1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 31 static inline void set_max_mapnr(unsigned long limit) 32 { 33 max_mapnr = limit; 34 } 35 #else 36 static inline void set_max_mapnr(unsigned long limit) { } 37 #endif 38 39 extern unsigned long totalram_pages; 40 extern void * high_memory; 41 extern int page_cluster; 42 43 #ifdef CONFIG_SYSCTL 44 extern int sysctl_legacy_va_layout; 45 #else 46 #define sysctl_legacy_va_layout 0 47 #endif 48 49 #include <asm/page.h> 50 #include <asm/pgtable.h> 51 #include <asm/processor.h> 52 53 extern unsigned long sysctl_user_reserve_kbytes; 54 extern unsigned long sysctl_admin_reserve_kbytes; 55 56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 57 58 /* to align the pointer to the (next) page boundary */ 59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 60 61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 62 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 63 64 /* 65 * Linux kernel virtual memory manager primitives. 66 * The idea being to have a "virtual" mm in the same way 67 * we have a virtual fs - giving a cleaner interface to the 68 * mm details, and allowing different kinds of memory mappings 69 * (from shared memory to executable loading to arbitrary 70 * mmap() functions). 71 */ 72 73 extern struct kmem_cache *vm_area_cachep; 74 75 #ifndef CONFIG_MMU 76 extern struct rb_root nommu_region_tree; 77 extern struct rw_semaphore nommu_region_sem; 78 79 extern unsigned int kobjsize(const void *objp); 80 #endif 81 82 /* 83 * vm_flags in vm_area_struct, see mm_types.h. 84 */ 85 #define VM_NONE 0x00000000 86 87 #define VM_READ 0x00000001 /* currently active flags */ 88 #define VM_WRITE 0x00000002 89 #define VM_EXEC 0x00000004 90 #define VM_SHARED 0x00000008 91 92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 93 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 94 #define VM_MAYWRITE 0x00000020 95 #define VM_MAYEXEC 0x00000040 96 #define VM_MAYSHARE 0x00000080 97 98 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 99 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 100 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 101 102 #define VM_LOCKED 0x00002000 103 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 104 105 /* Used by sys_madvise() */ 106 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 107 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 108 109 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 110 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 111 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 112 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 113 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 114 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 115 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 116 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 117 118 #ifdef CONFIG_MEM_SOFT_DIRTY 119 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 120 #else 121 # define VM_SOFTDIRTY 0 122 #endif 123 124 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 125 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 126 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 127 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 128 129 #if defined(CONFIG_X86) 130 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 131 #elif defined(CONFIG_PPC) 132 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 133 #elif defined(CONFIG_PARISC) 134 # define VM_GROWSUP VM_ARCH_1 135 #elif defined(CONFIG_METAG) 136 # define VM_GROWSUP VM_ARCH_1 137 #elif defined(CONFIG_IA64) 138 # define VM_GROWSUP VM_ARCH_1 139 #elif !defined(CONFIG_MMU) 140 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 141 #endif 142 143 #ifndef VM_GROWSUP 144 # define VM_GROWSUP VM_NONE 145 #endif 146 147 /* Bits set in the VMA until the stack is in its final location */ 148 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 149 150 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 151 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 152 #endif 153 154 #ifdef CONFIG_STACK_GROWSUP 155 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 156 #else 157 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 158 #endif 159 160 /* 161 * Special vmas that are non-mergable, non-mlock()able. 162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 163 */ 164 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 165 166 /* 167 * mapping from the currently active vm_flags protection bits (the 168 * low four bits) to a page protection mask.. 169 */ 170 extern pgprot_t protection_map[16]; 171 172 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 173 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 174 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 175 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 176 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 177 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 178 #define FAULT_FLAG_TRIED 0x40 /* second try */ 179 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 180 181 /* 182 * vm_fault is filled by the the pagefault handler and passed to the vma's 183 * ->fault function. The vma's ->fault is responsible for returning a bitmask 184 * of VM_FAULT_xxx flags that give details about how the fault was handled. 185 * 186 * pgoff should be used in favour of virtual_address, if possible. If pgoff 187 * is used, one may implement ->remap_pages to get nonlinear mapping support. 188 */ 189 struct vm_fault { 190 unsigned int flags; /* FAULT_FLAG_xxx flags */ 191 pgoff_t pgoff; /* Logical page offset based on vma */ 192 void __user *virtual_address; /* Faulting virtual address */ 193 194 struct page *page; /* ->fault handlers should return a 195 * page here, unless VM_FAULT_NOPAGE 196 * is set (which is also implied by 197 * VM_FAULT_ERROR). 198 */ 199 }; 200 201 /* 202 * These are the virtual MM functions - opening of an area, closing and 203 * unmapping it (needed to keep files on disk up-to-date etc), pointer 204 * to the functions called when a no-page or a wp-page exception occurs. 205 */ 206 struct vm_operations_struct { 207 void (*open)(struct vm_area_struct * area); 208 void (*close)(struct vm_area_struct * area); 209 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 210 211 /* notification that a previously read-only page is about to become 212 * writable, if an error is returned it will cause a SIGBUS */ 213 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 214 215 /* called by access_process_vm when get_user_pages() fails, typically 216 * for use by special VMAs that can switch between memory and hardware 217 */ 218 int (*access)(struct vm_area_struct *vma, unsigned long addr, 219 void *buf, int len, int write); 220 #ifdef CONFIG_NUMA 221 /* 222 * set_policy() op must add a reference to any non-NULL @new mempolicy 223 * to hold the policy upon return. Caller should pass NULL @new to 224 * remove a policy and fall back to surrounding context--i.e. do not 225 * install a MPOL_DEFAULT policy, nor the task or system default 226 * mempolicy. 227 */ 228 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 229 230 /* 231 * get_policy() op must add reference [mpol_get()] to any policy at 232 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 233 * in mm/mempolicy.c will do this automatically. 234 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 235 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 236 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 237 * must return NULL--i.e., do not "fallback" to task or system default 238 * policy. 