xref: /linux-6.15/include/linux/mm.h (revision fda5b0e2)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33 	max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38 
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42 
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48 
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52 
53 extern unsigned long sysctl_user_reserve_kbytes;
54 extern unsigned long sysctl_admin_reserve_kbytes;
55 
56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57 
58 /* to align the pointer to the (next) page boundary */
59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60 
61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63 
64 /*
65  * Linux kernel virtual memory manager primitives.
66  * The idea being to have a "virtual" mm in the same way
67  * we have a virtual fs - giving a cleaner interface to the
68  * mm details, and allowing different kinds of memory mappings
69  * (from shared memory to executable loading to arbitrary
70  * mmap() functions).
71  */
72 
73 extern struct kmem_cache *vm_area_cachep;
74 
75 #ifndef CONFIG_MMU
76 extern struct rb_root nommu_region_tree;
77 extern struct rw_semaphore nommu_region_sem;
78 
79 extern unsigned int kobjsize(const void *objp);
80 #endif
81 
82 /*
83  * vm_flags in vm_area_struct, see mm_types.h.
84  */
85 #define VM_NONE		0x00000000
86 
87 #define VM_READ		0x00000001	/* currently active flags */
88 #define VM_WRITE	0x00000002
89 #define VM_EXEC		0x00000004
90 #define VM_SHARED	0x00000008
91 
92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
93 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
94 #define VM_MAYWRITE	0x00000020
95 #define VM_MAYEXEC	0x00000040
96 #define VM_MAYSHARE	0x00000080
97 
98 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
99 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
100 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
101 
102 #define VM_LOCKED	0x00002000
103 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
104 
105 					/* Used by sys_madvise() */
106 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
107 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
108 
109 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
110 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
111 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
112 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
113 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
114 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
115 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
116 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
117 
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
120 #else
121 # define VM_SOFTDIRTY	0
122 #endif
123 
124 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
125 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
126 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
127 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
128 
129 #if defined(CONFIG_X86)
130 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
131 #elif defined(CONFIG_PPC)
132 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
133 #elif defined(CONFIG_PARISC)
134 # define VM_GROWSUP	VM_ARCH_1
135 #elif defined(CONFIG_METAG)
136 # define VM_GROWSUP	VM_ARCH_1
137 #elif defined(CONFIG_IA64)
138 # define VM_GROWSUP	VM_ARCH_1
139 #elif !defined(CONFIG_MMU)
140 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
141 #endif
142 
143 #ifndef VM_GROWSUP
144 # define VM_GROWSUP	VM_NONE
145 #endif
146 
147 /* Bits set in the VMA until the stack is in its final location */
148 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
149 
150 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
151 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152 #endif
153 
154 #ifdef CONFIG_STACK_GROWSUP
155 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156 #else
157 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158 #endif
159 
160 /*
161  * Special vmas that are non-mergable, non-mlock()able.
162  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
163  */
164 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
165 
166 /*
167  * mapping from the currently active vm_flags protection bits (the
168  * low four bits) to a page protection mask..
169  */
170 extern pgprot_t protection_map[16];
171 
172 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
173 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
174 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
175 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
176 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
177 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
178 #define FAULT_FLAG_TRIED	0x40	/* second try */
179 #define FAULT_FLAG_USER		0x80	/* The fault originated in userspace */
180 
181 /*
182  * vm_fault is filled by the the pagefault handler and passed to the vma's
183  * ->fault function. The vma's ->fault is responsible for returning a bitmask
184  * of VM_FAULT_xxx flags that give details about how the fault was handled.
185  *
186  * pgoff should be used in favour of virtual_address, if possible. If pgoff
187  * is used, one may implement ->remap_pages to get nonlinear mapping support.
188  */
189 struct vm_fault {
190 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
191 	pgoff_t pgoff;			/* Logical page offset based on vma */
192 	void __user *virtual_address;	/* Faulting virtual address */
193 
194 	struct page *page;		/* ->fault handlers should return a
195 					 * page here, unless VM_FAULT_NOPAGE
196 					 * is set (which is also implied by
197 					 * VM_FAULT_ERROR).
198 					 */
199 };
200 
201 /*
202  * These are the virtual MM functions - opening of an area, closing and
203  * unmapping it (needed to keep files on disk up-to-date etc), pointer
204  * to the functions called when a no-page or a wp-page exception occurs.
205  */
206 struct vm_operations_struct {
207 	void (*open)(struct vm_area_struct * area);
208 	void (*close)(struct vm_area_struct * area);
209 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
210 
211 	/* notification that a previously read-only page is about to become
212 	 * writable, if an error is returned it will cause a SIGBUS */
213 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
214 
215 	/* called by access_process_vm when get_user_pages() fails, typically
216 	 * for use by special VMAs that can switch between memory and hardware
217 	 */
218 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
219 		      void *buf, int len, int write);
220 #ifdef CONFIG_NUMA
221 	/*
222 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
223 	 * to hold the policy upon return.  Caller should pass NULL @new to
224 	 * remove a policy and fall back to surrounding context--i.e. do not
225 	 * install a MPOL_DEFAULT policy, nor the task or system default
226 	 * mempolicy.
227 	 */
228 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
229 
230 	/*
231 	 * get_policy() op must add reference [mpol_get()] to any policy at
232 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
233 	 * in mm/mempolicy.c will do this automatically.
234 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237 	 * must return NULL--i.e., do not "fallback" to task or system default
238 	 * policy.
239 	 */
240 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 					unsigned long addr);
242 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 		const nodemask_t *to, unsigned long flags);
244 #endif
245 	/* called by sys_remap_file_pages() to populate non-linear mapping */
246 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247 			   unsigned long size, pgoff_t pgoff);
248 };
249 
250 struct mmu_gather;
251 struct inode;
252 
253 #define page_private(page)		((page)->private)
254 #define set_page_private(page, v)	((page)->private = (v))
255 
256 /* It's valid only if the page is free path or free_list */
257 static inline void set_freepage_migratetype(struct page *page, int migratetype)
258 {
259 	page->index = migratetype;
260 }
261 
262 /* It's valid only if the page is free path or free_list */
263 static inline int get_freepage_migratetype(struct page *page)
264 {
265 	return page->index;
266 }
267 
268 /*
269  * FIXME: take this include out, include page-flags.h in
270  * files which need it (119 of them)
271  */
272 #include <linux/page-flags.h>
273 #include <linux/huge_mm.h>
274 
275 /*
276  * Methods to modify the page usage count.
277  *
278  * What counts for a page usage:
279  * - cache mapping   (page->mapping)
280  * - private data    (page->private)
281  * - page mapped in a task's page tables, each mapping
282  *   is counted separately
283  *
284  * Also, many kernel routines increase the page count before a critical
285  * routine so they can be sure the page doesn't go away from under them.
