page) 1489 { 1490 page = compound_head(page); 1491 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1492 return false; 1493 page_ref_inc(page); 1494 return true; 1495 } 1496 1497 /** 1498 * folio_put - Decrement the reference count on a folio. 1499 * @folio: The folio. 1500 * 1501 * If the folio's reference count reaches zero, the memory will be 1502 * released back to the page allocator and may be used by another 1503 * allocation immediately. Do not access the memory or the struct folio 1504 * after calling folio_put() unless you can be sure that it wasn't the 1505 * last reference. 1506 * 1507 * Context: May be called in process or interrupt context, but not in NMI 1508 * context. May be called while holding a spinlock. 1509 */ 1510 static inline void folio_put(struct folio *folio) 1511 { 1512 if (folio_put_testzero(folio)) 1513 __folio_put(folio); 1514 } 1515 1516 /** 1517 * folio_put_refs - Reduce the reference count on a folio. 1518 * @folio: The folio. 1519 * @refs: The amount to subtract from the folio's reference count. 1520 * 1521 * If the folio's reference count reaches zero, the memory will be 1522 * released back to the page allocator and may be used by another 1523 * allocation immediately. Do not access the memory or the struct folio 1524 * after calling folio_put_refs() unless you can be sure that these weren't 1525 * the last references. 1526 * 1527 * Context: May be called in process or interrupt context, but not in NMI 1528 * context. May be called while holding a spinlock. 1529 */ 1530 static inline void folio_put_refs(struct folio *folio, int refs) 1531 { 1532 if (folio_ref_sub_and_test(folio, refs)) 1533 __folio_put(folio); 1534 } 1535 1536 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1537 1538 /* 1539 * union release_pages_arg - an array of pages or folios 1540 * 1541 * release_pages() releases a simple array of multiple pages, and 1542 * accepts various different forms of said page array: either 1543 * a regular old boring array of pages, an array of folios, or 1544 * an array of encoded page pointers. 1545 * 1546 * The transparent union syntax for this kind of "any of these 1547 * argument types" is all kinds of ugly, so look away. 1548 */ 1549 typedef union { 1550 struct page **pages; 1551 struct folio **folios; 1552 struct encoded_page **encoded_pages; 1553 } release_pages_arg __attribute__ ((__transparent_union__)); 1554 1555 void release_pages(release_pages_arg, int nr); 1556 1557 /** 1558 * folios_put - Decrement the reference count on an array of folios. 1559 * @folios: The folios. 1560 * 1561 * Like folio_put(), but for a batch of folios. This is more efficient 1562 * than writing the loop yourself as it will optimise the locks which need 1563 * to be taken if the folios are freed. The folios batch is returned 1564 * empty and ready to be reused for another batch; there is no need to 1565 * reinitialise it. 1566 * 1567 * Context: May be called in process or interrupt context, but not in NMI 1568 * context. May be called while holding a spinlock. 1569 */ 1570 static inline void folios_put(struct folio_batch *folios) 1571 { 1572 folios_put_refs(folios, NULL); 1573 } 1574 1575 static inline void put_page(struct page *page) 1576 { 1577 struct folio *folio = page_folio(page); 1578 1579 /* 1580 * For some devmap managed pages we need to catch refcount transition 1581 * from 2 to 1: 1582 */ 1583 if (put_devmap_managed_folio_refs(folio, 1)) 1584 return; 1585 folio_put(folio); 1586 } 1587 1588 /* 1589 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1590 * the page's refcount so that two separate items are tracked: the original page 1591 * reference count, and also a new count of how many pin_user_pages() calls were 1592 * made against the page. ("gup-pinned" is another term for the latter). 1593 * 1594 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1595 * distinct from normal pages. As such, the unpin_user_page() call (and its 1596 * variants) must be used in order to release gup-pinned pages. 1597 * 1598 * Choice of value: 1599 * 1600 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1601 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1602 * simpler, due to the fact that adding an even power of two to the page 1603 * refcount has the effect of using only the upper N bits, for the code that 1604 * counts up using the bias value. This means that the lower bits are left for 1605 * the exclusive use of the original code that increments and decrements by one 1606 * (or at least, by much smaller values than the bias value). 1607 * 1608 * Of course, once the lower bits overflow into the upper bits (and this is 1609 * OK, because subtraction recovers the original values), then visual inspection 1610 * no longer suffices to directly view the separate counts. However, for normal 1611 * applications that don't have huge page reference counts, this won't be an 1612 * issue. 1613 * 1614 * Locking: the lockless algorithm described in folio_try_get_rcu() 1615 * provides safe operation for get_user_pages(), page_mkclean() and 1616 * other calls that race to set up page table entries. 1617 */ 1618 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1619 1620 void unpin_user_page(struct page *page); 1621 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1622 bool make_dirty); 1623 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1624 bool make_dirty); 1625 void unpin_user_pages(struct page **pages, unsigned long npages); 1626 1627 static inline bool is_cow_mapping(vm_flags_t flags) 1628 { 1629 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1630 } 1631 1632 #ifndef CONFIG_MMU 1633 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1634 { 1635 /* 1636 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1637 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1638 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1639 * underlying memory if ptrace is active, so this is only possible if 1640 * ptrace does not apply. Note that there is no mprotect() to upgrade 1641 * write permissions later. 1642 */ 1643 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1644 } 1645 #endif 1646 1647 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1648 #define SECTION_IN_PAGE_FLAGS 1649 #endif 1650 1651 /* 1652 * The identification function is mainly used by the buddy allocator for 1653 * determining if two pages could be buddies. We are not really identifying 1654 * the zone since we could be using the section number id if we do not have 1655 * node id available in page flags. 1656 * We only guarantee that it will return the same value for two combinable 1657 * pages in a zone. 1658 */ 1659 static inline int page_zone_id(struct page *page) 1660 { 1661 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1662 } 1663 1664 #ifdef NODE_NOT_IN_PAGE_FLAGS 1665 int page_to_nid(const struct page *page); 1666 #else 1667 static inline int page_to_nid(const struct page *page) 1668 { 1669 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1670 } 1671 #endif 1672 1673 static inline int folio_nid(const struct folio *folio) 1674 { 1675 return page_to_nid(&folio->page); 1676 } 1677 1678 #ifdef CONFIG_NUMA_BALANCING 1679 /* page access time bits needs to hold at least 4 seconds */ 1680 #define PAGE_ACCESS_TIME_MIN_BITS 12 1681 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1682 #define PAGE_ACCESS_TIME_BUCKETS \ 1683 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1684 #else 1685 #define PAGE_ACCESS_TIME_BUCKETS 0 1686 #endif 1687 1688 #define PAGE_ACCESS_TIME_MASK \ 1689 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1690 1691 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1692 { 1693 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1694 } 1695 1696 static inline int cpupid_to_pid(int cpupid) 1697 { 1698 return cpupid & LAST__PID_MASK; 1699 } 1700 1701 static inline int cpupid_to_cpu(int cpupid) 1702 { 1703 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1704 } 1705 1706 static inline int cpupid_to_nid(int cpupid) 1707 { 1708 return cpu_to_node(cpupid_to_cpu(cpupid)); 1709 } 1710 1711 static inline bool cpupid_pid_unset(int cpupid) 1712 { 1713 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1714 } 1715 1716 static inline bool cpupid_cpu_unset(int cpupid) 1717 { 1718 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1719 } 1720 1721 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1722 { 1723 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1724 } 1725 1726 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1727 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1728 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1729 { 1730 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1731 } 1732 1733 static inline int folio_last_cpupid(struct folio *folio) 1734 { 1735 return folio->_last_cpupid; 1736 } 1737 static inline void page_cpupid_reset_last(struct page *page) 1738 { 1739 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1740 } 1741 #else 1742 static inline int folio_last_cpupid(struct folio *folio) 1743 { 1744 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1745 } 1746 1747 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1748 1749 static inline void page_cpupid_reset_last(struct page *page) 1750 { 1751 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1752 } 1753 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1754 1755 static inline int folio_xchg_access_time(struct folio *folio, int time) 1756 { 1757 int last_time; 1758 1759 last_time = folio_xchg_last_cpupid(folio, 1760 time >> PAGE_ACCESS_TIME_BUCKETS); 1761 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1762 } 1763 1764 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1765 { 1766 unsigned int pid_bit; 1767 1768 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1769 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1770 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1771 } 1772 } 1773 #else /* !CONFIG_NUMA_BALANCING */ 1774 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1775 { 1776 return folio_nid(folio); /* XXX */ 1777 } 1778 1779 static inline int folio_xchg_access_time(struct folio *folio, int time) 1780 { 1781 return 0; 1782 } 1783 1784 static inline int folio_last_cpupid(struct folio *folio) 1785 { 1786 return folio_nid(folio); /* XXX */ 1787 } 1788 1789 static inline int cpupid_to_nid(int cpupid) 1790 { 1791 return -1; 1792 } 1793 1794 static inline int cpupid_to_pid(int cpupid) 1795 { 1796 return -1; 1797 } 1798 1799 static inline int cpupid_to_cpu(int cpupid) 1800 { 1801 return -1; 1802 } 1803 1804 static inline int cpu_pid_to_cpupid(int nid, int pid) 1805 { 1806 return -1; 1807 } 1808 1809 static inline bool cpupid_pid_unset(int cpupid) 1810 { 1811 return true; 1812 } 1813 1814 static inline void page_cpupid_reset_last(struct page *page) 1815 { 1816 } 1817 1818 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1819 { 1820 return false; 1821 } 1822 1823 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1824 { 1825 } 1826 #endif /* CONFIG_NUMA_BALANCING */ 1827 1828 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1829 1830 /* 1831 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1832 * setting tags for all pages to native kernel tag value 0xff, as the default 1833 * value 0x00 maps to 0xff. 1834 */ 1835 1836 static inline u8 page_kasan_tag(const struct page *page) 1837 { 1838 u8 tag = KASAN_TAG_KERNEL; 1839 1840 if (kasan_enabled()) { 1841 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1842 tag ^= 0xff; 1843 } 1844 1845 return tag; 1846 } 1847 1848 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1849 { 1850 unsigned long old_flags, flags; 1851 1852 if (!kasan_enabled()) 1853 return; 1854 1855 tag ^= 0xff; 1856 old_flags = READ_ONCE(page->flags); 1857 do { 1858 flags = old_flags; 1859 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1860 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1861 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1862 } 1863 1864 static inline void page_kasan_tag_reset(struct page *page) 1865 { 1866 if (kasan_enabled()) 1867 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1868 } 1869 1870 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1871 1872 static inline u8 page_kasan_tag(const struct page *page) 1873 { 1874 return 0xff; 1875 } 1876 1877 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1878 static inline void page_kasan_tag_reset(struct page *page) { } 1879 1880 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1881 1882 static inline struct zone *page_zone(const struct page *page) 1883 { 1884 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1885 } 1886 1887 static inline pg_data_t *page_pgdat(const struct page *page) 1888 { 1889 return NODE_DATA(page_to_nid(page)); 1890 } 1891 1892 static inline struct zone *folio_zone(const struct folio *folio) 1893 { 1894 return page_zone(&folio->page); 1895 } 1896 1897 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1898 { 1899 return page_pgdat(&folio->page); 1900 } 1901 1902 #ifdef SECTION_IN_PAGE_FLAGS 1903 static inline void set_page_section(struct page *page, unsigned long section) 1904 { 1905 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1906 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1907 } 1908 1909 static inline unsigned long page_to_section(const struct page *page) 1910 { 1911 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1912 } 1913 #endif 1914 1915 /** 1916 * folio_pfn - Return the Page Frame Number of a folio. 1917 * @folio: The folio. 1918 * 1919 * A folio may contain multiple pages. The pages have consecutive 1920 * Page Frame Numbers. 1921 * 1922 * Return: The Page Frame Number of the first page in the folio. 1923 */ 1924 static inline unsigned long folio_pfn(struct folio *folio) 1925 { 1926 return page_to_pfn(&folio->page); 1927 } 1928 1929 static inline struct folio *pfn_folio(unsigned long pfn) 1930 { 1931 return page_folio(pfn_to_page(pfn)); 1932 } 1933 1934 /** 1935 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1936 * @folio: The folio. 1937 * 1938 * This function checks if a folio has been pinned via a call to 1939 * a function in the pin_user_pages() family. 1940 * 1941 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1942 * because it means "definitely not pinned for DMA", but true means "probably 1943 * pinned for DMA, but possibly a false positive due to having at least 1944 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1945 * 1946 * False positives are OK, because: a) it's unlikely for a folio to 1947 * get that many refcounts, and b) all the callers of this routine are 1948 * expected to be able to deal gracefully with a false positive. 1949 * 1950 * For large folios, the result will be exactly correct. That's because 1951 * we have more tracking data available: the _pincount field is used 1952 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1953 * 1954 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1955 * 1956 * Return: True, if it is likely that the page has been "dma-pinned". 1957 * False, if the page is definitely not dma-pinned. 1958 */ 1959 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1960 { 1961 if (folio_test_large(folio)) 1962 return atomic_read(&folio->_pincount) > 0; 1963 1964 /* 1965 * folio_ref_count() is signed. If that refcount overflows, then 1966 * folio_ref_count() returns a negative value, and callers will avoid 1967 * further incrementing the refcount. 1968 * 1969 * Here, for that overflow case, use the sign bit to count a little 1970 * bit higher via unsigned math, and thus still get an accurate result. 1971 */ 1972 return ((unsigned int)folio_ref_count(folio)) >= 1973 GUP_PIN_COUNTING_BIAS; 1974 } 1975 1976 static inline bool page_maybe_dma_pinned(struct page *page) 1977 { 1978 return folio_maybe_dma_pinned(page_folio(page)); 1979 } 1980 1981 /* 1982 * This should most likely only be called during fork() to see whether we 1983 * should break the cow immediately for an anon page on the src mm. 1984 * 1985 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1986 */ 1987 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1988 struct folio *folio) 1989 { 1990 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1991 1992 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1993 return false; 1994 1995 return folio_maybe_dma_pinned(folio); 1996 } 1997 1998 /** 1999 * is_zero_page - Query if a page is a zero page 2000 * @page: The page to query 2001 * 2002 * This returns true if @page is one of the permanent zero pages. 2003 */ 2004 static inline bool is_zero_page(const struct page *page) 2005 { 2006 return is_zero_pfn(page_to_pfn(page)); 2007 } 2008 2009 /** 2010 * is_zero_folio - Query if a folio is a zero page 2011 * @folio: The folio to query 2012 * 2013 * This returns true if @folio is one of the permanent zero pages. 2014 */ 2015 static inline bool is_zero_folio(const struct folio *folio) 2016 { 2017 return is_zero_page(&folio->page); 2018 } 2019 2020 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2021 #ifdef CONFIG_MIGRATION 2022 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2023 { 2024 #ifdef CONFIG_CMA 2025 int mt = folio_migratetype(folio); 2026 2027 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2028 return false; 2029 #endif 2030 /* The zero page can be "pinned" but gets special handling. */ 2031 if (is_zero_folio(folio)) 2032 return true; 2033 2034 /* Coherent device memory must always allow eviction. */ 2035 if (folio_is_device_coherent(folio)) 2036 return false; 2037 2038 /* Otherwise, non-movable zone folios can be pinned. */ 2039 return !folio_is_zone_movable(folio); 2040 2041 } 2042 #else 2043 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2044 { 2045 return true; 2046 } 2047 #endif 2048 2049 static inline void set_page_zone(struct page *page, enum zone_type zone) 2050 { 2051 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2052 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2053 } 2054 2055 static inline void set_page_node(struct page *page, unsigned long node) 2056 { 2057 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2058 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2059 } 2060 2061 static inline void set_page_links(struct page *page, enum zone_type zone, 2062 unsigned long node, unsigned long pfn) 2063 { 2064 set_page_zone(page, zone); 2065 set_page_node(page, node); 2066 #ifdef SECTION_IN_PAGE_FLAGS 2067 set_page_section(page, pfn_to_section_nr(pfn)); 2068 #endif 2069 } 2070 2071 /** 2072 * folio_nr_pages - The number of pages in the folio. 2073 * @folio: The folio. 2074 * 2075 * Return: A positive power of two. 2076 */ 2077 static inline long folio_nr_pages(const struct folio *folio) 2078 { 2079 if (!folio_test_large(folio)) 2080 return 1; 2081 #ifdef CONFIG_64BIT 2082 return folio->_folio_nr_pages; 2083 #else 2084 return 1L << (folio->_flags_1 & 0xff); 2085 #endif 2086 } 2087 2088 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2089 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2090 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2091 #else 2092 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2093 #endif 2094 2095 /* 2096 * compound_nr() returns the number of pages in this potentially compound 2097 * page. compound_nr() can be called on a tail page, and is defined to 2098 * return 1 in that case. 2099 */ 2100 static inline unsigned long compound_nr(struct page *page) 2101 { 2102 struct folio *folio = (struct folio *)page; 2103 2104 if (!test_bit(PG_head, &folio->flags)) 2105 return 1; 2106 #ifdef CONFIG_64BIT 2107 return folio->_folio_nr_pages; 2108 #else 2109 return 1L << (folio->_flags_1 & 0xff); 2110 #endif 2111 } 2112 2113 /** 2114 * thp_nr_pages - The number of regular pages in this huge page. 2115 * @page: The head page of a huge page. 2116 */ 2117 static inline int thp_nr_pages(struct page *page) 2118 { 2119 return folio_nr_pages((struct folio *)page); 2120 } 2121 2122 /** 2123 * folio_next - Move to the next physical folio. 2124 * @folio: The folio we're currently operating on. 2125 * 2126 * If you have physically contiguous memory which may span more than 2127 * one folio (eg a &struct bio_vec), use this function to move from one 2128 * folio to the next. Do not use it if the memory is only virtually 2129 * contiguous as the folios are almost certainly not adjacent to each 2130 * other. This is the folio equivalent to writing ``page++``. 2131 * 2132 * Context: We assume that the folios are refcounted and/or locked at a 2133 * higher level and do not adjust the reference counts. 2134 * Return: The next struct folio. 2135 */ 2136 static inline struct folio *folio_next(struct folio *folio) 2137 { 2138 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2139 } 2140 2141 /** 2142 * folio_shift - The size of the memory described by this folio. 2143 * @folio: The folio. 2144 * 2145 * A folio represents a number of bytes which is a power-of-two in size. 2146 * This function tells you which power-of-two the folio is. See also 2147 * folio_size() and folio_order(). 2148 * 2149 * Context: The caller should have a reference on the folio to prevent 2150 * it from being split. It is not necessary for the folio to be locked. 2151 * Return: The base-2 logarithm of the size of this folio. 2152 */ 2153 static inline unsigned int folio_shift(struct folio *folio) 2154 { 2155 return PAGE_SHIFT + folio_order(folio); 2156 } 2157 2158 /** 2159 * folio_size - The number of bytes in a folio. 2160 * @folio: The folio. 2161 * 2162 * Context: The caller should have a reference on the folio to prevent 2163 * it from being split. It is not necessary for the folio to be locked. 2164 * Return: The number of bytes in this folio. 2165 */ 2166 static inline size_t folio_size(struct folio *folio) 2167 { 2168 return PAGE_SIZE << folio_order(folio); 2169 } 2170 2171 /** 2172 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2173 * tables of more than one MM 2174 * @folio: The folio. 2175 * 2176 * This function checks if the folio is currently mapped into more than one 2177 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2178 * ("mapped exclusively"). 2179 * 2180 * As precise information is not easily available for all folios, this function 2181 * estimates the number of MMs ("sharers") that are currently mapping a folio 2182 * using the number of times the first page of the folio is currently mapped 2183 * into page tables. 