1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 30 struct mempolicy; 31 struct anon_vma; 32 struct anon_vma_chain; 33 struct file_ra_state; 34 struct user_struct; 35 struct writeback_control; 36 struct bdi_writeback; 37 38 void init_mm_internals(void); 39 40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41 extern unsigned long max_mapnr; 42 43 static inline void set_max_mapnr(unsigned long limit) 44 { 45 max_mapnr = limit; 46 } 47 #else 48 static inline void set_max_mapnr(unsigned long limit) { } 49 #endif 50 51 extern unsigned long totalram_pages; 52 extern void * high_memory; 53 extern int page_cluster; 54 55 #ifdef CONFIG_SYSCTL 56 extern int sysctl_legacy_va_layout; 57 #else 58 #define sysctl_legacy_va_layout 0 59 #endif 60 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62 extern const int mmap_rnd_bits_min; 63 extern const int mmap_rnd_bits_max; 64 extern int mmap_rnd_bits __read_mostly; 65 #endif 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67 extern const int mmap_rnd_compat_bits_min; 68 extern const int mmap_rnd_compat_bits_max; 69 extern int mmap_rnd_compat_bits __read_mostly; 70 #endif 71 72 #include <asm/page.h> 73 #include <asm/pgtable.h> 74 #include <asm/processor.h> 75 76 #ifndef __pa_symbol 77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78 #endif 79 80 #ifndef page_to_virt 81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82 #endif 83 84 #ifndef lm_alias 85 #define lm_alias(x) __va(__pa_symbol(x)) 86 #endif 87 88 /* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95 #ifndef mm_forbids_zeropage 96 #define mm_forbids_zeropage(X) (0) 97 #endif 98 99 /* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104 #ifndef mm_zero_struct_page 105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106 #endif 107 108 /* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124 #define MAPCOUNT_ELF_CORE_MARGIN (5) 125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127 extern int sysctl_max_map_count; 128 129 extern unsigned long sysctl_user_reserve_kbytes; 130 extern unsigned long sysctl_admin_reserve_kbytes; 131 132 extern int sysctl_overcommit_memory; 133 extern int sysctl_overcommit_ratio; 134 extern unsigned long sysctl_overcommit_kbytes; 135 136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143 /* to align the pointer to the (next) page boundary */ 144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149 /* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160 void vm_area_free(struct vm_area_struct *); 161 162 #ifndef CONFIG_MMU 163 extern struct rb_root nommu_region_tree; 164 extern struct rw_semaphore nommu_region_sem; 165 166 extern unsigned int kobjsize(const void *objp); 167 #endif 168 169 /* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173 #define VM_NONE 0x00000000 174 175 #define VM_READ 0x00000001 /* currently active flags */ 176 #define VM_WRITE 0x00000002 177 #define VM_EXEC 0x00000004 178 #define VM_SHARED 0x00000008 179 180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182 #define VM_MAYWRITE 0x00000020 183 #define VM_MAYEXEC 0x00000040 184 #define VM_MAYSHARE 0x00000080 185 186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192 #define VM_LOCKED 0x00002000 193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210 #ifdef CONFIG_MEM_SOFT_DIRTY 211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212 #else 213 # define VM_SOFTDIRTY 0 214 #endif 215 216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234 #ifdef CONFIG_ARCH_HAS_PKEYS 235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240 #ifdef CONFIG_PPC 241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242 #else 243 # define VM_PKEY_BIT4 0 244 #endif 245 #endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247 #if defined(CONFIG_X86) 248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249 #elif defined(CONFIG_PPC) 250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251 #elif defined(CONFIG_PARISC) 252 # define VM_GROWSUP VM_ARCH_1 253 #elif defined(CONFIG_IA64) 254 # define VM_GROWSUP VM_ARCH_1 255 #elif defined(CONFIG_SPARC64) 256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257 # define VM_ARCH_CLEAR VM_SPARC_ADI 258 #elif !defined(CONFIG_MMU) 259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260 #endif 261 262 #if defined(CONFIG_X86_INTEL_MPX) 263 /* MPX specific bounds table or bounds directory */ 264 # define VM_MPX VM_HIGH_ARCH_4 265 #else 266 # define VM_MPX VM_NONE 267 #endif 268 269 #ifndef VM_GROWSUP 270 # define VM_GROWSUP VM_NONE 271 #endif 272 273 /* Bits set in the VMA until the stack is in its final location */ 274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278 #endif 279 280 #ifdef CONFIG_STACK_GROWSUP 281 #define VM_STACK VM_GROWSUP 282 #else 283 #define VM_STACK VM_GROWSDOWN 284 #endif 285 286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288 /* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294 /* This mask defines which mm->def_flags a process