239 */ 240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 241 unsigned long addr); 242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 243 const nodemask_t *to, unsigned long flags); 244 #endif 245 /* called by sys_remap_file_pages() to populate non-linear mapping */ 246 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 247 unsigned long size, pgoff_t pgoff); 248 }; 249 250 struct mmu_gather; 251 struct inode; 252 253 #define page_private(page) ((page)->private) 254 #define set_page_private(page, v) ((page)->private = (v)) 255 256 /* It's valid only if the page is free path or free_list */ 257 static inline void set_freepage_migratetype(struct page *page, int migratetype) 258 { 259 page->index = migratetype; 260 } 261 262 /* It's valid only if the page is free path or free_list */ 263 static inline int get_freepage_migratetype(struct page *page) 264 { 265 return page->index; 266 } 267 268 /* 269 * FIXME: take this include out, include page-flags.h in 270 * files which need it (119 of them) 271 */ 272 #include <linux/page-flags.h> 273 #include <linux/huge_mm.h> 274 275 /* 276 * Methods to modify the page usage count. 277 * 278 * What counts for a page usage: 279 * - cache mapping (page->mapping) 280 * - private data (page->private) 281 * - page mapped in a task's page tables, each mapping 282 * is counted separately 283 * 284 * Also, many kernel routines increase the page count before a critical 285 * routine so they can be sure the page doesn't go away from under them. 286 */ 287 288 /* 289 * Drop a ref, return true if the refcount fell to zero (the page has no users) 290 */ 291 static inline int put_page_testzero(struct page *page) 292 { 293 VM_BUG_ON(atomic_read(&page->_count) == 0); 294 return atomic_dec_and_test(&page->_count); 295 } 296 297 /* 298 * Try to grab a ref unless the page has a refcount of zero, return false if 299 * that is the case. 300 */ 301 static inline int get_page_unless_zero(struct page *page) 302 { 303 return atomic_inc_not_zero(&page->_count); 304 } 305 306 extern int page_is_ram(unsigned long pfn); 307 308 /* Support for virtually mapped pages */ 309 struct page *vmalloc_to_page(const void *addr); 310 unsigned long vmalloc_to_pfn(const void *addr); 311 312 /* 313 * Determine if an address is within the vmalloc range 314 * 315 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 316 * is no special casing required. 317 */ 318 static inline int is_vmalloc_addr(const void *x) 319 { 320 #ifdef CONFIG_MMU 321 unsigned long addr = (unsigned long)x; 322 323 return addr >= VMALLOC_START && addr < VMALLOC_END; 324 #else 325 return 0; 326 #endif 327 } 328 #ifdef CONFIG_MMU 329 extern int is_vmalloc_or_module_addr(const void *x); 330 #else 331 static inline int is_vmalloc_or_module_addr(const void *x) 332 { 333 return 0; 334 } 335 #endif 336 337 static inline void compound_lock(struct page *page) 338 { 339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 340 VM_BUG_ON(PageSlab(page)); 341 bit_spin_lock(PG_compound_lock, &page->flags); 342 #endif 343 } 344 345 static inline void compound_unlock(struct page *page) 346 { 347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 348 VM_BUG_ON(PageSlab(page)); 349 bit_spin_unlock(PG_compound_lock, &page->flags); 350 #endif 351 } 352 353 static inline unsigned long compound_lock_irqsave(struct page *page) 354 { 355 unsigned long uninitialized_var(flags); 356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 357 local_irq_save(flags); 358 compound_lock(page); 359 #endif 360 return flags; 361 } 362 363 static inline void compound_unlock_irqrestore(struct page *page, 364 unsigned long flags) 365 { 366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 367 compound_unlock(page); 368 local_irq_restore(flags); 369 #endif 370 } 371 372 static inline struct page *compound_head(struct page *page) 373 { 374 if (unlikely(PageTail(page))) 375 return page->first_page; 376 return page; 377 } 378 379 /* 380 * The atomic page->_mapcount, starts from -1: so that transitions 381 * both from it and to it can be tracked, using atomic_inc_and_test 382 * and atomic_add_negative(-1). 383 */ 384 static inline void page_mapcount_reset(struct page *page) 385 { 386 atomic_set(&(page)->_mapcount, -1); 387 } 388 389 static inline int page_mapcount(struct page *page) 390 { 391 return atomic_read(&(page)->_mapcount) + 1; 392 } 393 394 static inline int page_count(struct page *page) 395 { 396 return atomic_read(&compound_head(page)->_count); 397 } 398 399 static inline void get_huge_page_tail(struct page *page) 400 { 401 /* 402 * __split_huge_page_refcount() cannot run 403 * from under us. 404 */ 405 VM_BUG_ON(page_mapcount(page) < 0); 406 VM_BUG_ON(atomic_read(&page->_count) != 0); 407 atomic_inc(&page->_mapcount); 408 } 409 410 extern bool __get_page_tail(struct page *page); 411 412 static inline void get_page(struct page *page) 413 { 414 if (unlikely(PageTail(page))) 415 if (likely(__get_page_tail(page))) 416 return; 417 /* 418 * Getting a normal page or the head of a compound page 419 * requires to already have an elevated page->_count. 420 */ 421 VM_BUG_ON(atomic_read(&page->_count) <= 0); 422 atomic_inc(&page->_count); 423 } 424 425 static inline struct page *virt_to_head_page(const void *x) 426 { 427 struct page *page = virt_to_page(x); 428 return compound_head(page); 429 } 430 431 /* 432 * Setup the page count before being freed into the page allocator for 433 * the first time (boot or memory hotplug) 434 */ 435 static inline void init_page_count(struct page *page) 436 { 437 atomic_set(&page->_count, 1); 438 } 439 440 /* 441 * PageBuddy() indicate that the page is free and in the buddy system 442 * (see mm/page_alloc.c). 443 * 444 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 445 * -2 so that an underflow of the page_mapcount() won't be mistaken 446 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 447 * efficiently by most CPU architectures. 448 */ 449 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 450 451 static inline int PageBuddy(struct page *page) 452 { 453 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 454 } 455 456 static inline void __SetPageBuddy(struct page *page) 457 { 458 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 459 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 460 } 461 462 static inline void __ClearPageBuddy(struct page *page) 463 { 464 VM_BUG_ON(!PageBuddy(page)); 465 atomic_set(&page->_mapcount, -1); 466 } 467 468 void put_page(struct page *page); 469 void put_pages_list(struct list_head *pages); 470 471 void split_page(struct page *page, unsigned int order); 472 int split_free_page(struct page *page); 473 474 /* 475 * Compound pages have a destructor function. Provide a 476 * prototype for that function and accessor functions. 477 * These are _only_ valid on the head of a PG_compound page. 478 */ 479 typedef void compound_page_dtor(struct page *); 480 481 static inline void set_compound_page_dtor(struct page *page, 482 compound_page_dtor *dtor) 483 { 484 page[1].lru.next = (void *)dtor; 485 } 486 487 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 488 { 489 return (compound_page_dtor *)page[1].lru.next; 490 } 491 492 static inline int compound_order(struct page *page) 493 { 494 if (!PageHead(page)) 495 return 0; 496 return (unsigned long)page[1].lru.prev; 497 } 498 499 static inline void set_compound_order(struct page *page, unsigned long order) 500 { 501 page[1].lru.prev = (void *)order; 502 } 503 504 #ifdef CONFIG_MMU 505 /* 506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 507 * servicing faults for write access. In the normal case, do always want 508 * pte_mkwrite. But get_user_pages can cause write faults for mappings 509 * that do not have writing enabled, when used by access_process_vm. 510 */ 511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 512 { 513 if (likely(vma->vm_flags & VM_WRITE)) 514 pte = pte_mkwrite(pte); 515 return pte; 516 } 517 #endif 518 519 /* 520 * Multiple processes may "see" the same page. E.g. for untouched 521 * mappings of /dev/null, all processes see the same page full of 522 * zeroes, and text pages of executables and shared libraries have 523 * only one copy in memory, at most, normally. 