2184 * 2185 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2186 * the return value will be exactly correct, because they can only be mapped 2187 * at most once into an MM, and they cannot be partially mapped. 2188 * 2189 * For other folios, the result can be fuzzy: 2190 * #. For partially-mappable large folios (THP), the return value can wrongly 2191 * indicate "mapped exclusively" (false negative) when the folio is 2192 * only partially mapped into at least one MM. 2193 * #. For pagecache folios (including hugetlb), the return value can wrongly 2194 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2195 * cover the same file range. 2196 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2197 * shared" (false positive), when the folio is mapped multiple times into 2198 * the same MM. 2199 * 2200 * Further, this function only considers current page table mappings that 2201 * are tracked using the folio mapcount(s). 2202 * 2203 * This function does not consider: 2204 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2205 * pagecache, temporary unmapping for migration). 2206 * #. If the folio is mapped differently (VM_PFNMAP). 2207 * #. If hugetlb page table sharing applies. Callers might want to check 2208 * hugetlb_pmd_shared(). 2209 * 2210 * Return: Whether the folio is estimated to be mapped into more than one MM. 2211 */ 2212 static inline bool folio_likely_mapped_shared(struct folio *folio) 2213 { 2214 int mapcount = folio_mapcount(folio); 2215 2216 /* Only partially-mappable folios require more care. */ 2217 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2218 return mapcount > 1; 2219 2220 /* A single mapping implies "mapped exclusively". */ 2221 if (mapcount <= 1) 2222 return false; 2223 2224 /* If any page is mapped more than once we treat it "mapped shared". */ 2225 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2226 return true; 2227 2228 /* Let's guess based on the first subpage. */ 2229 return atomic_read(&folio->_mapcount) > 0; 2230 } 2231 2232 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2233 static inline int arch_make_page_accessible(struct page *page) 2234 { 2235 return 0; 2236 } 2237 #endif 2238 2239 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2240 static inline int arch_make_folio_accessible(struct folio *folio) 2241 { 2242 int ret; 2243 long i, nr = folio_nr_pages(folio); 2244 2245 for (i = 0; i < nr; i++) { 2246 ret = arch_make_page_accessible(folio_page(folio, i)); 2247 if (ret) 2248 break; 2249 } 2250 2251 return ret; 2252 } 2253 #endif 2254 2255 /* 2256 * Some inline functions in vmstat.h depend on page_zone() 2257 */ 2258 #include <linux/vmstat.h> 2259 2260 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2261 #define HASHED_PAGE_VIRTUAL 2262 #endif 2263 2264 #if defined(WANT_PAGE_VIRTUAL) 2265 static inline void *page_address(const struct page *page) 2266 { 2267 return page->virtual; 2268 } 2269 static inline void set_page_address(struct page *page, void *address) 2270 { 2271 page->virtual = address; 2272 } 2273 #define page_address_init() do { } while(0) 2274 #endif 2275 2276 #if defined(HASHED_PAGE_VIRTUAL) 2277 void *page_address(const struct page *page); 2278 void set_page_address(struct page *page, void *virtual); 2279 void page_address_init(void); 2280 #endif 2281 2282 static __always_inline void *lowmem_page_address(const struct page *page) 2283 { 2284 return page_to_virt(page); 2285 } 2286 2287 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2288 #define page_address(page) lowmem_page_address(page) 2289 #define set_page_address(page, address) do { } while(0) 2290 #define page_address_init() do { } while(0) 2291 #endif 2292 2293 static inline void *folio_address(const struct folio *folio) 2294 { 2295 return page_address(&folio->page); 2296 } 2297 2298 extern pgoff_t __page_file_index(struct page *page); 2299 2300 /* 2301 * Return the pagecache index of the passed page. Regular pagecache pages 2302 * use ->index whereas swapcache pages use swp_offset(->private) 2303 */ 2304 static inline pgoff_t page_index(struct page *page) 2305 { 2306 if (unlikely(PageSwapCache(page))) 2307 return __page_file_index(page); 2308 return page->index; 2309 } 2310 2311 /* 2312 * Return true only if the page has been allocated with 2313 * ALLOC_NO_WATERMARKS and the low watermark was not 2314 * met implying that the system is under some pressure. 2315 */ 2316 static inline bool page_is_pfmemalloc(const struct page *page) 2317 { 2318 /* 2319 * lru.next has bit 1 set if the page is allocated from the 2320 * pfmemalloc reserves. Callers may simply overwrite it if 2321 * they do not need to preserve that information. 2322 */ 2323 return (uintptr_t)page->lru.next & BIT(1); 2324 } 2325 2326 /* 2327 * Return true only if the folio has been allocated with 2328 * ALLOC_NO_WATERMARKS and the low watermark was not 2329 * met implying that the system is under some pressure. 2330 */ 2331 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2332 { 2333 /* 2334 * lru.next has bit 1 set if the page is allocated from the 2335 * pfmemalloc reserves. Callers may simply overwrite it if 2336 * they do not need to preserve that information. 2337 */ 2338 return (uintptr_t)folio->lru.next & BIT(1); 2339 } 2340 2341 /* 2342 * Only to be called by the page allocator on a freshly allocated 2343 * page. 2344 */ 2345 static inline void set_page_pfmemalloc(struct page *page) 2346 { 2347 page->lru.next = (void *)BIT(1); 2348 } 2349 2350 static inline void clear_page_pfmemalloc(struct page *page) 2351 { 2352 page->lru.next = NULL; 2353 } 2354 2355 /* 2356 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2357 */ 2358 extern void pagefault_out_of_memory(void); 2359 2360 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2361 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2362 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2363 2364 /* 2365 * Parameter block passed down to zap_pte_range in exceptional cases. 2366 */ 2367 struct zap_details { 2368 struct folio *single_folio; /* Locked folio to be unmapped */ 2369 bool even_cows; /* Zap COWed private pages too? */ 2370 zap_flags_t zap_flags; /* Extra flags for zapping */ 2371 }; 2372 2373 /* 2374 * Whether to drop the pte markers, for example, the uffd-wp information for 2375 * file-backed memory. This should only be specified when we will completely 2376 * drop the page in the mm, either by truncation or unmapping of the vma. By 2377 * default, the flag is not set. 2378 */ 2379 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2380 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2381 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2382 2383 #ifdef CONFIG_SCHED_MM_CID 2384 void sched_mm_cid_before_execve(struct task_struct *t); 2385 void sched_mm_cid_after_execve(struct task_struct *t); 2386 void sched_mm_cid_fork(struct task_struct *t); 2387 void sched_mm_cid_exit_signals(struct task_struct *t); 2388 static inline int task_mm_cid(struct task_struct *t) 2389 { 2390 return t->mm_cid; 2391 } 2392 #else 2393 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2394 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2395 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2396 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2397 static inline int task_mm_cid(struct task_struct *t) 2398 { 2399 /* 2400 * Use the processor id as a fall-back when the mm cid feature is 2401 * disabled. This provides functional per-cpu data structure accesses 2402 * in user-space, althrough it won't provide the memory usage benefits. 2403 */ 2404 return raw_smp_processor_id(); 2405 } 2406 #endif 2407 2408 #ifdef CONFIG_MMU 2409 extern bool can_do_mlock(void); 2410 #else 2411 static inline bool can_do_mlock(void) { return false; } 2412 #endif 2413 extern int user_shm_lock(size_t, struct ucounts *); 2414 extern void user_shm_unlock(size_t, struct ucounts *); 2415 2416 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2417 pte_t pte); 2418 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2419 pte_t pte); 2420 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2421 unsigned long addr, pmd_t pmd); 2422 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2423 pmd_t pmd); 2424 2425 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2426 unsigned long size); 2427 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2428 unsigned long size, struct zap_details *details); 2429 static inline void zap_vma_pages(struct vm_area_struct *vma) 2430 { 2431 zap_page_range_single(vma, vma->vm_start, 2432 vma->vm_end - vma->vm_start, NULL); 2433 } 2434 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2435 struct vm_area_struct *start_vma, unsigned long start, 2436 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2437 2438 struct mmu_notifier_range; 2439 2440 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2441 unsigned long end, unsigned long floor, unsigned long ceiling); 2442 int 2443 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2444 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2445 pte_t **ptepp, spinlock_t **ptlp); 2446 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2447 void *buf, int len, int write); 2448 2449 extern void truncate_pagecache(struct inode *inode, loff_t new); 2450 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2451 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2452 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2453 int generic_error_remove_folio(struct address_space *mapping, 2454 struct folio *folio); 2455 2456 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2457 unsigned long address, struct pt_regs *regs); 2458 2459 #ifdef CONFIG_MMU 2460 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2461 unsigned long address, unsigned int flags, 2462 struct pt_regs *regs); 2463 extern int fixup_user_fault(struct mm_struct *mm, 2464 unsigned long address, unsigned int fault_flags, 2465 bool *unlocked); 2466 void unmap_mapping_pages(struct address_space *mapping, 2467 pgoff_t start, pgoff_t nr, bool even_cows); 2468 void unmap_mapping_range(struct address_space *mapping, 2469 loff_t const holebegin, loff_t const holelen, int even_cows); 2470 #else 2471 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2472 unsigned long address, unsigned int flags, 2473 struct pt_regs *regs) 2474 { 2475 /* should never happen if there's no MMU */ 2476 BUG(); 2477 return VM_FAULT_SIGBUS; 2478 } 2479 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2480 unsigned int fault_flags, bool *unlocked) 2481 { 2482 /* should never happen if there's no MMU */ 2483 BUG(); 2484 return -EFAULT; 2485 } 2486 static inline void unmap_mapping_pages(struct address_space *mapping, 2487 pgoff_t start, pgoff_t nr, bool even_cows) { } 2488 static inline void unmap_mapping_range(struct address_space *mapping, 2489 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2490 #endif 2491 2492 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2493 loff_t const holebegin, loff_t const holelen) 2494 { 2495 unmap_mapping_range(mapping, holebegin, holelen, 0); 2496 } 