286  */
287 
288 /*
289  * Drop a ref, return true if the refcount fell to zero (the page has no users)
290  */
291 static inline int put_page_testzero(struct page *page)
292 {
293 	VM_BUG_ON(atomic_read(&page->_count) == 0);
294 	return atomic_dec_and_test(&page->_count);
295 }
296 
297 /*
298  * Try to grab a ref unless the page has a refcount of zero, return false if
299  * that is the case.
300  */
301 static inline int get_page_unless_zero(struct page *page)
302 {
303 	return atomic_inc_not_zero(&page->_count);
304 }
305 
306 extern int page_is_ram(unsigned long pfn);
307 
308 /* Support for virtually mapped pages */
309 struct page *vmalloc_to_page(const void *addr);
310 unsigned long vmalloc_to_pfn(const void *addr);
311 
312 /*
313  * Determine if an address is within the vmalloc range
314  *
315  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
316  * is no special casing required.
317  */
318 static inline int is_vmalloc_addr(const void *x)
319 {
320 #ifdef CONFIG_MMU
321 	unsigned long addr = (unsigned long)x;
322 
323 	return addr >= VMALLOC_START && addr < VMALLOC_END;
324 #else
325 	return 0;
326 #endif
327 }
328 #ifdef CONFIG_MMU
329 extern int is_vmalloc_or_module_addr(const void *x);
330 #else
331 static inline int is_vmalloc_or_module_addr(const void *x)
332 {
333 	return 0;
334 }
335 #endif
336 
337 static inline void compound_lock(struct page *page)
338 {
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 	VM_BUG_ON(PageSlab(page));
341 	bit_spin_lock(PG_compound_lock, &page->flags);
342 #endif
343 }
344 
345 static inline void compound_unlock(struct page *page)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 	VM_BUG_ON(PageSlab(page));
349 	bit_spin_unlock(PG_compound_lock, &page->flags);
350 #endif
351 }
352 
353 static inline unsigned long compound_lock_irqsave(struct page *page)
354 {
355 	unsigned long uninitialized_var(flags);
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 	local_irq_save(flags);
358 	compound_lock(page);
359 #endif
360 	return flags;
361 }
362 
363 static inline void compound_unlock_irqrestore(struct page *page,
364 					      unsigned long flags)
365 {
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 	compound_unlock(page);
368 	local_irq_restore(flags);
369 #endif
370 }
371 
372 static inline struct page *compound_head(struct page *page)
373 {
374 	if (unlikely(PageTail(page)))
375 		return page->first_page;
376 	return page;
377 }
378 
379 /*
380  * The atomic page->_mapcount, starts from -1: so that transitions
381  * both from it and to it can be tracked, using atomic_inc_and_test
382  * and atomic_add_negative(-1).
383  */
384 static inline void page_mapcount_reset(struct page *page)
385 {
386 	atomic_set(&(page)->_mapcount, -1);
387 }
388 
389 static inline int page_mapcount(struct page *page)
390 {
391 	return atomic_read(&(page)->_mapcount) + 1;
392 }
393 
394 static inline int page_count(struct page *page)
395 {
396 	return atomic_read(&compound_head(page)->_count);
397 }
398 
399 static inline void get_huge_page_tail(struct page *page)
400 {
401 	/*
402 	 * __split_huge_page_refcount() cannot run
403 	 * from under us.
404 	 */
405 	VM_BUG_ON(page_mapcount(page) < 0);
406 	VM_BUG_ON(atomic_read(&page->_count) != 0);
407 	atomic_inc(&page->_mapcount);
408 }
409 
410 extern bool __get_page_tail(struct page *page);
411 
412 static inline void get_page(struct page *page)
413 {
414 	if (unlikely(PageTail(page)))
415 		if (likely(__get_page_tail(page)))
416 			return;
417 	/*
418 	 * Getting a normal page or the head of a compound page
419 	 * requires to already have an elevated page->_count.
420 	 */
421 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
422 	atomic_inc(&page->_count);
423 }
424 
425 static inline struct page *virt_to_head_page(const void *x)
426 {
427 	struct page *page = virt_to_page(x);
428 	return compound_head(page);
429 }
430 
431 /*
432  * Setup the page count before being freed into the page allocator for
433  * the first time (boot or memory hotplug)
434  */
435 static inline void init_page_count(struct page *page)
436 {
437 	atomic_set(&page->_count, 1);
438 }
439 
440 /*
441  * PageBuddy() indicate that the page is free and in the buddy system
442  * (see mm/page_alloc.c).
443  *
444  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
445  * -2 so that an underflow of the page_mapcount() won't be mistaken
446  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
447  * efficiently by most CPU architectures.
448  */
449 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
450 
451 static inline int PageBuddy(struct page *page)
452 {
453 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
454 }
455 
456 static inline void __SetPageBuddy(struct page *page)
457 {
458 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
459 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
460 }
461 
462 static inline void __ClearPageBuddy(struct page *page)
463 {
464 	VM_BUG_ON(!PageBuddy(page));
465 	atomic_set(&page->_mapcount, -1);
466 }
467 
468 void put_page(struct page *page);
469 void put_pages_list(struct list_head *pages);
470 
471 void split_page(struct page *page, unsigned int order);
472 int split_free_page(struct page *page);
473 
474 /*
475  * Compound pages have a destructor function.  Provide a
476  * prototype for that function and accessor functions.
477  * These are _only_ valid on the head of a PG_compound page.
478  */
479 typedef void compound_page_dtor(struct page *);
480 
481 static inline void set_compound_page_dtor(struct page *page,
482 						compound_page_dtor *dtor)
483 {
484 	page[1].lru.next = (void *)dtor;
485 }
486 
487 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
488 {
489 	return (compound_page_dtor *)page[1].lru.next;
490 }
491 
492 static inline int compound_order(struct page *page)
493 {
494 	if (!PageHead(page))
495 		return 0;
496 	return (unsigned long)page[1].lru.prev;
497 }
498 
499 static inline void set_compound_order(struct page *page, unsigned long order)
500 {
501 	page[1].lru.prev = (void *)order;
502 }
503 
504 #ifdef CONFIG_MMU
505 /*
506  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
507  * servicing faults for write access.  In the normal case, do always want
508  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
509  * that do not have writing enabled, when used by access_process_vm.
510  */
511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512 {
513 	if (likely(vma->vm_flags & VM_WRITE))
514 		pte = pte_mkwrite(pte);
515 	return pte;
516 }
517 #endif
518 
519 /*
520  * Multiple processes may "see" the same page. E.g. for untouched
521  * mappings of /dev/null, all processes see the same page full of
522  * zeroes, and text pages of executables and shared libraries have
523  * only one copy in memory, at most, normally.
524  *
525  * For the non-reserved pages, page_count(page) denotes a reference count.