can inherit its parent */ 295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297 /* This mask is used to clear all the VMA flags used by mlock */ 298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300 /* Arch-specific flags to clear when updating VM flags on protection change */ 301 #ifndef VM_ARCH_CLEAR 302 # define VM_ARCH_CLEAR VM_NONE 303 #endif 304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306 /* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310 extern pgprot_t protection_map[16]; 311 312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322 #define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333 /* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343 struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379 }; 380 381 /* page entry size for vm->huge_fault() */ 382 enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386 }; 387 388 /* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393 struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423 #ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445 #endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453 }; 454 455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 456 { 457 static const struct vm_operations_struct dummy_vm_ops = {}; 458 459 memset(vma, 0, sizeof(*vma)); 460 vma->vm_mm = mm; 461 vma->vm_ops = &dummy_vm_ops; 462 INIT_LIST_HEAD(&vma->anon_vma_chain); 463 } 464 465 static inline void vma_set_anonymous(struct vm_area_struct *vma) 466 { 467 vma->vm_ops = NULL; 468 } 469 470 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 471 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 472 473 struct mmu_gather; 474 struct inode; 475 476 #define page_private(page) ((page)->private) 477 #define set_page_private(page, v) ((page)->private = (v)) 478 479 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 480 static inline int pmd_devmap(pmd_t pmd) 481 { 482 return 0; 483 } 484 static inline int pud_devmap(pud_t pud) 485 { 486 return 0; 487 } 488 static inline int pgd_devmap(pgd_t pgd) 489 { 490 return 0; 491 } 492 #endif 493 494 /* 495 * FIXME: take this include out, include page-flags.h in 496 * files which need it (119 of them) 497 */ 498 #include <linux/page-flags.h> 499 #include <linux/huge_mm.h> 500 501 /* 502 * Methods to modify the page usage count. 503 * 504 * What counts for a page usage: 505 * - cache mapping (page->mapping) 506 * - private data (page->private) 507 * - page mapped in a task's page tables, each mapping 508 * is counted separately 509 * 510 * Also, many kernel routines increase the page count before a critical 511 * routine so they can be sure the page doesn't go away from under them. 512 */ 513 514 /* 515 * Drop a ref, return true if the refcount fell to zero (the page has no users) 516 */ 517 static inline int put_page_testzero(struct page *page) 518 { 519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 520 return page_ref_dec_and_test(page); 521 } 522 523 /* 524 * Try to grab a ref unless the page has a refcount of zero, return false if 525 * that is the case. 526 * This can be called when MMU is off so it must not access 527 * any of the virtual mappings. 528 */ 529 static inline int get_page_unless_zero(struct page *page) 530 { 531 return page_ref_add_unless(page, 1, 0); 532 } 533 534 extern int page_is_ram(unsigned long pfn); 535 536 enum { 537 REGION_INTERSECTS, 538 REGION_DISJOINT, 539 REGION_MIXED, 540 }; 541 542 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 543 unsigned long desc); 544 545 /* Support for virtually mapped pages */ 546 struct page *vmalloc_to_page(const void *addr); 547 unsigned long vmalloc_to_pfn(const void *addr); 548 549 /* 550 * Determine if an address is within the vmalloc range 551 * 552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 553 * is no special casing required. 554 */ 555 static inline bool is_vmalloc_addr(const void *x) 556 { 557 #ifdef CONFIG_MMU 558 unsigned long addr = (unsigned long)x; 559 560 return addr >= VMALLOC_START && addr < VMALLOC_END; 561 #else 562 return false; 563 #endif 564 } 565 #ifdef CONFIG_MMU 566 extern int is_vmalloc_or_module_addr(const void *x); 567 #else 568 static inline int is_vmalloc_or_module_addr(const void *x) 569 { 570 return 0; 571 } 572 #endif 573 574 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 575 static inline void *kvmalloc(size_t size, gfp_t flags) 576 { 577 return kvmalloc_node(size, flags, NUMA_NO_NODE); 578 } 579 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 580 { 581 return kvmalloc_node(size, flags | __GFP_ZERO, node); 582 } 583 static inline void *kvzalloc(size_t size, gfp_t flags) 584 { 585 return kvmalloc(size, flags | __GFP_ZERO); 586 } 587 588 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 589 { 590 size_t bytes; 591 592 if (unlikely(check_mul_overflow(n, size, &bytes))) 593 return NULL; 594 595 return kvmalloc(bytes, flags); 596 } 597 598 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 599 { 600 return kvmalloc_array(n, size, flags | __GFP_ZERO); 601 } 602 603 extern void kvfree(const void *addr); 604 605 static inline atomic_t *compound_mapcount_ptr(struct page *page) 606 { 607 return &page[1].compound_mapcount; 608 } 609 610 static inline int compound_mapcount(struct page *page) 611 { 612 VM_BUG_ON_PAGE(!PageCompound(page), page); 613 page = compound_head(page); 614 return atomic_read(compound_mapcount_ptr(page)) + 1; 615 } 616 617 /* 618 * The atomic page->_mapcount, starts from -1: so that transitions 619 * both from it and to it can be tracked, using atomic_inc_and_test 620 * and atomic_add_negative(-1). 