2497 2498 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2499 unsigned long addr); 2500 2501 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2502 void *buf, int len, unsigned int gup_flags); 2503 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2504 void *buf, int len, unsigned int gup_flags); 2505 2506 long get_user_pages_remote(struct mm_struct *mm, 2507 unsigned long start, unsigned long nr_pages, 2508 unsigned int gup_flags, struct page **pages, 2509 int *locked); 2510 long pin_user_pages_remote(struct mm_struct *mm, 2511 unsigned long start, unsigned long nr_pages, 2512 unsigned int gup_flags, struct page **pages, 2513 int *locked); 2514 2515 /* 2516 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2517 */ 2518 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2519 unsigned long addr, 2520 int gup_flags, 2521 struct vm_area_struct **vmap) 2522 { 2523 struct page *page; 2524 struct vm_area_struct *vma; 2525 int got; 2526 2527 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2528 return ERR_PTR(-EINVAL); 2529 2530 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2531 2532 if (got < 0) 2533 return ERR_PTR(got); 2534 2535 vma = vma_lookup(mm, addr); 2536 if (WARN_ON_ONCE(!vma)) { 2537 put_page(page); 2538 return ERR_PTR(-EINVAL); 2539 } 2540 2541 *vmap = vma; 2542 return page; 2543 } 2544 2545 long get_user_pages(unsigned long start, unsigned long nr_pages, 2546 unsigned int gup_flags, struct page **pages); 2547 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2548 unsigned int gup_flags, struct page **pages); 2549 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2550 struct page **pages, unsigned int gup_flags); 2551 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2552 struct page **pages, unsigned int gup_flags); 2553 2554 int get_user_pages_fast(unsigned long start, int nr_pages, 2555 unsigned int gup_flags, struct page **pages); 2556 int pin_user_pages_fast(unsigned long start, int nr_pages, 2557 unsigned int gup_flags, struct page **pages); 2558 void folio_add_pin(struct folio *folio); 2559 2560 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2561 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2562 struct task_struct *task, bool bypass_rlim); 2563 2564 struct kvec; 2565 struct page *get_dump_page(unsigned long addr); 2566 2567 bool folio_mark_dirty(struct folio *folio); 2568 bool set_page_dirty(struct page *page); 2569 int set_page_dirty_lock(struct page *page); 2570 2571 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2572 2573 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2574 unsigned long old_addr, struct vm_area_struct *new_vma, 2575 unsigned long new_addr, unsigned long len, 2576 bool need_rmap_locks, bool for_stack); 2577 2578 /* 2579 * Flags used by change_protection(). For now we make it a bitmap so 2580 * that we can pass in multiple flags just like parameters. However 2581 * for now all the callers are only use one of the flags at the same 2582 * time. 2583 */ 2584 /* 2585 * Whether we should manually check if we can map individual PTEs writable, 2586 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2587 * PTEs automatically in a writable mapping. 2588 */ 2589 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2590 /* Whether this protection change is for NUMA hints */ 2591 #define MM_CP_PROT_NUMA (1UL << 1) 2592 /* Whether this change is for write protecting */ 2593 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2594 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2595 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2596 MM_CP_UFFD_WP_RESOLVE) 2597 2598 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2599 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2600 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2601 { 2602 /* 2603 * We want to check manually if we can change individual PTEs writable 2604 * if we can't do that automatically for all PTEs in a mapping. For 2605 * private mappings, that's always the case when we have write 2606 * permissions as we properly have to handle COW. 2607 */ 2608 if (vma->vm_flags & VM_SHARED) 2609 return vma_wants_writenotify(vma, vma->vm_page_prot); 2610 return !!(vma->vm_flags & VM_WRITE); 2611 2612 } 2613 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2614 pte_t pte); 2615 extern long change_protection(struct mmu_gather *tlb, 2616 struct vm_area_struct *vma, unsigned long start, 2617 unsigned long end, unsigned long cp_flags); 2618 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2619 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2620 unsigned long start, unsigned long end, unsigned long newflags); 2621 2622 /* 2623 * doesn't attempt to fault and will return short. 2624 */ 2625 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2626 unsigned int gup_flags, struct page **pages); 2627 2628 static inline bool get_user_page_fast_only(unsigned long addr, 2629 unsigned int gup_flags, struct page **pagep) 2630 { 2631 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2632 } 2633 /* 2634 * per-process(per-mm_struct) statistics. 2635 */ 2636 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2637 { 2638 return percpu_counter_read_positive(&mm->rss_stat[member]); 2639 } 2640 2641 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2642 2643 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2644 { 2645 percpu_counter_add(&mm->rss_stat[member], value); 2646 2647 mm_trace_rss_stat(mm, member); 2648 } 2649 2650 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2651 { 2652 percpu_counter_inc(&mm->rss_stat[member]); 2653 2654 mm_trace_rss_stat(mm, member); 2655 } 2656 2657 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2658 { 2659 percpu_counter_dec(&mm->rss_stat[member]); 2660 2661 mm_trace_rss_stat(mm, member); 2662 } 2663 2664 /* Optimized variant when folio is already known not to be anon */ 2665 static inline int mm_counter_file(struct folio *folio) 2666 { 2667 if (folio_test_swapbacked(folio)) 2668 return MM_SHMEMPAGES; 2669 return MM_FILEPAGES; 2670 } 2671 2672 static inline int mm_counter(struct folio *folio) 2673 { 2674 if (folio_test_anon(folio)) 2675 return MM_ANONPAGES; 2676 return mm_counter_file(folio); 2677 } 2678 2679 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2680 { 2681 return get_mm_counter(mm, MM_FILEPAGES) + 2682 get_mm_counter(mm, MM_ANONPAGES) + 2683 get_mm_counter(mm, MM_SHMEMPAGES); 2684 } 2685 2686 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2687 { 2688 return max(mm->hiwater_rss, get_mm_rss(mm)); 2689 } 2690 2691 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2692 { 2693 return max(mm->hiwater_vm, mm->total_vm); 2694 } 2695 2696 static inline void update_hiwater_rss(struct mm_struct *mm) 2697 { 2698 unsigned long _rss = get_mm_rss(mm); 2699 2700 if ((mm)->hiwater_rss < _rss) 2701 (mm)->hiwater_rss = _rss; 2702 } 2703 2704 static inline void update_hiwater_vm(struct mm_struct *mm) 2705 { 2706 if (mm->hiwater_vm < mm->total_vm) 2707 mm->hiwater_vm = mm->total_vm; 2708 } 2709 2710 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2711 { 2712 mm->hiwater_rss = get_mm_rss(mm); 2713 } 2714 2715 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2716 struct mm_struct *mm) 2717 { 2718 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2719 2720 if (*maxrss < hiwater_rss) 2721 *maxrss = hiwater_rss; 2722 } 2723 2724 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2725 static inline int pte_special(pte_t pte) 2726 { 2727 return 0; 2728 } 2729 2730 static inline pte_t pte_mkspecial(pte_t pte) 2731 { 2732 return pte; 2733 } 2734 #endif 2735 2736 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2737 static inline int pte_devmap(pte_t pte) 2738 { 2739 return 0; 2740 } 2741 #endif 2742 2743 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2744 spinlock_t **ptl); 2745 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2746 spinlock_t **ptl) 2747 { 2748 pte_t *ptep; 2749 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2750 return ptep; 2751 } 2752 2753 #ifdef __PAGETABLE_P4D_FOLDED 2754 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2755 unsigned long address) 2756 { 2757 return 0; 2758 } 2759 #else 2760 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2761 #endif 2762 2763 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2764 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2765 unsigned long address) 2766 { 2767 return 0; 2768 } 2769 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2770 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2771 2772 #else 2773 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2774 2775 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2776 { 2777 if (mm_pud_folded(mm)) 2778 return; 2779 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2780 } 2781 2782 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2783 { 2784 if (mm_pud_folded(mm)) 2785 return; 2786 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2787 } 2788 #endif 2789 2790 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2791 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2792 unsigned long address) 2793 { 2794 return 0; 2795 } 2796 2797 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2798 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2799 2800 #else 2801 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2802 2803 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2804 { 2805 if (mm_pmd_folded(mm)) 2806 return; 2807 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2808 } 2809 2810 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2811 { 2812 if (mm_pmd_folded(mm)) 2813 return; 2814 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2815 } 2816 #endif 2817 2818 #ifdef CONFIG_MMU 2819 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2820 { 2821 atomic_long_set(&mm->pgtables_bytes, 0); 2822 } 2823 2824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2825 { 2826 return atomic_long_read(&mm->pgtables_bytes); 2827 } 2828 2829 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2830 { 2831 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2832 } 2833 2834 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2835 { 2836 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2837 } 2838 #else 2839 2840 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2841 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2842 { 2843 return 0; 2844 } 2845 2846 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2847 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2848 #endif 2849 2850 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2851 int __pte_alloc_kernel(pmd_t *pmd); 2852 2853 #if defined(CONFIG_MMU) 2854 2855 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2856 unsigned long address) 2857 { 2858 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2859 NULL : p4d_offset(pgd, address); 2860 } 2861 2862 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2863 unsigned long address) 2864 { 2865 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2866 NULL : pud_offset(p4d, address); 2867 } 2868 2869 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2870 { 2871 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2872 NULL: pmd_offset(pud, address); 2873 } 2874 #endif /* CONFIG_MMU */ 2875 2876 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2877 { 2878 return page_ptdesc(virt_to_page(x)); 2879 } 2880 2881 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2882 { 2883 return page_to_virt(ptdesc_page(pt)); 2884 } 2885 2886 static inline void *ptdesc_address(const struct ptdesc *pt) 2887 { 2888 return folio_address(ptdesc_folio(pt)); 2889 } 2890 2891 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2892 { 2893 return folio_test_reserved(ptdesc_folio(pt)); 2894 } 2895 2896 /** 2897 * pagetable_alloc - Allocate pagetables 2898 * @gfp: GFP flags 2899 * @order: desired pagetable order 2900 * 2901 * pagetable_alloc allocates memory for page tables as well as a page table 2902 * descriptor to describe that memory. 