526  *   page_count() == 0 means the page is free. page->lru is then used for
527  *   freelist management in the buddy allocator.
528  *   page_count() > 0  means the page has been allocated.
529  *
530  * Pages are allocated by the slab allocator in order to provide memory
531  * to kmalloc and kmem_cache_alloc. In this case, the management of the
532  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533  * unless a particular usage is carefully commented. (the responsibility of
534  * freeing the kmalloc memory is the caller's, of course).
535  *
536  * A page may be used by anyone else who does a __get_free_page().
537  * In this case, page_count still tracks the references, and should only
538  * be used through the normal accessor functions. The top bits of page->flags
539  * and page->virtual store page management information, but all other fields
540  * are unused and could be used privately, carefully. The management of this
541  * page is the responsibility of the one who allocated it, and those who have
542  * subsequently been given references to it.
543  *
544  * The other pages (we may call them "pagecache pages") are completely
545  * managed by the Linux memory manager: I/O, buffers, swapping etc.
546  * The following discussion applies only to them.
547  *
548  * A pagecache page contains an opaque `private' member, which belongs to the
549  * page's address_space. Usually, this is the address of a circular list of
550  * the page's disk buffers. PG_private must be set to tell the VM to call
551  * into the filesystem to release these pages.
552  *
553  * A page may belong to an inode's memory mapping. In this case, page->mapping
554  * is the pointer to the inode, and page->index is the file offset of the page,
555  * in units of PAGE_CACHE_SIZE.
556  *
557  * If pagecache pages are not associated with an inode, they are said to be
558  * anonymous pages. These may become associated with the swapcache, and in that
559  * case PG_swapcache is set, and page->private is an offset into the swapcache.
560  *
561  * In either case (swapcache or inode backed), the pagecache itself holds one
562  * reference to the page. Setting PG_private should also increment the
563  * refcount. The each user mapping also has a reference to the page.
564  *
565  * The pagecache pages are stored in a per-mapping radix tree, which is
566  * rooted at mapping->page_tree, and indexed by offset.
567  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568  * lists, we instead now tag pages as dirty/writeback in the radix tree.
569  *
570  * All pagecache pages may be subject to I/O:
571  * - inode pages may need to be read from disk,
572  * - inode pages which have been modified and are MAP_SHARED may need
573  *   to be written back to the inode on disk,
574  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575  *   modified may need to be swapped out to swap space and (later) to be read
576  *   back into memory.
577  */
578 
579 /*
580  * The zone field is never updated after free_area_init_core()
581  * sets it, so none of the operations on it need to be atomic.
582  */
583 
584 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
585 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
586 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
587 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
588 #define LAST_NID_PGOFF		(ZONES_PGOFF - LAST_NID_WIDTH)
589 
590 /*
591  * Define the bit shifts to access each section.  For non-existent
592  * sections we define the shift as 0; that plus a 0 mask ensures
593  * the compiler will optimise away reference to them.
594  */
595 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
596 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
597 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
598 #define LAST_NID_PGSHIFT	(LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
599 
600 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
601 #ifdef NODE_NOT_IN_PAGE_FLAGS
602 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
603 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
604 						SECTIONS_PGOFF : ZONES_PGOFF)
605 #else
606 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
607 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
608 						NODES_PGOFF : ZONES_PGOFF)
609 #endif
610 
611 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
612 
613 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
614 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615 #endif
616 
617 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
618 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
619 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
620 #define LAST_NID_MASK		((1UL << LAST_NID_WIDTH) - 1)
621 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
622 
623 static inline enum zone_type page_zonenum(const struct page *page)
624 {
625 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
626 }
627 
628 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
629 #define SECTION_IN_PAGE_FLAGS
630 #endif
631 
632 /*
633  * The identification function is mainly used by the buddy allocator for
634  * determining if two pages could be buddies. We are not really identifying
635  * the zone since we could be using the section number id if we do not have
636  * node id available in page flags.
637  * We only guarantee that it will return the same value for two combinable
638  * pages in a zone.
639  */
640 static inline int page_zone_id(struct page *page)
641 {
642 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
643 }
644 
645 static inline int zone_to_nid(struct zone *zone)
646 {
647 #ifdef CONFIG_NUMA
648 	return zone->node;
649 #else
650 	return 0;
651 #endif
652 }
653 
654 #ifdef NODE_NOT_IN_PAGE_FLAGS
655 extern int page_to_nid(const struct page *page);
656 #else
657 static inline int page_to_nid(const struct page *page)
658 {
659 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
660 }
661 #endif
662 
663 #ifdef CONFIG_NUMA_BALANCING
664 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
665 static inline int page_nid_xchg_last(struct page *page, int nid)
666 {
667 	return xchg(&page->_last_nid, nid);
668 }
669 
670 static inline int page_nid_last(struct page *page)
671 {
672 	return page->_last_nid;
673 }
674 static inline void page_nid_reset_last(struct page *page)
675 {
676 	page->_last_nid = -1;
677 }
678 #else
679 static inline int page_nid_last(struct page *page)
680 {
681 	return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
682 }
683 
684 extern int page_nid_xchg_last(struct page *page, int nid);
685 
686 static inline void page_nid_reset_last(struct page *page)
687 {
688 	int nid = (1 << LAST_NID_SHIFT) - 1;
689 
690 	page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
691 	page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
692 }
693 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
694 #else
695 static inline int page_nid_xchg_last(struct page *page, int nid)
696 {
697 	return page_to_nid(page);
698 }
699 
700 static inline int page_nid_last(struct page *page)
701 {
702 	return page_to_nid(page);
703 }
704 
705 static inline void page_nid_reset_last(struct page *page)
706 {
707 }
708 #endif
709 
710 static inline struct zone *page_zone(const struct page *page)
711 {
712 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
713 }
714 
715 #ifdef SECTION_IN_PAGE_FLAGS
716 static inline void set_page_section(struct page *page, unsigned long section)
717 {
718 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
719 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
720 }
721 
722 static inline unsigned long page_to_section(const struct page *page)
723 {
724 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
725 }
726 #endif
727 
728 static inline void set_page_zone(struct page *page, enum zone_type zone)
729 {
730 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
731 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
732 }
733 
734 static inline void set_page_node(struct page *page, unsigned long node)
735 {
736 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
737 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
738 }
739 
740 static inline void set_page_links(struct page *page, enum zone_type zone,
741 	unsigned long node, unsigned long pfn)
742 {
743 	set_page_zone(page, zone);
744 	set_page_node(page, node);
745 #ifdef SECTION_IN_PAGE_FLAGS
746 	set_page_section(page, pfn_to_section_nr(pfn));
747 #endif
748 }
749 
750 /*
751  * Some inline functions in vmstat.h depend on page_zone()
752  */
753 #include <linux/vmstat.h>
754 
755 static __always_inline void *lowmem_page_address(const struct page *page)
756 {
757 	return __va(PFN_PHYS(page_to_pfn(page)));
758 }
759 
760 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
761 #define HASHED_PAGE_VIRTUAL
762 #endif
763 
764 #if defined(WANT_PAGE_VIRTUAL)
765 #define page_address(page) ((page)->virtual)
766 #define set_page_address(page, address)			\
767 	do {						\
768 		(page)->virtual = (address);		\
769 	} while(0)
770 #define page_address_init()  do { } while(0)
771 #endif
772 
773 #if defined(HASHED_PAGE_VIRTUAL)
774 void *page_address(const struct page *page);
775 void set_page_address(struct page *page, void *virtual);
776 void page_address_init(void);
777 #endif
778 
779 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
780 #define page_address(page) lowmem_page_address(page)
781 #define set_page_address(page, address)  do { } while(0)
782 #define page_address_init()  do { } while(0)
783 #endif
784 
785 /*
786  * On an anonymous page mapped into a user virtual memory area,
787  * page->mapping points to its anon_vma, not to a struct address_space;
788  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
789  *
790  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
791  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
792  * and then page->mapping points, not to an anon_vma, but to a private
793  * structure which KSM associates with that merged page.  See ksm.h.