524 * 525 * For the non-reserved pages, page_count(page) denotes a reference count. 526 * page_count() == 0 means the page is free. page->lru is then used for 527 * freelist management in the buddy allocator. 528 * page_count() > 0 means the page has been allocated. 529 * 530 * Pages are allocated by the slab allocator in order to provide memory 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 533 * unless a particular usage is carefully commented. (the responsibility of 534 * freeing the kmalloc memory is the caller's, of course). 535 * 536 * A page may be used by anyone else who does a __get_free_page(). 537 * In this case, page_count still tracks the references, and should only 538 * be used through the normal accessor functions. The top bits of page->flags 539 * and page->virtual store page management information, but all other fields 540 * are unused and could be used privately, carefully. The management of this 541 * page is the responsibility of the one who allocated it, and those who have 542 * subsequently been given references to it. 543 * 544 * The other pages (we may call them "pagecache pages") are completely 545 * managed by the Linux memory manager: I/O, buffers, swapping etc. 546 * The following discussion applies only to them. 547 * 548 * A pagecache page contains an opaque `private' member, which belongs to the 549 * page's address_space. Usually, this is the address of a circular list of 550 * the page's disk buffers. PG_private must be set to tell the VM to call 551 * into the filesystem to release these pages. 552 * 553 * A page may belong to an inode's memory mapping. In this case, page->mapping 554 * is the pointer to the inode, and page->index is the file offset of the page, 555 * in units of PAGE_CACHE_SIZE. 556 * 557 * If pagecache pages are not associated with an inode, they are said to be 558 * anonymous pages. These may become associated with the swapcache, and in that 559 * case PG_swapcache is set, and page->private is an offset into the swapcache. 560 * 561 * In either case (swapcache or inode backed), the pagecache itself holds one 562 * reference to the page. Setting PG_private should also increment the 563 * refcount. The each user mapping also has a reference to the page. 564 * 565 * The pagecache pages are stored in a per-mapping radix tree, which is 566 * rooted at mapping->page_tree, and indexed by offset. 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 568 * lists, we instead now tag pages as dirty/writeback in the radix tree. 569 * 570 * All pagecache pages may be subject to I/O: 571 * - inode pages may need to be read from disk, 572 * - inode pages which have been modified and are MAP_SHARED may need 573 * to be written back to the inode on disk, 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 575 * modified may need to be swapped out to swap space and (later) to be read 576 * back into memory. 577 */ 578 579 /* 580 * The zone field is never updated after free_area_init_core() 581 * sets it, so none of the operations on it need to be atomic. 582 */ 583 584 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 585 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 586 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 587 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 588 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 589 590 /* 591 * Define the bit shifts to access each section. For non-existent 592 * sections we define the shift as 0; that plus a 0 mask ensures 593 * the compiler will optimise away reference to them. 594 */ 595 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 596 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 597 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 598 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 599 600 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 601 #ifdef NODE_NOT_IN_PAGE_FLAGS 602 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 603 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 604 SECTIONS_PGOFF : ZONES_PGOFF) 605 #else 606 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 607 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 608 NODES_PGOFF : ZONES_PGOFF) 609 #endif 610 611 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 612 613 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 614 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 615 #endif 616 617 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 618 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 619 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 620 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 621 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 622 623 static inline enum zone_type page_zonenum(const struct page *page) 624 { 625 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 626 } 627 628 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 629 #define SECTION_IN_PAGE_FLAGS 630 #endif 631 632 /* 633 * The identification function is mainly used by the buddy allocator for 634 * determining if two pages could be buddies. We are not really identifying 635 * the zone since we could be using the section number id if we do not have 636 * node id available in page flags. 637 * We only guarantee that it will return the same value for two combinable 638 * pages in a zone. 639 */ 640 static inline int page_zone_id(struct page *page) 641 { 642 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 643 } 644 645 static inline int zone_to_nid(struct zone *zone) 646 { 647 #ifdef CONFIG_NUMA 648 return zone->node; 649 #else 650 return 0; 651 #endif 652 } 653 654 #ifdef NODE_NOT_IN_PAGE_FLAGS 655 extern int page_to_nid(const struct page *page); 656 #else 657 static inline int page_to_nid(const struct page *page) 658 { 659 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 660 } 661 #endif 662 663 #ifdef CONFIG_NUMA_BALANCING 664 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 665 static inline int page_nid_xchg_last(struct page *page, int nid) 666 { 667 return xchg(&page->_last_nid, nid); 668 } 669 670 static inline int page_nid_last(struct page *page) 671 { 672 return page->_last_nid; 673 } 674 static inline void page_nid_reset_last(struct page *page) 675 { 676 page->_last_nid = -1; 677 } 678 #else 679 static inline int page_nid_last(struct page *page) 680 { 681 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 682 } 683 684 extern int page_nid_xchg_last(struct page *page, int nid); 685 686 static inline void page_nid_reset_last(struct page *page) 687 { 688 int nid = (1 << LAST_NID_SHIFT) - 1; 689 690 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 691 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 692 } 693 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 694 #else 695 static inline int page_nid_xchg_last(struct page *page, int nid) 696 { 697 return page_to_nid(page); 698 } 699 700 static inline int page_nid_last(struct page *page) 701 { 702 return page_to_nid(page); 703 } 704 705 static inline void page_nid_reset_last(struct page *page) 706 { 707 } 708 #endif 709 710 static inline struct zone *page_zone(const struct page *page) 711 { 712 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 713 } 714 715 #ifdef SECTION_IN_PAGE_FLAGS 716 static inline void set_page_section(struct page *page, unsigned long section) 717 { 718 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 719 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 720 } 721 722 static inline unsigned long page_to_section(const struct page *page) 723 { 724 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 725 } 726 #endif 727 728 static inline void set_page_zone(struct page *page, enum zone_type zone) 729 { 730 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 731 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 732 } 733 734 static inline void set_page_node(struct page *page, unsigned long node) 735 { 736 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 737 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 738 } 739 740 static inline void set_page_links(struct page *page, enum zone_type zone, 741 unsigned long node, unsigned long pfn) 742 { 743 set_page_zone(page, zone); 744 set_page_node(page, node); 745 #ifdef SECTION_IN_PAGE_FLAGS 746 set_page_section(page, pfn_to_section_nr(pfn)); 747 #endif 748 } 749 750 /* 751 * Some inline functions in vmstat.h depend on page_zone() 752 */ 753 #include <linux/vmstat.h> 754 755 static __always_inline void *lowmem_page_address(const struct page *page) 756 { 757 return __va(PFN_PHYS(page_to_pfn(page))); 758 } 759 760 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 761 #define HASHED_PAGE_VIRTUAL 762 #endif 763 764 #if defined(WANT_PAGE_VIRTUAL) 765 #define page_address(page) ((page)->virtual) 766 #define set_page_address(page, address) \ 767 do { \ 768 (page)->virtual = (address); \ 769 } while(0) 770 #define page_address_init() do { } while(0) 771 #endif 772 773 #if defined(HASHED_PAGE_VIRTUAL) 774 void *page_address(const struct page *page); 775 void set_page_address(struct page *page, void *virtual); 776 void page_address_init(void); 777 #endif 778 779 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 780 #define page_address(page) lowmem_page_address(page) 781 #define set_page_address(page, address) do { } while(0) 782 #define page_address_init() do { } while(0) 783 #endif 784 785 /* 786 * On an anonymous page mapped into a user virtual memory area, 787 * page->mapping points to its anon_vma, not to a struct address_space; 788 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 789 * 790 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 791 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 792 * and then page->mapping points, not to an anon_vma, but to a private 793 * structure which KSM associates with that merged page. See ksm.h. 794 * 795 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 796 * 797 * Please note that, confusingly, "page_mapping" refers to the inode 798 * address_space which maps the page from disk; whereas "page_mapped" 799 * refers to user virtual address space into which the page is mapped. 800 */ 801 #define PAGE_MAPPING_ANON 1 802 #define PAGE_MAPPING_KSM 2 803 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 804 805 extern struct address_space *page_mapping(struct page *page); 806 807 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 808 static inline void *page_rmapping(struct page *page) 809 { 810 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 811 } 812 813 extern struct address_space *__page_file_mapping(struct page *); 814 815 static inline 816 struct address_space *page_file_mapping(struct page *page) 817 { 818 if (unlikely(PageSwapCache(page))) 819 return __page_file_mapping(page); 820 821 return page->mapping; 822 } 823 824 static inline int PageAnon(struct page *page) 825 { 826 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 827 } 828 829 /* 830 * Return the pagecache index of the passed page. Regular pagecache pages 831 * use ->index whereas swapcache pages use ->private 832 */ 833 static inline pgoff_t page_index(struct page *page) 834 { 835 if (unlikely(PageSwapCache(page))) 836 return page_private(page); 837 return page->index; 838 } 839 840 extern pgoff_t __page_file_index(struct page *page); 841 842 /* 843 * Return the file index of the page. Regular pagecache pages use ->index 844 * whereas swapcache pages use swp_offset(->private) 845 */ 846 static inline pgoff_t page_file_index(struct page *page) 847 { 848 if (unlikely(PageSwapCache(page))) 849 return __page_file_index(page); 850 851 return page->index; 852 } 853 854 /* 855 * Return true if this page is mapped into pagetables. 856 */ 857 static inline int page_mapped(struct page *page) 858 { 859 return atomic_read(&(page)->_mapcount) >= 0; 860 } 861 862 /* 863 * Different kinds of faults, as returned by handle_mm_fault(). 864 * Used to decide whether a process gets delivered SIGBUS or 865 * just gets major/minor fault counters bumped up. 866 */ 867 868 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 869 870 #define VM_FAULT_OOM 0x0001 871 #define VM_FAULT_SIGBUS 0x0002 872 #define VM_FAULT_MAJOR 0x0004 873 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 874 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 875 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 876 877 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 878 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 879 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 880 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 881 882 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 883 884 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 885 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 886 887 /* Encode hstate index for a hwpoisoned large page */ 888 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 889 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 890 891 /* 892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 893 */ 894 extern void pagefault_out_of_memory(void); 895 896 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 897 898 /* 899 * Flags passed to show_mem() and show_free_areas() to suppress output in 900 * various contexts. 901 */ 902 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 903 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 904 905 extern void show_free_areas(unsigned int flags); 906 extern bool skip_free_areas_node(unsigned int flags, int nid); 907 908 int shmem_zero_setup(struct vm_area_struct *); 909 910 extern int can_do_mlock(void); 911 extern int user_shm_lock(size_t, struct user_struct *); 912 extern void user_shm_unlock(size_t, struct user_struct *); 913 914 /* 915 * Parameter block passed down to zap_pte_range in exceptional cases. 916 */ 917 struct zap_details { 918 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 919 struct address_space *check_mapping; /* Check page->mapping if set */ 920 pgoff_t first_index; /* Lowest page->index to unmap */ 921 pgoff_t last_index; /* Highest page->index to unmap */ 922 }; 923 924 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 925 pte_t pte); 926 927 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 928 unsigned long size); 929 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 930 unsigned long size, struct zap_details *); 931 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 932 unsigned long start, unsigned long end); 933 934 /** 935 * mm_walk - callbacks for walk_page_range 936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 939 * this handler is required to be able to handle 940 * pmd_trans_huge() pmds. They may simply choose to 941 * split_huge_page() instead of handling it explicitly. 