2903 * 2904 * Return: The ptdesc describing the allocated page tables. 2905 */ 2906 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2907 { 2908 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2909 2910 return page_ptdesc(page); 2911 } 2912 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2913 2914 /** 2915 * pagetable_free - Free pagetables 2916 * @pt: The page table descriptor 2917 * 2918 * pagetable_free frees the memory of all page tables described by a page 2919 * table descriptor and the memory for the descriptor itself. 2920 */ 2921 static inline void pagetable_free(struct ptdesc *pt) 2922 { 2923 struct page *page = ptdesc_page(pt); 2924 2925 __free_pages(page, compound_order(page)); 2926 } 2927 2928 #if USE_SPLIT_PTE_PTLOCKS 2929 #if ALLOC_SPLIT_PTLOCKS 2930 void __init ptlock_cache_init(void); 2931 bool ptlock_alloc(struct ptdesc *ptdesc); 2932 void ptlock_free(struct ptdesc *ptdesc); 2933 2934 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2935 { 2936 return ptdesc->ptl; 2937 } 2938 #else /* ALLOC_SPLIT_PTLOCKS */ 2939 static inline void ptlock_cache_init(void) 2940 { 2941 } 2942 2943 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2944 { 2945 return true; 2946 } 2947 2948 static inline void ptlock_free(struct ptdesc *ptdesc) 2949 { 2950 } 2951 2952 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2953 { 2954 return &ptdesc->ptl; 2955 } 2956 #endif /* ALLOC_SPLIT_PTLOCKS */ 2957 2958 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2959 { 2960 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2961 } 2962 2963 static inline bool ptlock_init(struct ptdesc *ptdesc) 2964 { 2965 /* 2966 * prep_new_page() initialize page->private (and therefore page->ptl) 2967 * with 0. Make sure nobody took it in use in between. 2968 * 2969 * It can happen if arch try to use slab for page table allocation: 2970 * slab code uses page->slab_cache, which share storage with page->ptl. 2971 */ 2972 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2973 if (!ptlock_alloc(ptdesc)) 2974 return false; 2975 spin_lock_init(ptlock_ptr(ptdesc)); 2976 return true; 2977 } 2978 2979 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2980 /* 2981 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2982 */ 2983 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2984 { 2985 return &mm->page_table_lock; 2986 } 2987 static inline void ptlock_cache_init(void) {} 2988 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2989 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2990 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2991 2992 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2993 { 2994 struct folio *folio = ptdesc_folio(ptdesc); 2995 2996 if (!ptlock_init(ptdesc)) 2997 return false; 2998 __folio_set_pgtable(folio); 2999 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3000 return true; 3001 } 3002 3003 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 3004 { 3005 struct folio *folio = ptdesc_folio(ptdesc); 3006 3007 ptlock_free(ptdesc); 3008 __folio_clear_pgtable(folio); 3009 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3010 } 3011 3012 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3013 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3014 { 3015 return __pte_offset_map(pmd, addr, NULL); 3016 } 3017 3018 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3019 unsigned long addr, spinlock_t **ptlp); 3020 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3021 unsigned long addr, spinlock_t **ptlp) 3022 { 3023 pte_t *pte; 3024 3025 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3026 return pte; 3027 } 3028 3029 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3030 unsigned long addr, spinlock_t **ptlp); 3031 3032 #define pte_unmap_unlock(pte, ptl) do { \ 3033 spin_unlock(ptl); \ 3034 pte_unmap(pte); \ 3035 } while (0) 3036 3037 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3038 3039 #define pte_alloc_map(mm, pmd, address) \ 3040 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3041 3042 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3043 (pte_alloc(mm, pmd) ? \ 3044 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3045 3046 #define pte_alloc_kernel(pmd, address) \ 3047 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3048 NULL: pte_offset_kernel(pmd, address)) 3049 3050 #if USE_SPLIT_PMD_PTLOCKS 3051 3052 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3053 { 3054 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3055 return virt_to_page((void *)((unsigned long) pmd & mask)); 3056 } 3057 3058 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3059 { 3060 return page_ptdesc(pmd_pgtable_page(pmd)); 3061 } 3062 3063 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3064 { 3065 return ptlock_ptr(pmd_ptdesc(pmd)); 3066 } 3067 3068 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3069 { 3070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3071 ptdesc->pmd_huge_pte = NULL; 3072 #endif 3073 return ptlock_init(ptdesc); 3074 } 3075 3076 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3077 { 3078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3079 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3080 #endif 3081 ptlock_free(ptdesc); 3082 } 3083 3084 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3085 3086 #else 3087 3088 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3089 { 3090 return &mm->page_table_lock; 3091 } 3092 3093 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3094 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3095 3096 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3097 3098 #endif 3099 3100 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3101 { 3102 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3103 spin_lock(ptl); 3104 return ptl; 3105 } 3106 3107 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3108 { 3109 struct folio *folio = ptdesc_folio(ptdesc); 3110 3111 if (!pmd_ptlock_init(ptdesc)) 3112 return false; 3113 __folio_set_pgtable(folio); 3114 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3115 return true; 3116 } 3117 3118 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3119 { 3120 struct folio *folio = ptdesc_folio(ptdesc); 3121 3122 pmd_ptlock_free(ptdesc); 3123 __folio_clear_pgtable(folio); 3124 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3125 } 3126 3127 /* 3128 * No scalability reason to split PUD locks yet, but follow the same pattern 3129 * as the PMD locks to make it easier if we decide to. The VM should not be 3130 * considered ready to switch to split PUD locks yet; there may be places 3131 * which need to be converted from page_table_lock. 3132 */ 3133 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3134 { 3135 return &mm->page_table_lock; 3136 } 3137 3138 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3139 { 3140 spinlock_t *ptl = pud_lockptr(mm, pud); 3141 3142 spin_lock(ptl); 3143 return ptl; 3144 } 3145 3146 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3147 { 3148 struct folio *folio = ptdesc_folio(ptdesc); 3149 3150 __folio_set_pgtable(folio); 3151 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3152 } 3153 3154 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3155 { 3156 struct folio *folio = ptdesc_folio(ptdesc); 3157 3158 __folio_clear_pgtable(folio); 3159 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3160 } 3161 3162 extern void __init pagecache_init(void); 3163 extern void free_initmem(void); 3164 3165 /* 3166 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3167 * into the buddy system. The freed pages will be poisoned with pattern 3168 * "poison" if it's within range [0, UCHAR_MAX]. 3169 * Return pages freed into the buddy system. 3170 */ 3171 extern unsigned long free_reserved_area(void *start, void *end, 3172 int poison, const char *s); 3173 3174 extern void adjust_managed_page_count(struct page *page, long count); 3175 3176 extern void reserve_bootmem_region(phys_addr_t start, 3177 phys_addr_t end, int nid); 3178 3179 /* Free the reserved page into the buddy system, so it gets managed. */ 3180 static inline void free_reserved_page(struct page *page) 3181 { 3182 if (mem_alloc_profiling_enabled()) { 3183 union codetag_ref *ref = get_page_tag_ref(page); 3184 3185 if (ref) { 3186 set_codetag_empty(ref); 3187 put_page_tag_ref(ref); 3188 } 3189 } 3190 ClearPageReserved(page); 3191 init_page_count(page); 3192 __free_page(page); 3193 adjust_managed_page_count(page, 1); 3194 } 3195 #define free_highmem_page(page) free_reserved_page(page) 3196 3197 static inline void mark_page_reserved(struct page *page) 3198 { 3199 SetPageReserved(page); 3200 adjust_managed_page_count(page, -1); 3201 } 3202 3203 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3204 { 3205 free_reserved_page(ptdesc_page(pt)); 3206 } 3207 3208 /* 3209 * Default method to free all the __init memory into the buddy system. 3210 * The freed pages will be poisoned with pattern "poison" if it's within 3211 * range [0, UCHAR_MAX]. 3212 * Return pages freed into the buddy system. 3213 */ 3214 static inline unsigned long free_initmem_default(int poison) 3215 { 3216 extern char __init_begin[], __init_end[]; 3217 3218 return free_reserved_area(&__init_begin, &__init_end, 3219 poison, "unused kernel image (initmem)"); 3220 } 3221 3222 static inline unsigned long get_num_physpages(void) 3223 { 3224 int nid; 3225 unsigned long phys_pages = 0; 3226 3227 for_each_online_node(nid) 3228 phys_pages += node_present_pages(nid); 3229 3230 return phys_pages; 3231 } 3232 3233 /* 3234 * Using memblock node mappings, an architecture may initialise its 3235 * zones, allocate the backing mem_map and account for memory holes in an 3236 * architecture independent manner. 