794  *
795  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
796  *
797  * Please note that, confusingly, "page_mapping" refers to the inode
798  * address_space which maps the page from disk; whereas "page_mapped"
799  * refers to user virtual address space into which the page is mapped.
800  */
801 #define PAGE_MAPPING_ANON	1
802 #define PAGE_MAPPING_KSM	2
803 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
804 
805 extern struct address_space *page_mapping(struct page *page);
806 
807 /* Neutral page->mapping pointer to address_space or anon_vma or other */
808 static inline void *page_rmapping(struct page *page)
809 {
810 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
811 }
812 
813 extern struct address_space *__page_file_mapping(struct page *);
814 
815 static inline
816 struct address_space *page_file_mapping(struct page *page)
817 {
818 	if (unlikely(PageSwapCache(page)))
819 		return __page_file_mapping(page);
820 
821 	return page->mapping;
822 }
823 
824 static inline int PageAnon(struct page *page)
825 {
826 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
827 }
828 
829 /*
830  * Return the pagecache index of the passed page.  Regular pagecache pages
831  * use ->index whereas swapcache pages use ->private
832  */
833 static inline pgoff_t page_index(struct page *page)
834 {
835 	if (unlikely(PageSwapCache(page)))
836 		return page_private(page);
837 	return page->index;
838 }
839 
840 extern pgoff_t __page_file_index(struct page *page);
841 
842 /*
843  * Return the file index of the page. Regular pagecache pages use ->index
844  * whereas swapcache pages use swp_offset(->private)
845  */
846 static inline pgoff_t page_file_index(struct page *page)
847 {
848 	if (unlikely(PageSwapCache(page)))
849 		return __page_file_index(page);
850 
851 	return page->index;
852 }
853 
854 /*
855  * Return true if this page is mapped into pagetables.
856  */
857 static inline int page_mapped(struct page *page)
858 {
859 	return atomic_read(&(page)->_mapcount) >= 0;
860 }
861 
862 /*
863  * Different kinds of faults, as returned by handle_mm_fault().
864  * Used to decide whether a process gets delivered SIGBUS or
865  * just gets major/minor fault counters bumped up.
866  */
867 
868 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
869 
870 #define VM_FAULT_OOM	0x0001
871 #define VM_FAULT_SIGBUS	0x0002
872 #define VM_FAULT_MAJOR	0x0004
873 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
874 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
875 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
876 
877 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
878 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
879 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
880 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
881 
882 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
883 
884 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
885 			 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
886 
887 /* Encode hstate index for a hwpoisoned large page */
888 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
889 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
890 
891 /*
892  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
893  */
894 extern void pagefault_out_of_memory(void);
895 
896 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
897 
898 /*
899  * Flags passed to show_mem() and show_free_areas() to suppress output in
900  * various contexts.
901  */
902 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
903 #define SHOW_MEM_FILTER_PAGE_COUNT	(0x0002u)	/* page type count */
904 
905 extern void show_free_areas(unsigned int flags);
906 extern bool skip_free_areas_node(unsigned int flags, int nid);
907 
908 int shmem_zero_setup(struct vm_area_struct *);
909 
910 extern int can_do_mlock(void);
911 extern int user_shm_lock(size_t, struct user_struct *);
912 extern void user_shm_unlock(size_t, struct user_struct *);
913 
914 /*
915  * Parameter block passed down to zap_pte_range in exceptional cases.
916  */
917 struct zap_details {
918 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
919 	struct address_space *check_mapping;	/* Check page->mapping if set */
920 	pgoff_t	first_index;			/* Lowest page->index to unmap */
921 	pgoff_t last_index;			/* Highest page->index to unmap */
922 };
923 
924 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
925 		pte_t pte);
926 
927 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
928 		unsigned long size);
929 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
930 		unsigned long size, struct zap_details *);
931 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
932 		unsigned long start, unsigned long end);
933 
934 /**
935  * mm_walk - callbacks for walk_page_range
936  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
937  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
938  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
939  *	       this handler is required to be able to handle
940  *	       pmd_trans_huge() pmds.  They may simply choose to
941  *	       split_huge_page() instead of handling it explicitly.
942  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
943  * @pte_hole: if set, called for each hole at all levels
944  * @hugetlb_entry: if set, called for each hugetlb entry
945  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
946  * 			      is used.