942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 943 * @pte_hole: if set, called for each hole at all levels 944 * @hugetlb_entry: if set, called for each hugetlb entry 945 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 946 * is used. 947 * 948 * (see walk_page_range for more details) 949 */ 950 struct mm_walk { 951 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 952 unsigned long next, struct mm_walk *walk); 953 int (*pud_entry)(pud_t *pud, unsigned long addr, 954 unsigned long next, struct mm_walk *walk); 955 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 956 unsigned long next, struct mm_walk *walk); 957 int (*pte_entry)(pte_t *pte, unsigned long addr, 958 unsigned long next, struct mm_walk *walk); 959 int (*pte_hole)(unsigned long addr, unsigned long next, 960 struct mm_walk *walk); 961 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 962 unsigned long addr, unsigned long next, 963 struct mm_walk *walk); 964 struct mm_struct *mm; 965 void *private; 966 }; 967 968 int walk_page_range(unsigned long addr, unsigned long end, 969 struct mm_walk *walk); 970 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 971 unsigned long end, unsigned long floor, unsigned long ceiling); 972 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 973 struct vm_area_struct *vma); 974 void unmap_mapping_range(struct address_space *mapping, 975 loff_t const holebegin, loff_t const holelen, int even_cows); 976 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 977 unsigned long *pfn); 978 int follow_phys(struct vm_area_struct *vma, unsigned long address, 979 unsigned int flags, unsigned long *prot, resource_size_t *phys); 980 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 981 void *buf, int len, int write); 982 983 static inline void unmap_shared_mapping_range(struct address_space *mapping, 984 loff_t const holebegin, loff_t const holelen) 985 { 986 unmap_mapping_range(mapping, holebegin, holelen, 0); 987 } 988 989 extern void truncate_pagecache(struct inode *inode, loff_t new); 990 extern void truncate_setsize(struct inode *inode, loff_t newsize); 991 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 992 int truncate_inode_page(struct address_space *mapping, struct page *page); 993 int generic_error_remove_page(struct address_space *mapping, struct page *page); 994 int invalidate_inode_page(struct page *page); 995 996 #ifdef CONFIG_MMU 997 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 998 unsigned long address, unsigned int flags); 999 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1000 unsigned long address, unsigned int fault_flags); 1001 #else 1002 static inline int handle_mm_fault(struct mm_struct *mm, 1003 struct vm_area_struct *vma, unsigned long address, 1004 unsigned int flags) 1005 { 1006 /* should never happen if there's no MMU */ 1007 BUG(); 1008 return VM_FAULT_SIGBUS; 1009 } 1010 static inline int fixup_user_fault(struct task_struct *tsk, 1011 struct mm_struct *mm, unsigned long address, 1012 unsigned int fault_flags) 1013 { 1014 /* should never happen if there's no MMU */ 1015 BUG(); 1016 return -EFAULT; 1017 } 1018 #endif 1019 1020 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1021 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1022 void *buf, int len, int write); 1023 1024 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1025 unsigned long start, unsigned long nr_pages, 1026 unsigned int foll_flags, struct page **pages, 1027 struct vm_area_struct **vmas, int *nonblocking); 1028 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1029 unsigned long start, unsigned long nr_pages, 1030 int write, int force, struct page **pages, 1031 struct vm_area_struct **vmas); 1032 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1033 struct page **pages); 1034 struct kvec; 1035 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1036 struct page **pages); 1037 int get_kernel_page(unsigned long start, int write, struct page **pages); 1038 struct page *get_dump_page(unsigned long addr); 1039 1040 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1041 extern void do_invalidatepage(struct page *page, unsigned int offset, 1042 unsigned int length); 1043 1044 int __set_page_dirty_nobuffers(struct page *page); 1045 int __set_page_dirty_no_writeback(struct page *page); 1046 int redirty_page_for_writepage(struct writeback_control *wbc, 1047 struct page *page); 1048 void account_page_dirtied(struct page *page, struct address_space *mapping); 1049 void account_page_writeback(struct page *page); 1050 int set_page_dirty(struct page *page); 1051 int set_page_dirty_lock(struct page *page); 1052 int clear_page_dirty_for_io(struct page *page); 1053 1054 /* Is the vma a continuation of the stack vma above it? */ 1055 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1056 { 1057 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1058 } 1059 1060 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1061 unsigned long addr) 1062 { 1063 return (vma->vm_flags & VM_GROWSDOWN) && 1064 (vma->vm_start == addr) && 1065 !vma_growsdown(vma->vm_prev, addr); 1066 } 1067 1068 /* Is the vma a continuation of the stack vma below it? */ 1069 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1070 { 1071 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1072 } 1073 1074 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1075 unsigned long addr) 1076 { 1077 return (vma->vm_flags & VM_GROWSUP) && 1078 (vma->vm_end == addr) && 1079 !vma_growsup(vma->vm_next, addr); 1080 } 1081 1082 extern pid_t 1083 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1084 1085 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1086 unsigned long old_addr, struct vm_area_struct *new_vma, 1087 unsigned long new_addr, unsigned long len, 1088 bool need_rmap_locks); 1089 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1090 unsigned long end, pgprot_t newprot, 1091 int dirty_accountable, int prot_numa); 1092 extern int mprotect_fixup(struct vm_area_struct *vma, 1093 struct vm_area_struct **pprev, unsigned long start, 1094 unsigned long end, unsigned long newflags); 1095 1096 /* 1097 * doesn't attempt to fault and will return short. 1098 */ 1099 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1100 struct page **pages); 1101 /* 1102 * per-process(per-mm_struct) statistics. 1103 */ 1104 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1105 { 1106 long val = atomic_long_read(&mm->rss_stat.count[member]); 1107 1108 #ifdef SPLIT_RSS_COUNTING 1109 /* 1110 * counter is updated in asynchronous manner and may go to minus. 1111 * But it's never be expected number for users. 1112 */ 1113 if (val < 0) 1114 val = 0; 1115 #endif 1116 return (unsigned long)val; 1117 } 1118 1119 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1120 { 1121 atomic_long_add(value, &mm->rss_stat.count[member]); 1122 } 1123 1124 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1125 { 1126 atomic_long_inc(&mm->rss_stat.count[member]); 1127 } 1128 1129 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1130 { 1131 atomic_long_dec(&mm->rss_stat.count[member]); 1132 } 1133 1134 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1135 { 1136 return get_mm_counter(mm, MM_FILEPAGES) + 1137 get_mm_counter(mm, MM_ANONPAGES); 1138 } 1139 1140 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1141 { 1142 return max(mm->hiwater_rss, get_mm_rss(mm)); 1143 } 1144 1145 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1146 { 1147 return max(mm->hiwater_vm, mm->total_vm); 1148 } 1149 1150 static inline void update_hiwater_rss(struct mm_struct *mm) 1151 { 1152 unsigned long _rss = get_mm_rss(mm); 1153 1154 if ((mm)->hiwater_rss < _rss) 1155 (mm)->hiwater_rss = _rss; 1156 } 1157 1158 static inline void update_hiwater_vm(struct mm_struct *mm) 1159 { 1160 if (mm->hiwater_vm < mm->total_vm) 1161 mm->hiwater_vm = mm->total_vm; 1162 } 1163 1164 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1165 struct mm_struct *mm) 1166 { 1167 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1168 1169 if (*maxrss < hiwater_rss) 1170 *maxrss = hiwater_rss; 1171 } 1172 1173 #if defined(SPLIT_RSS_COUNTING) 1174 void sync_mm_rss(struct mm_struct *mm); 1175 #else 1176 static inline void sync_mm_rss(struct mm_struct *mm) 1177 { 1178 } 1179 #endif 1180 1181 int vma_wants_writenotify(struct vm_area_struct *vma); 1182 1183 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1184 spinlock_t **ptl); 1185 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1186 spinlock_t **ptl) 1187 { 1188 pte_t *ptep; 1189 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1190 return ptep; 1191 } 1192 1193 #ifdef __PAGETABLE_PUD_FOLDED 1194 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1195 unsigned long address) 1196 { 1197 return 0; 1198 } 1199 #else 1200 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1201 #endif 1202 1203 #ifdef __PAGETABLE_PMD_FOLDED 1204 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1205 unsigned long address) 1206 { 1207 return 0; 1208 } 1209 #else 1210 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1211 #endif 1212 1213 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1214 pmd_t *pmd, unsigned long address); 1215 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1216 1217 /* 1218 * The following ifdef needed to get the 4level-fixup.h header to work. 1219 * Remove it when 4level-fixup.h has been removed. 