3237 * 3238 * An architecture is expected to register range of page frames backed by 3239 * physical memory with memblock_add[_node]() before calling 3240 * free_area_init() passing in the PFN each zone ends at. At a basic 3241 * usage, an architecture is expected to do something like 3242 * 3243 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3244 * max_highmem_pfn}; 3245 * for_each_valid_physical_page_range() 3246 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3247 * free_area_init(max_zone_pfns); 3248 */ 3249 void free_area_init(unsigned long *max_zone_pfn); 3250 unsigned long node_map_pfn_alignment(void); 3251 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3252 unsigned long end_pfn); 3253 extern void get_pfn_range_for_nid(unsigned int nid, 3254 unsigned long *start_pfn, unsigned long *end_pfn); 3255 3256 #ifndef CONFIG_NUMA 3257 static inline int early_pfn_to_nid(unsigned long pfn) 3258 { 3259 return 0; 3260 } 3261 #else 3262 /* please see mm/page_alloc.c */ 3263 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3264 #endif 3265 3266 extern void mem_init(void); 3267 extern void __init mmap_init(void); 3268 3269 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3270 static inline void show_mem(void) 3271 { 3272 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3273 } 3274 extern long si_mem_available(void); 3275 extern void si_meminfo(struct sysinfo * val); 3276 extern void si_meminfo_node(struct sysinfo *val, int nid); 3277 3278 extern __printf(3, 4) 3279 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3280 3281 extern void setup_per_cpu_pageset(void); 3282 3283 /* nommu.c */ 3284 extern atomic_long_t mmap_pages_allocated; 3285 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3286 3287 /* interval_tree.c */ 3288 void vma_interval_tree_insert(struct vm_area_struct *node, 3289 struct rb_root_cached *root); 3290 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3291 struct vm_area_struct *prev, 3292 struct rb_root_cached *root); 3293 void vma_interval_tree_remove(struct vm_area_struct *node, 3294 struct rb_root_cached *root); 3295 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3296 unsigned long start, unsigned long last); 3297 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3298 unsigned long start, unsigned long last); 3299 3300 #define vma_interval_tree_foreach(vma, root, start, last) \ 3301 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3302 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3303 3304 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3305 struct rb_root_cached *root); 3306 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3307 struct rb_root_cached *root); 3308 struct anon_vma_chain * 3309 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3310 unsigned long start, unsigned long last); 3311 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3312 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3313 #ifdef CONFIG_DEBUG_VM_RB 3314 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3315 #endif 3316 3317 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3318 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3319 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3320 3321 /* mmap.c */ 3322 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3323 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3324 unsigned long start, unsigned long end, pgoff_t pgoff, 3325 struct vm_area_struct *next); 3326 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3327 unsigned long start, unsigned long end, pgoff_t pgoff); 3328 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3329 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3330 extern void unlink_file_vma(struct vm_area_struct *); 3331 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3332 unsigned long addr, unsigned long len, pgoff_t pgoff, 3333 bool *need_rmap_locks); 3334 extern void exit_mmap(struct mm_struct *); 3335 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3336 struct vm_area_struct *prev, 3337 struct vm_area_struct *vma, 3338 unsigned long start, unsigned long end, 3339 unsigned long vm_flags, 3340 struct mempolicy *policy, 3341 struct vm_userfaultfd_ctx uffd_ctx, 3342 struct anon_vma_name *anon_name); 3343 3344 /* We are about to modify the VMA's flags. */ 3345 static inline struct vm_area_struct 3346 *vma_modify_flags(struct vma_iterator *vmi, 3347 struct vm_area_struct *prev, 3348 struct vm_area_struct *vma, 3349 unsigned long start, unsigned long end, 3350 unsigned long new_flags) 3351 { 3352 return vma_modify(vmi, prev, vma, start, end, new_flags, 3353 vma_policy(vma), vma->vm_userfaultfd_ctx, 3354 anon_vma_name(vma)); 3355 } 3356 3357 /* We are about to modify the VMA's flags and/or anon_name. */ 3358 static inline struct vm_area_struct 3359 *vma_modify_flags_name(struct vma_iterator *vmi, 3360 struct vm_area_struct *prev, 3361 struct vm_area_struct *vma, 3362 unsigned long start, 3363 unsigned long end, 3364 unsigned long new_flags, 3365 struct anon_vma_name *new_name) 3366 { 3367 return vma_modify(vmi, prev, vma, start, end, new_flags, 3368 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3369 } 3370 3371 /* We are about to modify the VMA's memory policy. */ 3372 static inline struct vm_area_struct 3373 *vma_modify_policy(struct vma_iterator *vmi, 3374 struct vm_area_struct *prev, 3375 struct vm_area_struct *vma, 3376 unsigned long start, unsigned long end, 3377 struct mempolicy *new_pol) 3378 { 3379 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3380 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3381 } 3382 3383 /* We are about to modify the VMA's flags and/or uffd context. */ 3384 static inline struct vm_area_struct 3385 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3386 struct vm_area_struct *prev, 3387 struct vm_area_struct *vma, 3388 unsigned long start, unsigned long end, 3389 unsigned long new_flags, 3390 struct vm_userfaultfd_ctx new_ctx) 3391 { 3392 return vma_modify(vmi, prev, vma, start, end, new_flags, 3393 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3394 } 3395 3396 static inline int check_data_rlimit(unsigned long rlim, 3397 unsigned long new, 3398 unsigned long start, 3399 unsigned long end_data, 3400 unsigned long start_data) 3401 { 3402 if (rlim < RLIM_INFINITY) { 3403 if (((new - start) + (end_data - start_data)) > rlim) 3404 return -ENOSPC; 3405 } 3406 3407 return 0; 3408 } 3409 3410 extern int mm_take_all_locks(struct mm_struct *mm); 3411 extern void mm_drop_all_locks(struct mm_struct *mm); 3412 3413 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3414 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3415 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3416 extern struct file *get_task_exe_file(struct task_struct *task); 3417 3418 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3419 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3420 3421 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3422 const struct vm_special_mapping *sm); 3423 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3424 unsigned long addr, unsigned long len, 3425 unsigned long flags, 3426 const struct vm_special_mapping *spec); 3427 /* This is an obsolete alternative to _install_special_mapping. */ 3428 extern int install_special_mapping(struct mm_struct *mm, 3429 unsigned long addr, unsigned long len, 3430 unsigned long flags, struct page **pages); 3431 3432 unsigned long randomize_stack_top(unsigned long stack_top); 3433 unsigned long randomize_page(unsigned long start, unsigned long range); 3434 3435 unsigned long 3436 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3437 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3438 3439 static inline unsigned long 3440 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3441 unsigned long pgoff, unsigned long flags) 3442 { 3443 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3444 } 3445 3446 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3447 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3448 struct list_head *uf); 3449 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3450 unsigned long len, unsigned long prot, unsigned long flags, 3451 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3452 struct list_head *uf); 3453 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3454 unsigned long start, size_t len, struct list_head *uf, 3455 bool unlock); 3456 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3457 struct list_head *uf); 3458 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3459 3460 #ifdef CONFIG_MMU 3461 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3462 unsigned long start, unsigned long end, 3463 struct list_head *uf, bool unlock); 3464 extern int __mm_populate(unsigned long addr, unsigned long len, 3465 int ignore_errors); 3466 static inline void mm_populate(unsigned long addr, unsigned long len) 3467 { 3468 /* Ignore errors */ 3469 (void) __mm_populate(addr, len, 1); 3470 } 3471 #else 3472 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3473 #endif 3474 3475 /* This takes the mm semaphore itself */ 3476 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3477 extern int vm_munmap(unsigned long, size_t); 3478 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3479 unsigned long, unsigned long, 3480 unsigned long, unsigned long); 3481 3482 struct vm_unmapped_area_info { 3483 #define VM_UNMAPPED_AREA_TOPDOWN 1 3484 unsigned long flags; 3485 unsigned long length; 3486 unsigned long low_limit; 3487 unsigned long high_limit; 3488 unsigned long align_mask; 3489 unsigned long align_offset; 3490 unsigned long start_gap; 3491 }; 3492 3493 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3494 3495 /* truncate.c */ 3496 extern void truncate_inode_pages(struct address_space *, loff_t); 3497 extern void truncate_inode_pages_range(struct address_space *, 3498 loff_t lstart, loff_t lend); 3499 extern void truncate_inode_pages_final(struct address_space *); 3500 3501 /* generic vm_area_ops exported for stackable file systems */ 3502 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3503 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3504 pgoff_t start_pgoff, pgoff_t end_pgoff); 3505 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3506 3507 extern unsigned long stack_guard_gap; 3508 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3509 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3510 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3511 3512 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3513 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3514 3515 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3516 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3517 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3518 struct vm_area_struct **pprev); 3519 3520 /* 3521 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3522 * NULL if none. Assume start_addr < end_addr. 3523 */ 3524 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3525 unsigned long start_addr, unsigned long end_addr); 3526 3527 /** 3528 * vma_lookup() - Find a VMA at a specific address 3529 * @mm: The process address space. 3530 * @addr: The user address. 3531 * 3532 * Return: The vm_area_struct at the given address, %NULL otherwise. 