621 */ 622 static inline void page_mapcount_reset(struct page *page) 623 { 624 atomic_set(&(page)->_mapcount, -1); 625 } 626 627 int __page_mapcount(struct page *page); 628 629 static inline int page_mapcount(struct page *page) 630 { 631 VM_BUG_ON_PAGE(PageSlab(page), page); 632 633 if (unlikely(PageCompound(page))) 634 return __page_mapcount(page); 635 return atomic_read(&page->_mapcount) + 1; 636 } 637 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 int total_mapcount(struct page *page); 640 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 641 #else 642 static inline int total_mapcount(struct page *page) 643 { 644 return page_mapcount(page); 645 } 646 static inline int page_trans_huge_mapcount(struct page *page, 647 int *total_mapcount) 648 { 649 int mapcount = page_mapcount(page); 650 if (total_mapcount) 651 *total_mapcount = mapcount; 652 return mapcount; 653 } 654 #endif 655 656 static inline struct page *virt_to_head_page(const void *x) 657 { 658 struct page *page = virt_to_page(x); 659 660 return compound_head(page); 661 } 662 663 void __put_page(struct page *page); 664 665 void put_pages_list(struct list_head *pages); 666 667 void split_page(struct page *page, unsigned int order); 668 669 /* 670 * Compound pages have a destructor function. Provide a 671 * prototype for that function and accessor functions. 672 * These are _only_ valid on the head of a compound page. 673 */ 674 typedef void compound_page_dtor(struct page *); 675 676 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 677 enum compound_dtor_id { 678 NULL_COMPOUND_DTOR, 679 COMPOUND_PAGE_DTOR, 680 #ifdef CONFIG_HUGETLB_PAGE 681 HUGETLB_PAGE_DTOR, 682 #endif 683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 TRANSHUGE_PAGE_DTOR, 685 #endif 686 NR_COMPOUND_DTORS, 687 }; 688 extern compound_page_dtor * const compound_page_dtors[]; 689 690 static inline void set_compound_page_dtor(struct page *page, 691 enum compound_dtor_id compound_dtor) 692 { 693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 694 page[1].compound_dtor = compound_dtor; 695 } 696 697 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 698 { 699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 700 return compound_page_dtors[page[1].compound_dtor]; 701 } 702 703 static inline unsigned int compound_order(struct page *page) 704 { 705 if (!PageHead(page)) 706 return 0; 707 return page[1].compound_order; 708 } 709 710 static inline void set_compound_order(struct page *page, unsigned int order) 711 { 712 page[1].compound_order = order; 713 } 714 715 void free_compound_page(struct page *page); 716 717 #ifdef CONFIG_MMU 718 /* 719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 720 * servicing faults for write access. In the normal case, do always want 721 * pte_mkwrite. But get_user_pages can cause write faults for mappings 722 * that do not have writing enabled, when used by access_process_vm. 723 */ 724 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 725 { 726 if (likely(vma->vm_flags & VM_WRITE)) 727 pte = pte_mkwrite(pte); 728 return pte; 729 } 730 731 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 732 struct page *page); 733 vm_fault_t finish_fault(struct vm_fault *vmf); 734 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 735 #endif 736 737 /* 738 * Multiple processes may "see" the same page. E.g. for untouched 739 * mappings of /dev/null, all processes see the same page full of 740 * zeroes, and text pages of executables and shared libraries have 741 * only one copy in memory, at most, normally. 742 * 743 * For the non-reserved pages, page_count(page) denotes a reference count. 744 * page_count() == 0 means the page is free. page->lru is then used for 745 * freelist management in the buddy allocator. 746 * page_count() > 0 means the page has been allocated. 747 * 748 * Pages are allocated by the slab allocator in order to provide memory 749 * to kmalloc and kmem_cache_alloc. In this case, the management of the 750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 751 * unless a particular usage is carefully commented. (the responsibility of 752 * freeing the kmalloc memory is the caller's, of course). 753 * 754 * A page may be used by anyone else who does a __get_free_page(). 