1220 */ 1221 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1222 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1223 { 1224 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1225 NULL: pud_offset(pgd, address); 1226 } 1227 1228 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1229 { 1230 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1231 NULL: pmd_offset(pud, address); 1232 } 1233 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1234 1235 #if USE_SPLIT_PTLOCKS 1236 /* 1237 * We tuck a spinlock to guard each pagetable page into its struct page, 1238 * at page->private, with BUILD_BUG_ON to make sure that this will not 1239 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1240 * When freeing, reset page->mapping so free_pages_check won't complain. 1241 */ 1242 #define __pte_lockptr(page) &((page)->ptl) 1243 #define pte_lock_init(_page) do { \ 1244 spin_lock_init(__pte_lockptr(_page)); \ 1245 } while (0) 1246 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1247 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1248 #else /* !USE_SPLIT_PTLOCKS */ 1249 /* 1250 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1251 */ 1252 #define pte_lock_init(page) do {} while (0) 1253 #define pte_lock_deinit(page) do {} while (0) 1254 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1255 #endif /* USE_SPLIT_PTLOCKS */ 1256 1257 static inline void pgtable_page_ctor(struct page *page) 1258 { 1259 pte_lock_init(page); 1260 inc_zone_page_state(page, NR_PAGETABLE); 1261 } 1262 1263 static inline void pgtable_page_dtor(struct page *page) 1264 { 1265 pte_lock_deinit(page); 1266 dec_zone_page_state(page, NR_PAGETABLE); 1267 } 1268 1269 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1270 ({ \ 1271 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1272 pte_t *__pte = pte_offset_map(pmd, address); \ 1273 *(ptlp) = __ptl; \ 1274 spin_lock(__ptl); \ 1275 __pte; \ 1276 }) 1277 1278 #define pte_unmap_unlock(pte, ptl) do { \ 1279 spin_unlock(ptl); \ 1280 pte_unmap(pte); \ 1281 } while (0) 1282 1283 #define pte_alloc_map(mm, vma, pmd, address) \ 1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1285 pmd, address))? \ 1286 NULL: pte_offset_map(pmd, address)) 1287 1288 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1290 pmd, address))? \ 1291 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1292 1293 #define pte_alloc_kernel(pmd, address) \ 1294 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1295 NULL: pte_offset_kernel(pmd, address)) 1296 1297 extern void free_area_init(unsigned long * zones_size); 1298 extern void free_area_init_node(int nid, unsigned long * zones_size, 1299 unsigned long zone_start_pfn, unsigned long *zholes_size); 1300 extern void free_initmem(void); 1301 1302 /* 1303 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1304 * into the buddy system. The freed pages will be poisoned with pattern 1305 * "poison" if it's within range [0, UCHAR_MAX]. 1306 * Return pages freed into the buddy system. 1307 */ 1308 extern unsigned long free_reserved_area(void *start, void *end, 1309 int poison, char *s); 1310 1311 #ifdef CONFIG_HIGHMEM 1312 /* 1313 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1314 * and totalram_pages. 1315 */ 1316 extern void free_highmem_page(struct page *page); 1317 #endif 1318 1319 extern void adjust_managed_page_count(struct page *page, long count); 1320 extern void mem_init_print_info(const char *str); 1321 1322 /* Free the reserved page into the buddy system, so it gets managed. */ 1323 static inline void __free_reserved_page(struct page *page) 1324 { 1325 ClearPageReserved(page); 1326 init_page_count(page); 1327 __free_page(page); 1328 } 1329 1330 static inline void free_reserved_page(struct page *page) 1331 { 1332 __free_reserved_page(page); 1333 adjust_managed_page_count(page, 1); 1334 } 1335 1336 static inline void mark_page_reserved(struct page *page) 1337 { 1338 SetPageReserved(page); 1339 adjust_managed_page_count(page, -1); 1340 } 1341 1342 /* 1343 * Default method to free all the __init memory into the buddy system. 1344 * The freed pages will be poisoned with pattern "poison" if it's within 1345 * range [0, UCHAR_MAX]. 1346 * Return pages freed into the buddy system. 1347 */ 1348 static inline unsigned long free_initmem_default(int poison) 1349 { 1350 extern char __init_begin[], __init_end[]; 1351 1352 return free_reserved_area(&__init_begin, &__init_end, 1353 poison, "unused kernel"); 1354 } 1355 1356 static inline unsigned long get_num_physpages(void) 1357 { 1358 int nid; 1359 unsigned long phys_pages = 0; 1360 1361 for_each_online_node(nid) 1362 phys_pages += node_present_pages(nid); 1363 1364 return phys_pages; 1365 } 1366 1367 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1368 /* 1369 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1370 * zones, allocate the backing mem_map and account for memory holes in a more 1371 * architecture independent manner. This is a substitute for creating the 1372 * zone_sizes[] and zholes_size[] arrays and passing them to 1373 * free_area_init_node() 1374 * 1375 * An architecture is expected to register range of page frames backed by 1376 * physical memory with memblock_add[_node]() before calling 1377 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1378 * usage, an architecture is expected to do something like 1379 * 1380 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1381 * max_highmem_pfn}; 1382 * for_each_valid_physical_page_range() 1383 * memblock_add_node(base, size, nid) 1384 * free_area_init_nodes(max_zone_pfns); 1385 * 1386 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1387 * registered physical page range. Similarly 1388 * sparse_memory_present_with_active_regions() calls memory_present() for 1389 * each range when SPARSEMEM is enabled. 1390 * 1391 * See mm/page_alloc.c for more information on each function exposed by 1392 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1393 */ 1394 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1395 unsigned long node_map_pfn_alignment(void); 1396 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1397 unsigned long end_pfn); 1398 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1399 unsigned long end_pfn); 1400 extern void get_pfn_range_for_nid(unsigned int nid, 1401 unsigned long *start_pfn, unsigned long *end_pfn); 1402 extern unsigned long find_min_pfn_with_active_regions(void); 1403 extern void free_bootmem_with_active_regions(int nid, 1404 unsigned long max_low_pfn); 1405 extern void sparse_memory_present_with_active_regions(int nid); 1406 1407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1408 1409 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1410 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1411 static inline int __early_pfn_to_nid(unsigned long pfn) 1412 { 1413 return 0; 1414 } 1415 #else 1416 /* please see mm/page_alloc.c */ 1417 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1418 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1419 /* there is a per-arch backend function. */ 1420 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1421 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1422 #endif 1423 1424 extern void set_dma_reserve(unsigned long new_dma_reserve); 1425 extern void memmap_init_zone(unsigned long, int, unsigned long, 1426 unsigned long, enum memmap_context); 1427 extern void setup_per_zone_wmarks(void); 1428 extern int __meminit init_per_zone_wmark_min(void); 1429 extern void mem_init(void); 1430 extern void __init mmap_init(void); 1431 extern void show_mem(unsigned int flags); 1432 extern void si_meminfo(struct sysinfo * val); 1433 extern void si_meminfo_node(struct sysinfo *val, int nid); 1434 1435 extern __printf(3, 4) 1436 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1437 1438 extern void setup_per_cpu_pageset(void); 1439 1440 extern void zone_pcp_update(struct zone *zone); 1441 extern void zone_pcp_reset(struct zone *zone); 1442 1443 /* page_alloc.c */ 1444 extern int min_free_kbytes; 1445 1446 /* nommu.c */ 1447 extern atomic_long_t mmap_pages_allocated; 1448 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1449 1450 /* interval_tree.c */ 1451 void vma_interval_tree_insert(struct vm_area_struct *node, 1452 struct rb_root *root); 1453 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1454 struct vm_area_struct *prev, 1455 struct rb_root *root); 1456 void vma_interval_tree_remove(struct vm_area_struct *node, 1457 struct rb_root *root); 1458 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1459 unsigned long start, unsigned long last); 1460 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1461 unsigned long start, unsigned long last); 1462 1463 #define vma_interval_tree_foreach(vma, root, start, last) \ 1464 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1465 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1466 1467 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1468 struct list_head *list) 1469 { 1470 list_add_tail(&vma->shared.nonlinear, list); 1471 } 1472 1473 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1474 struct rb_root *root); 1475 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1476 struct rb_root *root); 1477 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1478 struct rb_root *root, unsigned long start, unsigned long last); 1479 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1480 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1481 #ifdef CONFIG_DEBUG_VM_RB 1482 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1483 #endif 1484 1485 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1486 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1487 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1488 1489 /* mmap.c */ 1490 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1491 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1492 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1493 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1494 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1495 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1496 struct mempolicy *); 1497 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1498 extern int split_vma(struct mm_struct *, 1499 struct vm_area_struct *, unsigned long addr, int new_below); 1500 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1501 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1502 struct rb_node **, struct rb_node *); 1503 extern void unlink_file_vma(struct vm_area_struct *); 1504 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1505 unsigned long addr, unsigned long len, pgoff_t pgoff, 1506 bool *need_rmap_locks); 1507 extern void exit_mmap(struct mm_struct *); 1508 1509 extern int mm_take_all_locks(struct mm_struct *mm); 1510 extern void mm_drop_all_locks(struct mm_struct *mm); 1511 1512 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1513 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1514 1515 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1516 extern int install_special_mapping(struct mm_struct *mm, 1517 unsigned long addr, unsigned long len, 1518 unsigned long flags, struct page **pages); 1519 1520 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1521 1522 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1523 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1524 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1525 unsigned long len, unsigned long prot, unsigned long flags, 1526 unsigned long pgoff, unsigned long *populate); 1527 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1528 1529 #ifdef CONFIG_MMU 1530 extern int __mm_populate(unsigned long addr, unsigned long len, 1531 int ignore_errors); 1532 static inline void mm_populate(unsigned long addr, unsigned long len) 1533 { 1534 /* Ignore errors */ 1535 (void) __mm_populate(addr, len, 1); 1536 } 1537 #else 1538 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1539 #endif 1540 1541 /* These take the mm semaphore themselves */ 1542 extern unsigned long vm_brk(unsigned long, unsigned long); 1543 extern int vm_munmap(unsigned long, size_t); 1544 extern unsigned long vm_mmap(struct file *, unsigned long, 1545 unsigned long, unsigned long, 1546 unsigned long, unsigned long); 1547 1548 struct vm_unmapped_area_info { 1549 #define VM_UNMAPPED_AREA_TOPDOWN 1 1550 unsigned long flags; 1551 unsigned long length; 1552 unsigned long low_limit; 1553 unsigned long high_limit; 1554 unsigned long align_mask; 1555 unsigned long align_offset; 1556 }; 1557 1558 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1559 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1560 1561 /* 1562 * Search for an unmapped address range. 1563 * 1564 * We are looking for a range that: 1565 * - does not intersect with any VMA; 1566 * - is contained within the [low_limit, high_limit) interval; 1567 * - is at least the desired size. 1568 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1569 */ 1570 static inline unsigned long 1571 vm_unmapped_area(struct vm_unmapped_area_info *info) 1572 { 1573 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1574 return unmapped_area(info); 1575 else 1576 return unmapped_area_topdown(info); 1577 } 1578 1579 /* truncate.c */ 1580 extern void truncate_inode_pages(struct address_space *, loff_t); 1581 extern void truncate_inode_pages_range(struct address_space *, 1582 loff_t lstart, loff_t lend); 1583 1584 /* generic vm_area_ops exported for stackable file systems */ 1585 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1586 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1587 1588 /* mm/page-writeback.c */ 1589 int write_one_page(struct page *page, int wait); 1590 void task_dirty_inc(struct task_struct *tsk); 1591 1592 /* readahead.c */ 1593 #define VM_MAX_READAHEAD 128 /* kbytes */ 1594 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1595 1596 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1597 pgoff_t offset, unsigned long nr_to_read); 1598 1599 void page_cache_sync_readahead(struct address_space *mapping, 1600 struct file_ra_state *ra, 1601 struct file *filp, 1602 pgoff_t offset, 1603 unsigned long size); 1604 1605 void page_cache_async_readahead(struct address_space *mapping, 1606 struct file_ra_state *ra, 1607 struct file *filp, 1608 struct page *pg, 1609 pgoff_t offset, 1610 unsigned long size); 1611 1612 unsigned long max_sane_readahead(unsigned long nr); 1613 unsigned long ra_submit(struct file_ra_state *ra, 1614 struct address_space *mapping, 1615 struct file *filp); 1616 1617 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1618 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1619 1620 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1621 extern int expand_downwards(struct vm_area_struct *vma, 1622 unsigned long address); 1623 #if VM_GROWSUP 1624 