947  *
948  * (see walk_page_range for more details)
949  */
950 struct mm_walk {
951 	int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
952 			 unsigned long next, struct mm_walk *walk);
953 	int (*pud_entry)(pud_t *pud, unsigned long addr,
954 	                 unsigned long next, struct mm_walk *walk);
955 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
956 			 unsigned long next, struct mm_walk *walk);
957 	int (*pte_entry)(pte_t *pte, unsigned long addr,
958 			 unsigned long next, struct mm_walk *walk);
959 	int (*pte_hole)(unsigned long addr, unsigned long next,
960 			struct mm_walk *walk);
961 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
962 			     unsigned long addr, unsigned long next,
963 			     struct mm_walk *walk);
964 	struct mm_struct *mm;
965 	void *private;
966 };
967 
968 int walk_page_range(unsigned long addr, unsigned long end,
969 		struct mm_walk *walk);
970 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
971 		unsigned long end, unsigned long floor, unsigned long ceiling);
972 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
973 			struct vm_area_struct *vma);
974 void unmap_mapping_range(struct address_space *mapping,
975 		loff_t const holebegin, loff_t const holelen, int even_cows);
976 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
977 	unsigned long *pfn);
978 int follow_phys(struct vm_area_struct *vma, unsigned long address,
979 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
980 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
981 			void *buf, int len, int write);
982 
983 static inline void unmap_shared_mapping_range(struct address_space *mapping,
984 		loff_t const holebegin, loff_t const holelen)
985 {
986 	unmap_mapping_range(mapping, holebegin, holelen, 0);
987 }
988 
989 extern void truncate_pagecache(struct inode *inode, loff_t new);
990 extern void truncate_setsize(struct inode *inode, loff_t newsize);
991 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
992 int truncate_inode_page(struct address_space *mapping, struct page *page);
993 int generic_error_remove_page(struct address_space *mapping, struct page *page);
994 int invalidate_inode_page(struct page *page);
995 
996 #ifdef CONFIG_MMU
997 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
998 			unsigned long address, unsigned int flags);
999 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1000 			    unsigned long address, unsigned int fault_flags);
1001 #else
1002 static inline int handle_mm_fault(struct mm_struct *mm,
1003 			struct vm_area_struct *vma, unsigned long address,
1004 			unsigned int flags)
1005 {
1006 	/* should never happen if there's no MMU */
1007 	BUG();
1008 	return VM_FAULT_SIGBUS;
1009 }
1010 static inline int fixup_user_fault(struct task_struct *tsk,
1011 		struct mm_struct *mm, unsigned long address,
1012 		unsigned int fault_flags)
1013 {
1014 	/* should never happen if there's no MMU */
1015 	BUG();
1016 	return -EFAULT;
1017 }
1018 #endif
1019 
1020 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1021 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1022 		void *buf, int len, int write);
1023 
1024 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1025 		      unsigned long start, unsigned long nr_pages,
1026 		      unsigned int foll_flags, struct page **pages,
1027 		      struct vm_area_struct **vmas, int *nonblocking);
1028 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1029 		    unsigned long start, unsigned long nr_pages,
1030 		    int write, int force, struct page **pages,
1031 		    struct vm_area_struct **vmas);
1032 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1033 			struct page **pages);
1034 struct kvec;
1035 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1036 			struct page **pages);
1037 int get_kernel_page(unsigned long start, int write, struct page **pages);
1038 struct page *get_dump_page(unsigned long addr);
1039 
1040 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1041 extern void do_invalidatepage(struct page *page, unsigned int offset,
1042 			      unsigned int length);
1043 
1044 int __set_page_dirty_nobuffers(struct page *page);
1045 int __set_page_dirty_no_writeback(struct page *page);
1046 int redirty_page_for_writepage(struct writeback_control *wbc,
1047 				struct page *page);
1048 void account_page_dirtied(struct page *page, struct address_space *mapping);
1049 void account_page_writeback(struct page *page);
1050 int set_page_dirty(struct page *page);
1051 int set_page_dirty_lock(struct page *page);
1052 int clear_page_dirty_for_io(struct page *page);
1053 
1054 /* Is the vma a continuation of the stack vma above it? */
1055 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1056 {
1057 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1058 }
1059 
1060 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1061 					     unsigned long addr)
1062 {
1063 	return (vma->vm_flags & VM_GROWSDOWN) &&
1064 		(vma->vm_start == addr) &&
1065 		!vma_growsdown(vma->vm_prev, addr);
1066 }
1067 
1068 /* Is the vma a continuation of the stack vma below it? */
1069 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1070 {
1071 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1072 }
1073 
1074 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1075 					   unsigned long addr)
1076 {
1077 	return (vma->vm_flags & VM_GROWSUP) &&
1078 		(vma->vm_end == addr) &&
1079 		!vma_growsup(vma->vm_next, addr);
1080 }
1081 
1082 extern pid_t
1083 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1084 
1085 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1086 		unsigned long old_addr, struct vm_area_struct *new_vma,
1087 		unsigned long new_addr, unsigned long len,
1088 		bool need_rmap_locks);
1089 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1090 			      unsigned long end, pgprot_t newprot,
1091 			      int dirty_accountable, int prot_numa);
1092 extern int mprotect_fixup(struct vm_area_struct *vma,
1093 			  struct vm_area_struct **pprev, unsigned long start,
1094 			  unsigned long end, unsigned long newflags);
1095 
1096 /*
1097  * doesn't attempt to fault and will return short.
1098  */
1099 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1100 			  struct page **pages);
1101 /*
1102  * per-process(per-mm_struct) statistics.
1103  */
1104 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1105 {
1106 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1107 
1108 #ifdef SPLIT_RSS_COUNTING
1109 	/*
1110 	 * counter is updated in asynchronous manner and may go to minus.
1111 	 * But it's never be expected number for users.
1112 	 */
1113 	if (val < 0)
1114 		val = 0;
1115 #endif
1116 	return (unsigned long)val;
1117 }
1118 
1119 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1120 {
1121 	atomic_long_add(value, &mm->rss_stat.count[member]);
1122 }
1123 
1124 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1125 {
1126 	atomic_long_inc(&mm->rss_stat.count[member]);
1127 }
1128 
1129 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1130 {
1131 	atomic_long_dec(&mm->rss_stat.count[member]);
1132 }
1133 
1134 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1135 {
1136 	return get_mm_counter(mm, MM_FILEPAGES) +
1137 		get_mm_counter(mm, MM_ANONPAGES);
1138 }
1139 
1140 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1141 {
1142 	return max(mm->hiwater_rss, get_mm_rss(mm));
1143 }
1144 
1145 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1146 {
1147 	return max(mm->hiwater_vm, mm->total_vm);
1148 }
1149 
1150 static inline void update_hiwater_rss(struct mm_struct *mm)
1151 {
1152 	unsigned long _rss = get_mm_rss(mm);
1153 
1154 	if ((mm)->hiwater_rss < _rss)
1155 		(mm)->hiwater_rss = _rss;
1156 }
1157 
1158 static inline void update_hiwater_vm(struct mm_struct *mm)
1159 {
1160 	if (mm->hiwater_vm < mm->total_vm)
1161 		mm->hiwater_vm = mm->total_vm;
1162 }
1163 
1164 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1165 					 struct mm_struct *mm)
1166 {
1167 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1168 
1169 	if (*maxrss < hiwater_rss)
1170 		*maxrss = hiwater_rss;
1171 }
1172 
1173 #if defined(SPLIT_RSS_COUNTING)
1174 void sync_mm_rss(struct mm_struct *mm);
1175 #else
1176 static inline void sync_mm_rss(struct mm_struct *mm)
1177 {
1178 }
1179 #endif
1180 
1181 int vma_wants_writenotify(struct vm_area_struct *vma);
1182 
1183 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1184 			       spinlock_t **ptl);
1185 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1186 				    spinlock_t **ptl)
1187 {
1188 	pte_t *ptep;
1189 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1190 	return ptep;
1191 }
1192 
1193 #ifdef __PAGETABLE_PUD_FOLDED
1194 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1195 						unsigned long address)
1196 {
1197 	return 0;
1198 }
1199 #else
1200 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1201 #endif
1202 
1203 #ifdef __PAGETABLE_PMD_FOLDED
1204 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1205 						unsigned long address)
1206 {
1207 	return 0;
1208 }
1209 #else
1210 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1211 #endif
1212 
1213 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1214 		pmd_t *pmd, unsigned long address);
1215 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1216 
1217 /*
1218  * The following ifdef needed to get the 4level-fixup.h header to work.