755 * In this case, page_count still tracks the references, and should only 756 * be used through the normal accessor functions. The top bits of page->flags 757 * and page->virtual store page management information, but all other fields 758 * are unused and could be used privately, carefully. The management of this 759 * page is the responsibility of the one who allocated it, and those who have 760 * subsequently been given references to it. 761 * 762 * The other pages (we may call them "pagecache pages") are completely 763 * managed by the Linux memory manager: I/O, buffers, swapping etc. 764 * The following discussion applies only to them. 765 * 766 * A pagecache page contains an opaque `private' member, which belongs to the 767 * page's address_space. Usually, this is the address of a circular list of 768 * the page's disk buffers. PG_private must be set to tell the VM to call 769 * into the filesystem to release these pages. 770 * 771 * A page may belong to an inode's memory mapping. In this case, page->mapping 772 * is the pointer to the inode, and page->index is the file offset of the page, 773 * in units of PAGE_SIZE. 774 * 775 * If pagecache pages are not associated with an inode, they are said to be 776 * anonymous pages. These may become associated with the swapcache, and in that 777 * case PG_swapcache is set, and page->private is an offset into the swapcache. 778 * 779 * In either case (swapcache or inode backed), the pagecache itself holds one 780 * reference to the page. Setting PG_private should also increment the 781 * refcount. The each user mapping also has a reference to the page. 782 * 783 * The pagecache pages are stored in a per-mapping radix tree, which is 784 * rooted at mapping->i_pages, and indexed by offset. 785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 786 * lists, we instead now tag pages as dirty/writeback in the radix tree. 787 * 788 * All pagecache pages may be subject to I/O: 789 * - inode pages may need to be read from disk, 790 * - inode pages which have been modified and are MAP_SHARED may need 791 * to be written back to the inode on disk, 792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 793 * modified may need to be swapped out to swap space and (later) to be read 794 * back into memory. 795 */ 796 797 /* 798 * The zone field is never updated after free_area_init_core() 799 * sets it, so none of the operations on it need to be atomic. 800 */ 801 802 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 803 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 804 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 805 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 806 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 807 808 /* 809 * Define the bit shifts to access each section. For non-existent 810 * sections we define the shift as 0; that plus a 0 mask ensures 811 * the compiler will optimise away reference to them. 812 */ 813 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 814 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 815 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 816 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 817 818 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 819 #ifdef NODE_NOT_IN_PAGE_FLAGS 820 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 821 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 822 SECTIONS_PGOFF : ZONES_PGOFF) 823 #else 824 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 825 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 826 NODES_PGOFF : ZONES_PGOFF) 827 #endif 828 829 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 830 831 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 832 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 833 #endif 834 835 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 836 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 837 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 838 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 839 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 840 841 static inline enum zone_type page_zonenum(const struct page *page) 842 { 843 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 844 } 845 846 #ifdef CONFIG_ZONE_DEVICE 847 static inline bool is_zone_device_page(const struct page *page) 848 { 849 return page_zonenum(page) == ZONE_DEVICE; 850 } 851 #else 852 static inline bool is_zone_device_page(const struct page *page) 853 { 854 return false; 855 } 856 #endif 857 858 #ifdef CONFIG_DEV_PAGEMAP_OPS 859 void dev_pagemap_get_ops(void); 860 void dev_pagemap_put_ops(void); 861 void __put_devmap_managed_page(struct page *page); 862 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 863 static inline bool put_devmap_managed_page(struct page *page) 864 { 865 if (!static_branch_unlikely(&devmap_managed_key)) 866 return false; 867 if (!is_zone_device_page(page)) 868 return false; 869 switch (page->pgmap->type) { 870 case MEMORY_DEVICE_PRIVATE: 871 case MEMORY_DEVICE_PUBLIC: 872 case MEMORY_DEVICE_FS_DAX: 