3533 */ 3534 static inline 3535 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3536 { 3537 return mtree_load(&mm->mm_mt, addr); 3538 } 3539 3540 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3541 { 3542 if (vma->vm_flags & VM_GROWSDOWN) 3543 return stack_guard_gap; 3544 3545 /* See reasoning around the VM_SHADOW_STACK definition */ 3546 if (vma->vm_flags & VM_SHADOW_STACK) 3547 return PAGE_SIZE; 3548 3549 return 0; 3550 } 3551 3552 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3553 { 3554 unsigned long gap = stack_guard_start_gap(vma); 3555 unsigned long vm_start = vma->vm_start; 3556 3557 vm_start -= gap; 3558 if (vm_start > vma->vm_start) 3559 vm_start = 0; 3560 return vm_start; 3561 } 3562 3563 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3564 { 3565 unsigned long vm_end = vma->vm_end; 3566 3567 if (vma->vm_flags & VM_GROWSUP) { 3568 vm_end += stack_guard_gap; 3569 if (vm_end < vma->vm_end) 3570 vm_end = -PAGE_SIZE; 3571 } 3572 return vm_end; 3573 } 3574 3575 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3576 { 3577 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3578 } 3579 3580 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3581 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3582 unsigned long vm_start, unsigned long vm_end) 3583 { 3584 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3585 3586 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3587 vma = NULL; 3588 3589 return vma; 3590 } 3591 3592 static inline bool range_in_vma(struct vm_area_struct *vma, 3593 unsigned long start, unsigned long end) 3594 { 3595 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3596 } 3597 3598 #ifdef CONFIG_MMU 3599 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3600 void vma_set_page_prot(struct vm_area_struct *vma); 3601 #else 3602 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3603 { 3604 return __pgprot(0); 3605 } 3606 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3607 { 3608 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3609 } 3610 #endif 3611 3612 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3613 3614 #ifdef CONFIG_NUMA_BALANCING 3615 unsigned long change_prot_numa(struct vm_area_struct *vma, 3616 unsigned long start, unsigned long end); 3617 #endif 3618 3619 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3620 unsigned long addr); 3621 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3622 unsigned long pfn, unsigned long size, pgprot_t); 3623 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3624 unsigned long pfn, unsigned long size, pgprot_t prot); 3625 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3626 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3627 struct page **pages, unsigned long *num); 3628 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3629 unsigned long num); 3630 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3631 unsigned long num); 3632 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3633 unsigned long pfn); 3634 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3635 unsigned long pfn, pgprot_t pgprot); 3636 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3637 pfn_t pfn); 3638 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3639 unsigned long addr, pfn_t pfn); 3640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3641 3642 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3643 unsigned long addr, struct page *page) 3644 { 3645 int err = vm_insert_page(vma, addr, page); 3646 3647 if (err == -ENOMEM) 3648 return VM_FAULT_OOM; 3649 if (err < 0 && err != -EBUSY) 3650 return VM_FAULT_SIGBUS; 3651 3652 return VM_FAULT_NOPAGE; 3653 } 3654 3655 #ifndef io_remap_pfn_range 3656 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3657 unsigned long addr, unsigned long pfn, 3658 unsigned long size, pgprot_t prot) 3659 { 3660 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3661 } 3662 #endif 3663 3664 static inline vm_fault_t vmf_error(int err) 3665 { 3666 if (err == -ENOMEM) 3667 return VM_FAULT_OOM; 3668 else if (err == -EHWPOISON) 3669 return VM_FAULT_HWPOISON; 3670 return VM_FAULT_SIGBUS; 3671 } 3672 3673 /* 3674 * Convert errno to return value for ->page_mkwrite() calls. 3675 * 3676 * This should eventually be merged with vmf_error() above, but will need a 3677 * careful audit of all vmf_error() callers. 3678 */ 3679 static inline vm_fault_t vmf_fs_error(int err) 3680 { 3681 if (err == 0) 3682 return VM_FAULT_LOCKED; 3683 if (err == -EFAULT || err == -EAGAIN) 3684 return VM_FAULT_NOPAGE; 3685 if (err == -ENOMEM) 3686 return VM_FAULT_OOM; 3687 /* -ENOSPC, -EDQUOT, -EIO ... */ 3688 return VM_FAULT_SIGBUS; 3689 } 3690 3691 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3692 unsigned int foll_flags); 3693 3694 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3695 { 3696 if (vm_fault & VM_FAULT_OOM) 3697 return -ENOMEM; 3698 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3699 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3700 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3701 return -EFAULT; 3702 return 0; 3703 } 3704 3705 /* 3706 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3707 * a (NUMA hinting) fault is required. 3708 */ 3709 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3710 unsigned int flags) 3711 { 3712 /* 3713 * If callers don't want to honor NUMA hinting faults, no need to 3714 * determine if we would actually have to trigger a NUMA hinting fault. 3715 */ 3716 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3717 return true; 3718 3719 /* 3720 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3721 * 3722 * Requiring a fault here even for inaccessible VMAs would mean that 3723 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3724 * refuses to process NUMA hinting faults in inaccessible VMAs. 3725 */ 3726 return !vma_is_accessible(vma); 3727 } 3728 3729 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3730 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3731 unsigned long size, pte_fn_t fn, void *data); 3732 extern int apply_to_existing_page_range(struct mm_struct *mm, 3733 unsigned long address, unsigned long size, 3734 pte_fn_t fn, void *data); 3735 3736 #ifdef CONFIG_PAGE_POISONING 3737 extern void __kernel_poison_pages(struct page *page, int numpages); 3738 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3739 extern bool _page_poisoning_enabled_early; 3740 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3741 static inline bool page_poisoning_enabled(void) 3742 { 3743 return _page_poisoning_enabled_early; 3744 } 3745 /* 3746 * For use in fast paths after init_mem_debugging() has run, or when a 3747 * false negative result is not harmful when called too early. 3748 */ 3749 static inline bool page_poisoning_enabled_static(void) 3750 { 3751 return static_branch_unlikely(&_page_poisoning_enabled); 3752 } 3753 static inline void kernel_poison_pages(struct page *page, int numpages) 3754 { 3755 if (page_poisoning_enabled_static()) 3756 __kernel_poison_pages(page, numpages); 3757 } 3758 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3759 { 3760 if (page_poisoning_enabled_static()) 3761 __kernel_unpoison_pages(page, numpages); 3762 } 3763 #else 3764 static inline bool page_poisoning_enabled(void) { return false; } 3765 static inline bool page_poisoning_enabled_static(void) { return false; } 3766 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3767 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3768 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3769 #endif 3770 3771 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3772 static inline bool want_init_on_alloc(gfp_t flags) 3773 { 3774 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3775 &init_on_alloc)) 3776 return true; 3777 return flags & __GFP_ZERO; 3778 } 3779 3780 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3781 static inline bool want_init_on_free(void) 3782 { 3783 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3784 &init_on_free); 3785 } 3786 3787 extern bool _debug_pagealloc_enabled_early; 3788 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3789 3790 static inline bool debug_pagealloc_enabled(void) 3791 { 3792 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3793 _debug_pagealloc_enabled_early; 3794 } 3795 3796 /* 3797 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3798 * or when a false negative result is not harmful when called too early. 3799 */ 3800 static inline bool debug_pagealloc_enabled_static(void) 3801 { 3802 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3803 return false; 3804 3805 return static_branch_unlikely(&_debug_pagealloc_enabled); 3806 } 3807 3808 /* 3809 * To support DEBUG_PAGEALLOC architecture must ensure that 3810 * __kernel_map_pages() never fails 3811 */ 3812 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3813 #ifdef CONFIG_DEBUG_PAGEALLOC 3814 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3815 { 3816 if (debug_pagealloc_enabled_static()) 3817 __kernel_map_pages(page, numpages, 1); 3818 } 3819 3820 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3821 { 3822 if (debug_pagealloc_enabled_static()) 3823 __kernel_map_pages(page, numpages, 0); 3824 } 3825 3826 extern unsigned int _debug_guardpage_minorder; 3827 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3828 3829 static inline unsigned int debug_guardpage_minorder(void) 3830 { 3831 return _debug_guardpage_minorder; 3832 } 3833 3834 static inline bool debug_guardpage_enabled(void) 3835 { 3836 return static_branch_unlikely(&_debug_guardpage_enabled); 3837 } 3838 3839 static inline bool page_is_guard(struct page *page) 3840 { 3841 if (!debug_guardpage_enabled()) 3842 return false; 3843 3844 return PageGuard(page); 3845 } 3846 3847 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3848 static inline bool set_page_guard(struct zone *zone, struct page *page, 3849 unsigned int order) 3850 { 3851 if (!debug_guardpage_enabled()) 3852 return false; 3853 return __set_page_guard(zone, page, order); 3854 } 3855 3856 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3857 static inline void clear_page_guard(struct zone *zone, struct page *page, 3858 unsigned int order) 3859 { 3860 if (!debug_guardpage_enabled()) 3861 return; 3862 __clear_page_guard(zone, page, order); 3863 } 3864 3865 #else /* CONFIG_DEBUG_PAGEALLOC */ 3866 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3867 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3868 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3869 static inline bool debug_guardpage_enabled(void) { return false; } 3870 static inline bool page_is_guard(struct page *page) { return false; } 3871 static inline bool set_page_guard(struct zone *zone, struct page *page, 3872 unsigned int order) { return false; } 3873 static inline void clear_page_guard(struct zone *zone, struct page *page, 3874 unsigned int order) {} 3875 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3876 3877 #ifdef __HAVE_ARCH_GATE_AREA 3878 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3879 extern int in_gate_area_no_mm(unsigned long addr); 3880 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3881 #else 3882 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3883 { 3884 return NULL; 3885 } 3886 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3887 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3888 { 3889 return 0; 3890 } 3891 #endif /* __HAVE_ARCH_GATE_AREA */ 3892 3893 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3894 3895 #ifdef CONFIG_SYSCTL 3896 extern int sysctl_drop_caches; 3897 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3898 