1219  * Remove it when 4level-fixup.h has been removed.
1220  */
1221 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1222 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1223 {
1224 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1225 		NULL: pud_offset(pgd, address);
1226 }
1227 
1228 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1229 {
1230 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1231 		NULL: pmd_offset(pud, address);
1232 }
1233 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1234 
1235 #if USE_SPLIT_PTLOCKS
1236 /*
1237  * We tuck a spinlock to guard each pagetable page into its struct page,
1238  * at page->private, with BUILD_BUG_ON to make sure that this will not
1239  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1240  * When freeing, reset page->mapping so free_pages_check won't complain.
1241  */
1242 #define __pte_lockptr(page)	&((page)->ptl)
1243 #define pte_lock_init(_page)	do {					\
1244 	spin_lock_init(__pte_lockptr(_page));				\
1245 } while (0)
1246 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1247 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1248 #else	/* !USE_SPLIT_PTLOCKS */
1249 /*
1250  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1251  */
1252 #define pte_lock_init(page)	do {} while (0)
1253 #define pte_lock_deinit(page)	do {} while (0)
1254 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1255 #endif /* USE_SPLIT_PTLOCKS */
1256 
1257 static inline void pgtable_page_ctor(struct page *page)
1258 {
1259 	pte_lock_init(page);
1260 	inc_zone_page_state(page, NR_PAGETABLE);
1261 }
1262 
1263 static inline void pgtable_page_dtor(struct page *page)
1264 {
1265 	pte_lock_deinit(page);
1266 	dec_zone_page_state(page, NR_PAGETABLE);
1267 }
1268 
1269 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1270 ({							\
1271 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1272 	pte_t *__pte = pte_offset_map(pmd, address);	\
1273 	*(ptlp) = __ptl;				\
1274 	spin_lock(__ptl);				\
1275 	__pte;						\
1276 })
1277 
1278 #define pte_unmap_unlock(pte, ptl)	do {		\
1279 	spin_unlock(ptl);				\
1280 	pte_unmap(pte);					\
1281 } while (0)
1282 
1283 #define pte_alloc_map(mm, vma, pmd, address)				\
1284 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1285 							pmd, address))?	\
1286 	 NULL: pte_offset_map(pmd, address))
1287 
1288 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1289 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1290 							pmd, address))?	\
1291 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1292 
1293 #define pte_alloc_kernel(pmd, address)			\
1294 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1295 		NULL: pte_offset_kernel(pmd, address))
1296 
1297 extern void free_area_init(unsigned long * zones_size);
1298 extern void free_area_init_node(int nid, unsigned long * zones_size,
1299 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1300 extern void free_initmem(void);
1301 
1302 /*
1303  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1304  * into the buddy system. The freed pages will be poisoned with pattern
1305  * "poison" if it's within range [0, UCHAR_MAX].
1306  * Return pages freed into the buddy system.
1307  */
1308 extern unsigned long free_reserved_area(void *start, void *end,
1309 					int poison, char *s);
1310 
1311 #ifdef	CONFIG_HIGHMEM
1312 /*
1313  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1314  * and totalram_pages.
1315  */
1316 extern void free_highmem_page(struct page *page);
1317 #endif
1318 
1319 extern void adjust_managed_page_count(struct page *page, long count);
1320 extern void mem_init_print_info(const char *str);
1321 
1322 /* Free the reserved page into the buddy system, so it gets managed. */
1323 static inline void __free_reserved_page(struct page *page)
1324 {
1325 	ClearPageReserved(page);
1326 	init_page_count(page);
1327 	__free_page(page);
1328 }
1329 
1330 static inline void free_reserved_page(struct page *page)
1331 {
1332 	__free_reserved_page(page);
1333 	adjust_managed_page_count(page, 1);
1334 }
1335 
1336 static inline void mark_page_reserved(struct page *page)
1337 {
1338 	SetPageReserved(page);
1339 	adjust_managed_page_count(page, -1);
1340 }
1341 
1342 /*
1343  * Default method to free all the __init memory into the buddy system.
1344  * The freed pages will be poisoned with pattern "poison" if it's within
1345  * range [0, UCHAR_MAX].
1346  * Return pages freed into the buddy system.
1347  */
1348 static inline unsigned long free_initmem_default(int poison)
1349 {
1350 	extern char __init_begin[], __init_end[];
1351 
1352 	return free_reserved_area(&__init_begin, &__init_end,
1353 				  poison, "unused kernel");
1354 }
1355 
1356 static inline unsigned long get_num_physpages(void)
1357 {
1358 	int nid;
1359 	unsigned long phys_pages = 0;
1360 
1361 	for_each_online_node(nid)
1362 		phys_pages += node_present_pages(nid);
1363 
1364 	return phys_pages;
1365 }
1366 
1367 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1368 /*
1369  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1370  * zones, allocate the backing mem_map and account for memory holes in a more
1371  * architecture independent manner. This is a substitute for creating the
1372  * zone_sizes[] and zholes_size[] arrays and passing them to
1373  * free_area_init_node()
1374  *
1375  * An architecture is expected to register range of page frames backed by
1376  * physical memory with memblock_add[_node]() before calling
1377  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1378  * usage, an architecture is expected to do something like
1379  *
1380  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1381  * 							 max_highmem_pfn};
1382  * for_each_valid_physical_page_range()
1383  * 	memblock_add_node(base, size, nid)
1384  * free_area_init_nodes(max_zone_pfns);
1385  *
1386  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1387  * registered physical page range.  Similarly
1388  * sparse_memory_present_with_active_regions() calls memory_present() for
1389  * each range when SPARSEMEM is enabled.