873 __put_devmap_managed_page(page); 874 return true; 875 default: 876 break; 877 } 878 return false; 879 } 880 881 static inline bool is_device_private_page(const struct page *page) 882 { 883 return is_zone_device_page(page) && 884 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 885 } 886 887 static inline bool is_device_public_page(const struct page *page) 888 { 889 return is_zone_device_page(page) && 890 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 891 } 892 893 #ifdef CONFIG_PCI_P2PDMA 894 static inline bool is_pci_p2pdma_page(const struct page *page) 895 { 896 return is_zone_device_page(page) && 897 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 898 } 899 #else /* CONFIG_PCI_P2PDMA */ 900 static inline bool is_pci_p2pdma_page(const struct page *page) 901 { 902 return false; 903 } 904 #endif /* CONFIG_PCI_P2PDMA */ 905 906 #else /* CONFIG_DEV_PAGEMAP_OPS */ 907 static inline void dev_pagemap_get_ops(void) 908 { 909 } 910 911 static inline void dev_pagemap_put_ops(void) 912 { 913 } 914 915 static inline bool put_devmap_managed_page(struct page *page) 916 { 917 return false; 918 } 919 920 static inline bool is_device_private_page(const struct page *page) 921 { 922 return false; 923 } 924 925 static inline bool is_device_public_page(const struct page *page) 926 { 927 return false; 928 } 929 930 static inline bool is_pci_p2pdma_page(const struct page *page) 931 { 932 return false; 933 } 934 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 935 936 static inline void get_page(struct page *page) 937 { 938 page = compound_head(page); 939 /* 940 * Getting a normal page or the head of a compound page 941 * requires to already have an elevated page->_refcount. 942 */ 943 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 944 page_ref_inc(page); 945 } 946 947 static inline void put_page(struct page *page) 948 { 949 page = compound_head(page); 950 951 /* 952 * For devmap managed pages we need to catch refcount transition from 953 * 2 to 1, when refcount reach one it means the page is free and we 954 * need to inform the device driver through callback. See 955 * include/linux/memremap.h and HMM for details. 956 */ 957 if (put_devmap_managed_page(page)) 958 return; 959 960 if (put_page_testzero(page)) 961 __put_page(page); 962 } 963 964 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 965 #define SECTION_IN_PAGE_FLAGS 966 #endif 967 968 /* 969 * The identification function is mainly used by the buddy allocator for 970 * determining if two pages could be buddies. We are not really identifying 971 * the zone since we could be using the section number id if we do not have 972 * node id available in page flags. 973 * We only guarantee that it will return the same value for two combinable 974 * pages in a zone. 975 */ 976 static inline int page_zone_id(struct page *page) 977 { 978 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 979 } 980 981 #ifdef NODE_NOT_IN_PAGE_FLAGS 982 extern int page_to_nid(const struct page *page); 983 #else 984 static inline int page_to_nid(const struct page *page) 985 { 986 struct page *p = (struct page *)page; 987 988 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 989 } 990 #endif 991 992 #ifdef CONFIG_NUMA_BALANCING 993 static inline int cpu_pid_to_cpupid(int cpu, int pid) 994 { 995 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 996 } 997 998 static inline int cpupid_to_pid(int cpupid) 999 { 1000 return cpupid & LAST__PID_MASK; 1001 } 1002 1003 static inline int cpupid_to_cpu(int cpupid) 1004 { 1005 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1006 } 1007 1008 static inline int cpupid_to_nid(int cpupid) 1009 { 1010 return cpu_to_node(cpupid_to_cpu(cpupid)); 1011 } 1012 1013 static inline bool cpupid_pid_unset(int cpupid) 1014 { 1015 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1016 } 1017 1018 static inline bool cpupid_cpu_unset(int cpupid) 1019 { 1020 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1021 } 1022 1023 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1024 { 1025 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1026 } 1027 1028 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1029 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1030 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1031 { 1032 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1033 } 1034 1035 static inline int page_cpupid_last(struct page *page) 1036 { 1037 return page->_last_cpupid; 1038 } 1039 static inline void page_cpupid_reset_last(struct page *page) 1040 { 1041 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1042 } 1043 #else 1044 static inline int page_cpupid_last(struct page *page) 1045 { 1046 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1047 } 1048 1049 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1050 1051 static inline void page_cpupid_reset_last(struct page *page) 1052 { 1053 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1054 } 1055 