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1625 #else 1626 #define expand_upwards(vma, address) do { } while (0) 1627 #endif 1628 1629 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1630 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1631 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1632 struct vm_area_struct **pprev); 1633 1634 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1635 NULL if none. Assume start_addr < end_addr. */ 1636 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1637 { 1638 struct vm_area_struct * vma = find_vma(mm,start_addr); 1639 1640 if (vma && end_addr <= vma->vm_start) 1641 vma = NULL; 1642 return vma; 1643 } 1644 1645 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1646 { 1647 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1648 } 1649 1650 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1651 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1652 unsigned long vm_start, unsigned long vm_end) 1653 { 1654 struct vm_area_struct *vma = find_vma(mm, vm_start); 1655 1656 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1657 vma = NULL; 1658 1659 return vma; 1660 } 1661 1662 #ifdef CONFIG_MMU 1663 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1664 #else 1665 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1666 { 1667 return __pgprot(0); 1668 } 1669 #endif 1670 1671 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1672 unsigned long change_prot_numa(struct vm_area_struct *vma, 1673 unsigned long start, unsigned long end); 1674 #endif 1675 1676 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1677 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1678 unsigned long pfn, unsigned long size, pgprot_t); 1679 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1680 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1681 unsigned long pfn); 1682 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1683 unsigned long pfn); 1684 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1685 1686 1687 struct page *follow_page_mask(struct vm_area_struct *vma, 1688 unsigned long address, unsigned int foll_flags, 1689 unsigned int *page_mask); 1690 1691 static inline struct page *follow_page(struct vm_area_struct *vma, 1692 unsigned long address, unsigned int foll_flags) 1693 { 1694 unsigned int unused_page_mask; 1695 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1696 } 1697 1698 #define FOLL_WRITE 0x01 /* check pte is writable */ 1699 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1700 #define FOLL_GET 0x04 /* do get_page on page */ 1701 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1702 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1703 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1704 * and return without waiting upon it */ 1705 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1706 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1707 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1708 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1709 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1710 1711 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1712 void *data); 1713 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1714 unsigned long size, pte_fn_t fn, void *data); 1715 1716 #ifdef CONFIG_PROC_FS 1717 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1718 #else 1719 static inline void vm_stat_account(struct mm_struct *mm, 1720 unsigned long flags, struct file *file, long pages) 1721 { 1722 mm->total_vm += pages; 1723 } 1724 #endif /* CONFIG_PROC_FS */ 1725 1726 #ifdef CONFIG_DEBUG_PAGEALLOC 1727 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1728 #ifdef CONFIG_HIBERNATION 1729 extern bool kernel_page_present(struct page *page); 1730 #endif /* CONFIG_HIBERNATION */ 1731 #else 1732 static inline void 1733 kernel_map_pages(struct page *page, int numpages, int enable) {} 1734 #ifdef CONFIG_HIBERNATION 1735 static inline bool kernel_page_present(struct page *page) { return true; } 1736 #endif /* CONFIG_HIBERNATION */ 1737 #endif 1738 1739 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1740 #ifdef __HAVE_ARCH_GATE_AREA 1741 int in_gate_area_no_mm(unsigned long addr); 1742 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1743 #else 1744 int in_gate_area_no_mm(unsigned long addr); 1745 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1746 #endif /* __HAVE_ARCH_GATE_AREA */ 1747 1748 #ifdef CONFIG_SYSCTL 1749 extern int sysctl_drop_caches; 1750 int drop_caches_sysctl_handler(struct ctl_table *, int, 1751 void __user *, size_t *, loff_t *); 1752 #endif 1753 1754 unsigned long shrink_slab(struct shrink_control *shrink, 1755 unsigned long nr_pages_scanned, 1756 unsigned long lru_pages); 1757 1758 #ifndef CONFIG_MMU 1759 #define randomize_va_space 0 1760 #else 1761 extern int randomize_va_space; 1762 #endif 1763 1764 const char * arch_vma_name(struct vm_area_struct *vma); 1765 void print_vma_addr(char *prefix, unsigned long rip); 1766 1767 void sparse_mem_maps_populate_node(struct page **map_map, 1768 unsigned long pnum_begin, 1769 unsigned long pnum_end, 1770 unsigned long map_count, 1771 int nodeid); 1772 1773 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1774 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1775 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1776 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1777 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1778 void *vmemmap_alloc_block(unsigned long size, int node); 1779 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1780 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1781 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1782 int node); 1783 int vmemmap_populate(unsigned long start, unsigned long end, int node); 1784 void vmemmap_populate_print_last(void); 1785 #ifdef CONFIG_MEMORY_HOTPLUG 1786 void vmemmap_free(unsigned long start, unsigned long end); 1787 #endif 1788 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1789 unsigned long size); 1790 1791 enum mf_flags { 1792 MF_COUNT_INCREASED = 1 << 0, 1793 MF_ACTION_REQUIRED = 1 << 1, 1794 MF_MUST_KILL = 1 << 2, 1795 MF_SOFT_OFFLINE = 1 << 3, 1796 }; 1797 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1798 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1799 extern int unpoison_memory(unsigned long pfn); 1800 extern int sysctl_memory_failure_early_kill; 1801 extern int sysctl_memory_failure_recovery; 1802 extern void shake_page(struct page *p, int access); 1803 extern atomic_long_t num_poisoned_pages; 1804 extern int soft_offline_page(struct page *page, int flags); 1805 1806 extern void dump_page(struct page *page); 1807 1808 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1809 extern void clear_huge_page(struct page *page, 1810 unsigned long addr, 1811 unsigned int pages_per_huge_page); 1812 extern void copy_user_huge_page(struct page *dst, struct page *src, 1813 unsigned long addr, struct vm_area_struct *vma, 1814 unsigned int pages_per_huge_page); 1815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1816 1817 #ifdef CONFIG_DEBUG_PAGEALLOC 1818 extern unsigned int _debug_guardpage_minorder; 1819 1820 static inline unsigned int debug_guardpage_minorder(void) 1821 { 1822 return _debug_guardpage_minorder; 1823 } 1824 1825 static inline bool page_is_guard(struct page *page) 1826 { 1827 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1828 } 1829 #else 1830 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1831 static inline bool page_is_guard(struct page *page) { return false; } 1832 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1833 1834 #if MAX_NUMNODES > 1 1835 void __init setup_nr_node_ids(void); 1836 #else 1837 static inline void setup_nr_node_ids(void) {} 1838 #endif 1839 1840 #endif /* __KERNEL__ */ 1841 #endif /* _LINUX_MM_H */ 1842