1390  *
1391  * See mm/page_alloc.c for more information on each function exposed by
1392  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1393  */
1394 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1395 unsigned long node_map_pfn_alignment(void);
1396 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1397 						unsigned long end_pfn);
1398 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1399 						unsigned long end_pfn);
1400 extern void get_pfn_range_for_nid(unsigned int nid,
1401 			unsigned long *start_pfn, unsigned long *end_pfn);
1402 extern unsigned long find_min_pfn_with_active_regions(void);
1403 extern void free_bootmem_with_active_regions(int nid,
1404 						unsigned long max_low_pfn);
1405 extern void sparse_memory_present_with_active_regions(int nid);
1406 
1407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1408 
1409 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1410     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1411 static inline int __early_pfn_to_nid(unsigned long pfn)
1412 {
1413 	return 0;
1414 }
1415 #else
1416 /* please see mm/page_alloc.c */
1417 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1418 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1419 /* there is a per-arch backend function. */
1420 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1421 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1422 #endif
1423 
1424 extern void set_dma_reserve(unsigned long new_dma_reserve);
1425 extern void memmap_init_zone(unsigned long, int, unsigned long,
1426 				unsigned long, enum memmap_context);
1427 extern void setup_per_zone_wmarks(void);
1428 extern int __meminit init_per_zone_wmark_min(void);
1429 extern void mem_init(void);
1430 extern void __init mmap_init(void);
1431 extern void show_mem(unsigned int flags);
1432 extern void si_meminfo(struct sysinfo * val);
1433 extern void si_meminfo_node(struct sysinfo *val, int nid);
1434 
1435 extern __printf(3, 4)
1436 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1437 
1438 extern void setup_per_cpu_pageset(void);
1439 
1440 extern void zone_pcp_update(struct zone *zone);
1441 extern void zone_pcp_reset(struct zone *zone);
1442 
1443 /* page_alloc.c */
1444 extern int min_free_kbytes;
1445 
1446 /* nommu.c */
1447 extern atomic_long_t mmap_pages_allocated;
1448 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1449 
1450 /* interval_tree.c */
1451 void vma_interval_tree_insert(struct vm_area_struct *node,
1452 			      struct rb_root *root);
1453 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1454 				    struct vm_area_struct *prev,
1455 				    struct rb_root *root);
1456 void vma_interval_tree_remove(struct vm_area_struct *node,
1457 			      struct rb_root *root);
1458 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1459 				unsigned long start, unsigned long last);
1460 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1461 				unsigned long start, unsigned long last);
1462 
1463 #define vma_interval_tree_foreach(vma, root, start, last)		\
1464 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1465 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1466 
1467 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1468 					struct list_head *list)
1469 {
1470 	list_add_tail(&vma->shared.nonlinear, list);
1471 }
1472 
1473 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1474 				   struct rb_root *root);
1475 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1476 				   struct rb_root *root);
1477 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1478 	struct rb_root *root, unsigned long start, unsigned long last);
1479 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1480 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1481 #ifdef CONFIG_DEBUG_VM_RB
1482 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1483 #endif
1484 
1485 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1486 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1487 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1488 
1489 /* mmap.c */
1490 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1491 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1492 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1493 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1494 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1495 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1496 	struct mempolicy *);
1497 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1498 extern int split_vma(struct mm_struct *,
1499 	struct vm_area_struct *, unsigned long addr, int new_below);
1500 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1501 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1502 	struct rb_node **, struct rb_node *);
1503 extern void unlink_file_vma(struct vm_area_struct *);
1504 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1505 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1506 	bool *need_rmap_locks);
1507 extern void exit_mmap(struct mm_struct *);
1508 
1509 extern int mm_take_all_locks(struct mm_struct *mm);
1510 extern void mm_drop_all_locks(struct mm_struct *mm);
1511 
1512 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1513 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1514 
1515 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1516 extern int install_special_mapping(struct mm_struct *mm,
1517 				   unsigned long addr, unsigned long len,
1518 				   unsigned long flags, struct page **pages);
1519 
1520 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1521 
1522 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1523 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1524 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1525 	unsigned long len, unsigned long prot, unsigned long flags,
1526 	unsigned long pgoff, unsigned long *populate);
1527 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1528 
1529 #ifdef CONFIG_MMU
1530 extern int __mm_populate(unsigned long addr, unsigned long len,
1531 			 int ignore_errors);
1532 static inline void mm_populate(unsigned long addr, unsigned long len)
1533 {
1534 	/* Ignore errors */
1535 	(void) __mm_populate(addr, len, 1);
1536 }
1537 #else
1538 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1539 #endif
1540 
1541 /* These take the mm semaphore themselves */
1542 extern unsigned long vm_brk(unsigned long, unsigned long);
1543 extern int vm_munmap(unsigned long, size_t);
1544 extern unsigned long vm_mmap(struct file *, unsigned long,
1545         unsigned long, unsigned long,
1546         unsigned long, unsigned long);
1547 
1548 struct vm_unmapped_area_info {
1549 #define VM_UNMAPPED_AREA_TOPDOWN 1
1550 	unsigned long flags;
1551 	unsigned long length;
1552 	unsigned long low_limit;
1553 	unsigned long high_limit;
1554 	unsigned long align_mask;
1555 	unsigned long align_offset;
1556 };
1557 
1558 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1559 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1560 
1561 /*
1562  * Search for an unmapped address range.
1563  *
1564  * We are looking for a range that:
1565  * - does not intersect with any VMA;
1566  * - is contained within the [low_limit, high_limit) interval;
1567  * - is at least the desired size.