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1056 #else /* !CONFIG_NUMA_BALANCING */ 1057 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1058 { 1059 return page_to_nid(page); /* XXX */ 1060 } 1061 1062 static inline int page_cpupid_last(struct page *page) 1063 { 1064 return page_to_nid(page); /* XXX */ 1065 } 1066 1067 static inline int cpupid_to_nid(int cpupid) 1068 { 1069 return -1; 1070 } 1071 1072 static inline int cpupid_to_pid(int cpupid) 1073 { 1074 return -1; 1075 } 1076 1077 static inline int cpupid_to_cpu(int cpupid) 1078 { 1079 return -1; 1080 } 1081 1082 static inline int cpu_pid_to_cpupid(int nid, int pid) 1083 { 1084 return -1; 1085 } 1086 1087 static inline bool cpupid_pid_unset(int cpupid) 1088 { 1089 return 1; 1090 } 1091 1092 static inline void page_cpupid_reset_last(struct page *page) 1093 { 1094 } 1095 1096 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1097 { 1098 return false; 1099 } 1100 #endif /* CONFIG_NUMA_BALANCING */ 1101 1102 static inline struct zone *page_zone(const struct page *page) 1103 { 1104 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1105 } 1106 1107 static inline pg_data_t *page_pgdat(const struct page *page) 1108 { 1109 return NODE_DATA(page_to_nid(page)); 1110 } 1111 1112 #ifdef SECTION_IN_PAGE_FLAGS 1113 static inline void set_page_section(struct page *page, unsigned long section) 1114 { 1115 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1116 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1117 } 1118 1119 static inline unsigned long page_to_section(const struct page *page) 1120 { 1121 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1122 } 1123 #endif 1124 1125 static inline void set_page_zone(struct page *page, enum zone_type zone) 1126 { 1127 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1128 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1129 } 1130 1131 static inline void set_page_node(struct page *page, unsigned long node) 1132 { 1133 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1134 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1135 } 1136 1137 static inline void set_page_links(struct page *page, enum zone_type zone, 1138 unsigned long node, unsigned long pfn) 1139 { 1140 set_page_zone(page, zone); 1141 set_page_node(page, node); 1142 #ifdef SECTION_IN_PAGE_FLAGS 1143 set_page_section(page, pfn_to_section_nr(pfn)); 1144 #endif 1145 } 1146 1147 #ifdef CONFIG_MEMCG 1148 static inline struct mem_cgroup *page_memcg(struct page *page) 1149 { 1150 return page->mem_cgroup; 1151 } 1152 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1153 { 1154 WARN_ON_ONCE(!rcu_read_lock_held()); 1155 return READ_ONCE(page->mem_cgroup); 1156 } 1157 #else 1158 static inline struct mem_cgroup *page_memcg(struct page *page) 1159 { 1160 return NULL; 1161 } 1162 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1163 { 1164 WARN_ON_ONCE(!rcu_read_lock_held()); 1165 return NULL; 1166 } 1167 #endif 1168 1169 /* 1170 * Some inline functions in vmstat.h depend on page_zone() 1171 */ 1172 #include <linux/vmstat.h> 1173 1174 static __always_inline void *lowmem_page_address(const struct page *page) 1175 { 1176 return page_to_virt(page); 1177 } 1178 1179 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1180 #define HASHED_PAGE_VIRTUAL 1181 #endif 1182 1183 #if defined(WANT_PAGE_VIRTUAL) 1184 static inline void *page_address(const struct page *page) 1185 { 1186 return page->virtual; 1187 } 1188 static inline void set_page_address(struct page *page, void *address) 1189 { 1190 page->virtual = address; 1191 } 1192 #define page_address_init() do { } while(0) 1193 #endif 1194 1195 #if defined(HASHED_PAGE_VIRTUAL) 1196 void *page_address(const struct page *page); 1197 void set_page_address(struct page *page, void *virtual); 1198 void page_address_init(void); 1199 #endif 1200 1201 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1202 #define page_address(page) lowmem_page_address(page) 1203 #define set_page_address(page, address) do { } while(0) 1204 #define page_address_init() do { } while(0) 1205 #endif 1206 1207 extern void *page_rmapping(struct page *page); 1208 extern struct anon_vma *page_anon_vma(struct page *page); 1209 extern struct address_space *page_mapping(struct page *page); 1210 1211 extern struct address_space *__page_file_mapping(struct page *); 1212 1213 static inline 1214 struct address_space *page_file_mapping(struct page *page) 1215 { 1216 if (unlikely(PageSwapCache(page))) 1217 return __page_file_mapping(page); 1218 1219 return page->mapping; 1220 } 1221 1222 extern pgoff_t __page_file_index(struct page *page); 1223 1224 /* 1225 * Return the pagecache index of the passed page. Regular pagecache pages 1226 * use ->index whereas swapcache pages use swp_offset(->private) 1227 */ 1228 static inline pgoff_t page_index(struct page *page) 1229 { 1230 if (unlikely(PageSwapCache(page))) 1231 return __page_file_index(page); 1232 return page->index; 1233 } 1234 1235 bool page_mapped(struct page *page); 1236 struct address_space *page_mapping(struct page *page); 1237 struct address_space *page_mapping_file(struct page *page); 1238 1239 /* 1240 * Return true only if the page has been allocated with 1241 * ALLOC_NO_WATERMARKS and the low watermark was not 1242 * met implying that the system is under some pressure. 