loff_t *); 3899 #endif 3900 3901 void drop_slab(void); 3902 3903 #ifndef CONFIG_MMU 3904 #define randomize_va_space 0 3905 #else 3906 extern int randomize_va_space; 3907 #endif 3908 3909 const char * arch_vma_name(struct vm_area_struct *vma); 3910 #ifdef CONFIG_MMU 3911 void print_vma_addr(char *prefix, unsigned long rip); 3912 #else 3913 static inline void print_vma_addr(char *prefix, unsigned long rip) 3914 { 3915 } 3916 #endif 3917 3918 void *sparse_buffer_alloc(unsigned long size); 3919 struct page * __populate_section_memmap(unsigned long pfn, 3920 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3921 struct dev_pagemap *pgmap); 3922 void pmd_init(void *addr); 3923 void pud_init(void *addr); 3924 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3925 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3926 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3927 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3928 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3929 struct vmem_altmap *altmap, struct page *reuse); 3930 void *vmemmap_alloc_block(unsigned long size, int node); 3931 struct vmem_altmap; 3932 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3933 struct vmem_altmap *altmap); 3934 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3935 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3936 unsigned long addr, unsigned long next); 3937 int vmemmap_check_pmd(pmd_t *pmd, int node, 3938 unsigned long addr, unsigned long next); 3939 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3940 int node, struct vmem_altmap *altmap); 3941 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3942 int node, struct vmem_altmap *altmap); 3943 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3944 struct vmem_altmap *altmap); 3945 void vmemmap_populate_print_last(void); 3946 #ifdef CONFIG_MEMORY_HOTPLUG 3947 void vmemmap_free(unsigned long start, unsigned long end, 3948 struct vmem_altmap *altmap); 3949 #endif 3950 3951 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3952 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3953 { 3954 /* number of pfns from base where pfn_to_page() is valid */ 3955 if (altmap) 3956 return altmap->reserve + altmap->free; 3957 return 0; 3958 } 3959 3960 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3961 unsigned long nr_pfns) 3962 { 3963 altmap->alloc -= nr_pfns; 3964 } 3965 #else 3966 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3967 { 3968 return 0; 3969 } 3970 3971 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3972 unsigned long nr_pfns) 3973 { 3974 } 3975 #endif 3976 3977 #define VMEMMAP_RESERVE_NR 2 3978 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3979 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3980 struct dev_pagemap *pgmap) 3981 { 3982 unsigned long nr_pages; 3983 unsigned long nr_vmemmap_pages; 3984 3985 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3986 return false; 3987 3988 nr_pages = pgmap_vmemmap_nr(pgmap); 3989 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3990 /* 3991 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3992 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3993 */ 3994 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3995 } 3996 /* 3997 * If we don't have an architecture override, use the generic rule 3998 */ 3999 #ifndef vmemmap_can_optimize 4000 #define vmemmap_can_optimize __vmemmap_can_optimize 4001 #endif 4002 4003 #else 4004 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4005 struct dev_pagemap *pgmap) 4006 { 4007 return false; 4008 } 4009 #endif 4010 4011 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 4012 unsigned long nr_pages); 4013 4014 enum mf_flags { 4015 MF_COUNT_INCREASED = 1 << 0, 4016 MF_ACTION_REQUIRED = 1 << 1, 4017 MF_MUST_KILL = 1 << 2, 4018 MF_SOFT_OFFLINE = 1 << 3, 4019 MF_UNPOISON = 1 << 4, 4020 MF_SW_SIMULATED = 1 << 5, 4021 MF_NO_RETRY = 1 << 6, 4022 MF_MEM_PRE_REMOVE = 1 << 7, 4023 }; 4024 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4025 unsigned long count, int mf_flags); 4026 extern int memory_failure(unsigned long pfn, int flags); 4027 extern void memory_failure_queue_kick(int cpu); 4028 extern int unpoison_memory(unsigned long pfn); 4029 extern atomic_long_t num_poisoned_pages __read_mostly; 4030 extern int soft_offline_page(unsigned long pfn, int flags); 4031 #ifdef CONFIG_MEMORY_FAILURE 4032 /* 4033 * Sysfs entries for memory failure handling statistics. 4034 */ 4035 extern const struct attribute_group memory_failure_attr_group; 4036 extern void memory_failure_queue(unsigned long pfn, int flags); 4037 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4038 bool *migratable_cleared); 4039 void num_poisoned_pages_inc(unsigned long pfn); 4040 void num_poisoned_pages_sub(unsigned long pfn, long i); 4041 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 4042 #else 4043 static inline void memory_failure_queue(unsigned long pfn, int flags) 4044 { 4045 } 4046 4047 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4048 bool *migratable_cleared) 4049 { 4050 return 0; 4051 } 4052 4053 static inline void num_poisoned_pages_inc(unsigned long pfn) 4054 { 4055 } 4056 4057 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4058 { 4059 } 4060 #endif 4061 4062 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 4063 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 4064 struct vm_area_struct *vma, struct list_head *to_kill, 4065 unsigned long ksm_addr); 4066 #endif 4067 4068 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4069 extern void memblk_nr_poison_inc(unsigned long pfn); 4070 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4071 #else 4072 static inline void memblk_nr_poison_inc(unsigned long pfn) 4073 { 4074 } 4075 4076 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4077 { 4078 } 4079 #endif 4080 4081 #ifndef arch_memory_failure 4082 static inline int arch_memory_failure(unsigned long pfn, int flags) 4083 { 4084 return -ENXIO; 4085 } 4086 #endif 4087 4088 #ifndef arch_is_platform_page 4089 static inline bool arch_is_platform_page(u64 paddr) 4090 { 4091 return false; 4092 } 4093 #endif 4094 4095 /* 4096 * Error handlers for various types of pages. 4097 */ 4098 enum mf_result { 4099 MF_IGNORED, /* Error: cannot be handled */ 4100 MF_FAILED, /* Error: handling failed */ 4101 MF_DELAYED, /* Will be handled later */ 4102 MF_RECOVERED, /* Successfully recovered */ 4103 }; 4104 4105 enum mf_action_page_type { 4106 MF_MSG_KERNEL, 4107 MF_MSG_KERNEL_HIGH_ORDER, 4108 MF_MSG_SLAB, 4109 MF_MSG_DIFFERENT_COMPOUND, 4110 MF_MSG_HUGE, 4111 MF_MSG_FREE_HUGE, 4112 MF_MSG_UNMAP_FAILED, 4113 MF_MSG_DIRTY_SWAPCACHE, 4114 MF_MSG_CLEAN_SWAPCACHE, 4115 MF_MSG_DIRTY_MLOCKED_LRU, 4116 MF_MSG_CLEAN_MLOCKED_LRU, 4117 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4118 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4119 MF_MSG_DIRTY_LRU, 4120 MF_MSG_CLEAN_LRU, 4121 MF_MSG_TRUNCATED_LRU, 4122 MF_MSG_BUDDY, 4123 MF_MSG_DAX, 4124 MF_MSG_UNSPLIT_THP, 4125 MF_MSG_UNKNOWN, 4126 }; 4127 4128 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4129 extern void clear_huge_page(struct page *page, 4130 unsigned long addr_hint, 4131 unsigned int pages_per_huge_page); 4132 int copy_user_large_folio(struct folio *dst, struct folio *src, 4133 unsigned long addr_hint, 4134 struct vm_area_struct *vma); 4135 long copy_folio_from_user(struct folio *dst_folio, 4136 const void __user *usr_src, 4137 bool allow_pagefault); 4138 4139 /** 4140 * vma_is_special_huge - Are transhuge page-table entries considered special? 4141 * @vma: Pointer to the struct vm_area_struct to consider 4142 * 4143 * Whether transhuge page-table entries are considered "special" following 4144 * the definition in vm_normal_page(). 4145 * 4146 * Return: true if transhuge page-table entries should be considered special, 4147 * false otherwise. 4148 */ 4149 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4150 { 4151 return vma_is_dax(vma) || (vma->vm_file && 4152 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4153 } 4154 4155 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4156 4157 #if MAX_NUMNODES > 1 4158 void __init setup_nr_node_ids(void); 4159 #else 4160 static inline void setup_nr_node_ids(void) {} 4161 #endif 4162 4163 extern int memcmp_pages(struct page *page1, struct page *page2); 4164 4165 static inline int pages_identical(struct page *page1, struct page *page2) 4166 { 4167 return !memcmp_pages(page1, page2); 4168 } 4169 4170 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4171 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4172 pgoff_t first_index, pgoff_t nr, 4173 pgoff_t bitmap_pgoff, 4174 unsigned long *bitmap, 4175 pgoff_t *start, 4176 pgoff_t *end); 4177 4178 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4179 pgoff_t first_index, pgoff_t nr); 4180 #endif 4181 4182 extern int sysctl_nr_trim_pages; 4183 4184 #ifdef CONFIG_PRINTK 4185 void mem_dump_obj(void *object); 4186 #else 4187 static inline void mem_dump_obj(void *object) {} 4188 #endif 4189 4190 /** 4191 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4192 * handle them. 4193 * @seals: the seals to check 4194 * @vma: the vma to operate on 4195 * 4196 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4197 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4198 */ 4199 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4200 { 4201 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4202 /* 4203 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4204 * write seals are active. 4205 */ 4206 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4207 return -EPERM; 4208 4209 /* 4210 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4211 * MAP_SHARED and read-only, take care to not allow mprotect to 4212 * revert protections on such mappings. Do this only for shared 4213 * mappings. For private mappings, don't need to mask 4214 * VM_MAYWRITE as we still want them to be COW-writable. 4215 */ 4216 if (vma->vm_flags & VM_SHARED) 4217 vm_flags_clear(vma, VM_MAYWRITE); 4218 } 4219 4220 return 0; 4221 } 4222 4223 #ifdef CONFIG_ANON_VMA_NAME 4224 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4225 unsigned long len_in, 4226 struct anon_vma_name *anon_name); 4227 #else 4228 static inline int 4229 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4230 unsigned long len_in, struct anon_vma_name *anon_name) { 4231 return 0; 4232 } 4233 #endif 4234 4235 #ifdef CONFIG_UNACCEPTED_MEMORY 4236 4237 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4238 void accept_memory(phys_addr_t start, phys_addr_t end); 4239 4240 #else 4241 4242 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4243 phys_addr_t end) 4244 { 4245 return false; 4246 } 4247 4248 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4249 { 4250 } 4251 4252 #endif 4253 4254 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4255 { 4256 phys_addr_t paddr = pfn << PAGE_SHIFT; 4257 4258 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4259 } 4260 4261 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4262 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4263 4264 #endif /* _LINUX_MM_H */ 4265