1568  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1569  */
1570 static inline unsigned long
1571 vm_unmapped_area(struct vm_unmapped_area_info *info)
1572 {
1573 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1574 		return unmapped_area(info);
1575 	else
1576 		return unmapped_area_topdown(info);
1577 }
1578 
1579 /* truncate.c */
1580 extern void truncate_inode_pages(struct address_space *, loff_t);
1581 extern void truncate_inode_pages_range(struct address_space *,
1582 				       loff_t lstart, loff_t lend);
1583 
1584 /* generic vm_area_ops exported for stackable file systems */
1585 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1586 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1587 
1588 /* mm/page-writeback.c */
1589 int write_one_page(struct page *page, int wait);
1590 void task_dirty_inc(struct task_struct *tsk);
1591 
1592 /* readahead.c */
1593 #define VM_MAX_READAHEAD	128	/* kbytes */
1594 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1595 
1596 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1597 			pgoff_t offset, unsigned long nr_to_read);
1598 
1599 void page_cache_sync_readahead(struct address_space *mapping,
1600 			       struct file_ra_state *ra,
1601 			       struct file *filp,
1602 			       pgoff_t offset,
1603 			       unsigned long size);
1604 
1605 void page_cache_async_readahead(struct address_space *mapping,
1606 				struct file_ra_state *ra,
1607 				struct file *filp,
1608 				struct page *pg,
1609 				pgoff_t offset,
1610 				unsigned long size);
1611 
1612 unsigned long max_sane_readahead(unsigned long nr);
1613 unsigned long ra_submit(struct file_ra_state *ra,
1614 			struct address_space *mapping,
1615 			struct file *filp);
1616 
1617 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1618 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1619 
1620 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1621 extern int expand_downwards(struct vm_area_struct *vma,
1622 		unsigned long address);
1623 #if VM_GROWSUP
1624 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1625 #else
1626   #define expand_upwards(vma, address) do { } while (0)
1627 #endif
1628 
1629 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1630 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1631 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1632 					     struct vm_area_struct **pprev);
1633 
1634 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1635    NULL if none.  Assume start_addr < end_addr. */
1636 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1637 {
1638 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1639 
1640 	if (vma && end_addr <= vma->vm_start)
1641 		vma = NULL;
1642 	return vma;
1643 }
1644 
1645 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1646 {
1647 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1648 }
1649 
1650 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1651 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1652 				unsigned long vm_start, unsigned long vm_end)
1653 {
1654 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1655 
1656 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1657 		vma = NULL;
1658 
1659 	return vma;
1660 }
1661 
1662 #ifdef CONFIG_MMU
1663 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1664 #else
1665 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1666 {
1667 	return __pgprot(0);
1668 }
1669 #endif
1670 
1671 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1672 unsigned long change_prot_numa(struct vm_area_struct *vma,
1673 			unsigned long start, unsigned long end);
1674 #endif
1675 
1676 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1677 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1678 			unsigned long pfn, unsigned long size, pgprot_t);
1679 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1680 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1681 			unsigned long pfn);
1682 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1683 			unsigned long pfn);
1684 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1685 
1686 
1687 struct page *follow_page_mask(struct vm_area_struct *vma,
1688 			      unsigned long address, unsigned int foll_flags,
1689 			      unsigned int *page_mask);
1690 
1691 static inline struct page *follow_page(struct vm_area_struct *vma,
1692 		unsigned long address, unsigned int foll_flags)
1693 {
1694 	unsigned int unused_page_mask;
1695 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1696 }
1697 
1698 #define FOLL_WRITE	0x01	/* check pte is writable */
1699 #define FOLL_TOUCH	0x02	/* mark page accessed */
1700 #define FOLL_GET	0x04	/* do get_page on page */
1701 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1702 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1703 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1704 				 * and return without waiting upon it */
1705 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1706 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1707 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1708 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
1709 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
1710 
1711 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1712 			void *data);
1713 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1714 			       unsigned long size, pte_fn_t fn, void *data);
1715 
1716 #ifdef CONFIG_PROC_FS
1717 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1718 #else
1719 static inline void vm_stat_account(struct mm_struct *mm,
1720 			unsigned long flags, struct file *file, long pages)
1721 {
1722 	mm->total_vm += pages;
1723 }
1724 #endif /* CONFIG_PROC_FS */
1725 
1726 #ifdef CONFIG_DEBUG_PAGEALLOC
1727 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1728 #ifdef CONFIG_HIBERNATION
1729 extern bool kernel_page_present(struct page *page);
1730 #endif /* CONFIG_HIBERNATION */
1731 #else
1732 static inline void
1733 kernel_map_pages(struct page *page, int numpages, int enable) {}
1734 #ifdef CONFIG_HIBERNATION
1735 static inline bool kernel_page_present(struct page *page) { return true; }
1736 #endif /* CONFIG_HIBERNATION */
1737 #endif
1738 
1739 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1740 #ifdef	__HAVE_ARCH_GATE_AREA
1741 int in_gate_area_no_mm(unsigned long addr);
1742 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1743 #else
1744 int in_gate_area_no_mm(unsigned long addr);
1745 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1746 #endif	/* __HAVE_ARCH_GATE_AREA */
1747 
1748 #ifdef CONFIG_SYSCTL
1749 extern int sysctl_drop_caches;
1750 int drop_caches_sysctl_handler(struct ctl_table *, int,
1751 					void __user *, size_t *, loff_t *);
1752 #endif
1753 
1754 unsigned long shrink_slab(struct shrink_control *shrink,
1755 			  unsigned long nr_pages_scanned,
1756 			  unsigned long lru_pages);
1757 
1758 #ifndef CONFIG_MMU
1759 #define randomize_va_space 0
1760 #else
1761 extern int randomize_va_space;
1762 #endif
1763 
1764 const char * arch_vma_name(struct vm_area_struct *vma);
1765 void print_vma_addr(char *prefix, unsigned long rip);
1766 
1767 void sparse_mem_maps_populate_node(struct page **map_map,
1768 				   unsigned long pnum_begin,
1769 				   unsigned long pnum_end,
1770 				   unsigned long map_count,
1771 				   int nodeid);
1772 
1773 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1774 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1775 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1776 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1777 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1778 void *vmemmap_alloc_block(unsigned long size, int node);
1779 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1780 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1781 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1782 			       int node);
1783 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1784 void vmemmap_populate_print_last(void);
1785 #ifdef CONFIG_MEMORY_HOTPLUG
1786 void vmemmap_free(unsigned long start, unsigned long end);
1787 #endif
1788 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1789 				  unsigned long size);
1790 
1791 enum mf_flags {
1792 	MF_COUNT_INCREASED = 1 << 0,
1793 	MF_ACTION_REQUIRED = 1 << 1,
1794 	MF_MUST_KILL = 1 << 2,
1795 	MF_SOFT_OFFLINE = 1 << 3,
1796 };
1797 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1798 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1799 extern int unpoison_memory(unsigned long pfn);
1800 extern int sysctl_memory_failure_early_kill;
1801 extern int sysctl_memory_failure_recovery;
1802 extern void shake_page(struct page *p, int access);
1803 extern atomic_long_t num_poisoned_pages;
1804 extern int soft_offline_page(struct page *page, int flags);
1805 
1806 extern void dump_page(struct page *page);
1807 
1808 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1809 extern void clear_huge_page(struct page *page,
1810 			    unsigned long addr,
1811 			    unsigned int pages_per_huge_page);
1812 extern void copy_user_huge_page(struct page *dst, struct page *src,
1813 				unsigned long addr, struct vm_area_struct *vma,
1814 				unsigned int pages_per_huge_page);
1815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1816 
1817 #ifdef CONFIG_DEBUG_PAGEALLOC
1818 extern unsigned int _debug_guardpage_minorder;
1819 
1820 static inline unsigned int debug_guardpage_minorder(void)
1821 {
1822 	return _debug_guardpage_minorder;
1823 }
1824 
1825 static inline bool page_is_guard(struct page *page)
1826 {
1827 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1828 }
1829 #else
1830 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1831 static inline bool page_is_guard(struct page *page) { return false; }
1832 #endif /* CONFIG_DEBUG_PAGEALLOC */
1833 
1834 #if MAX_NUMNODES > 1
1835 void __init setup_nr_node_ids(void);
1836 #else
1837 static inline void setup_nr_node_ids(void) {}
1838 #endif
1839 
1840 #endif /* __KERNEL__ */
1841 #endif /* _LINUX_MM_H */
1842