1243 */ 1244 static inline bool page_is_pfmemalloc(struct page *page) 1245 { 1246 /* 1247 * Page index cannot be this large so this must be 1248 * a pfmemalloc page. 1249 */ 1250 return page->index == -1UL; 1251 } 1252 1253 /* 1254 * Only to be called by the page allocator on a freshly allocated 1255 * page. 1256 */ 1257 static inline void set_page_pfmemalloc(struct page *page) 1258 { 1259 page->index = -1UL; 1260 } 1261 1262 static inline void clear_page_pfmemalloc(struct page *page) 1263 { 1264 page->index = 0; 1265 } 1266 1267 /* 1268 * Different kinds of faults, as returned by handle_mm_fault(). 1269 * Used to decide whether a process gets delivered SIGBUS or 1270 * just gets major/minor fault counters bumped up. 1271 */ 1272 1273 #define VM_FAULT_OOM 0x0001 1274 #define VM_FAULT_SIGBUS 0x0002 1275 #define VM_FAULT_MAJOR 0x0004 1276 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1277 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1278 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1279 #define VM_FAULT_SIGSEGV 0x0040 1280 1281 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1282 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1283 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1284 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1285 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1286 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1287 * and needs fsync() to complete (for 1288 * synchronous page faults in DAX) */ 1289 1290 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1291 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1292 VM_FAULT_FALLBACK) 1293 1294 #define VM_FAULT_RESULT_TRACE \ 1295 { VM_FAULT_OOM, "OOM" }, \ 1296 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1297 { VM_FAULT_MAJOR, "MAJOR" }, \ 1298 { VM_FAULT_WRITE, "WRITE" }, \ 1299 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1300 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1301 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1302 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1303 { VM_FAULT_LOCKED, "LOCKED" }, \ 1304 { VM_FAULT_RETRY, "RETRY" }, \ 1305 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1306 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1307 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1308 1309 /* Encode hstate index for a hwpoisoned large page */ 1310 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1311 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1312 1313 /* 1314 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1315 */ 1316 extern void pagefault_out_of_memory(void); 1317 1318 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1319 1320 /* 1321 * Flags passed to show_mem() and show_free_areas() to suppress output in 1322 * various contexts. 1323 */ 1324 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1325 1326 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1327 1328 extern bool can_do_mlock(void); 1329 extern int user_shm_lock(size_t, struct user_struct *); 1330 extern void user_shm_unlock(size_t, struct user_struct *); 1331 1332 /* 1333 * Parameter block passed down to zap_pte_range in exceptional cases. 1334 */ 1335 struct zap_details { 1336 struct address_space *check_mapping; /* Check page->mapping if set */ 1337 pgoff_t first_index; /* Lowest page->index to unmap */ 1338 pgoff_t last_index; /* Highest page->index to unmap */ 1339 }; 1340 1341 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1342 pte_t pte, bool with_public_device); 1343 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1344 1345 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1346 pmd_t pmd); 1347 1348 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1349 unsigned long size); 1350 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1351 unsigned long size); 1352 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1353 unsigned long start, unsigned long end); 1354 1355 /** 1356 * mm_walk - callbacks for walk_page_range 1357 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1358 * this handler should only handle pud_trans_huge() puds. 1359 * the pmd_entry or pte_entry callbacks will be used for 1360 * regular PUDs. 1361 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1362 * this handler is required to be able to handle 1363 * pmd_trans_huge() pmds. They may simply choose to 1364 * split_huge_page() instead of handling it explicitly. 1365 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1366 * @pte_hole: if set, called for each hole at all levels 1367 * @hugetlb_entry: if set, called for each hugetlb entry 1368 * @test_walk: caller specific callback function to determine whether 1369 * we walk over the current vma or not. Returning 0 1370 * value means "do page table walk over the current vma," 1371 * and a negative one means "abort current page table walk 1372 * right now." 1 means "skip the current vma." 1373 * @mm: mm_struct representing the target process of page table walk 1374 * @vma: vma currently walked (NULL if walking outside vmas) 1375 * @private: private data for callbacks' usage 1376 * 1377 * (see the comment on walk_page_range() for more details) 1378 */ 1379 struct mm_walk { 1380 int (*pud_entry)(pud_t *pud, unsigned long addr, 1381 unsigned long next, struct mm_walk *walk); 1382 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1383 unsigned long next, struct mm_walk *walk); 1384 int (*pte_entry)(pte_t *pte, unsigned long addr, 1385 unsigned long next, struct mm_walk *walk); 1386 int (*pte_hole)(unsigned long addr, unsigned long next, 1387 struct mm_walk *walk); 1388 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1389 unsigned long addr, unsigned long next, 1390 struct mm_walk *walk); 1391 int (*test_walk)(unsigned long addr, unsigned long next, 1392 struct mm_walk *walk); 1393 struct mm_struct *mm; 1394 struct vm_area_struct *vma; 1395 void *private; 1396 }; 1397 1398 int walk_page_range(unsigned long addr, unsigned long end, 1399 struct mm_walk *walk); 1400 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1401 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1402 unsigned long end, unsigned long floor, unsigned long ceiling); 1403 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1404 struct vm_area_struct *vma); 1405 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1406 unsigned long *start, unsigned long *end, 1407 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1408 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1409 unsigned long *pfn); 1410 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1411 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1412 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1413 void *buf, int len, int write); 1414 1415 extern void truncate_pagecache(struct inode *inode, loff_t new); 1416 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1417 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1418 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1419 int truncate_inode_page(struct address_space *mapping, struct page *page); 1420 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1421 int invalidate_inode_page(struct page *page); 1422 1423 #ifdef CONFIG_MMU 1424 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1425 unsigned long address, unsigned int flags); 1426 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1427 unsigned long address, unsigned int fault_flags, 1428 bool *unlocked); 1429 void unmap_mapping_pages(struct address_space *mapping, 1430 pgoff_t start, pgoff_t nr, bool even_cows); 1431 void unmap_mapping_range(struct address_space *mapping, 1432 loff_t const holebegin, loff_t const holelen, int even_cows); 1433 #else 1434 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1435 unsigned long address, unsigned int flags) 1436 { 1437 /* should never happen if there's no MMU */ 1438 BUG(); 1439 return VM_FAULT_SIGBUS; 1440 } 1441 static inline int fixup_user_fault(struct task_struct *tsk, 1442 struct mm_struct *mm, unsigned long address, 1443 unsigned int fault_flags, bool *unlocked) 1444 { 1445 /* should never happen if there's no MMU */ 1446 BUG(); 1447 return -EFAULT; 1448 } 1449 static inline void unmap_mapping_pages(struct address_space *mapping, 1450 pgoff_t start, pgoff_t nr, bool even_cows) { } 1451 static inline void unmap_mapping_range(struct address_space *mapping, 1452 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1453 #endif 1454 1455 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1456 loff_t const holebegin, loff_t const holelen) 1457 { 1458 unmap_mapping_range(mapping, holebegin, holelen, 0); 1459 } 1460 1461 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1462 void *buf, int len, unsigned int gup_flags); 1463 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1464 void *buf, int len, unsigned int gup_flags); 1465 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1466 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1467 1468 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1469 unsigned long start, unsigned long nr_pages, 1470 unsigned int gup_flags, struct page **pages, 1471 struct vm_area_struct **vmas, int *locked); 1472 long get_user_pages(unsigned long start, unsigned long nr_pages, 1473 unsigned int gup_flags, struct page **pages, 1474 struct vm_area_struct **vmas); 1475 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1476 unsigned int gup_flags, struct page **pages, int *locked); 1477 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1478 struct page **pages, unsigned int gup_flags); 1479 #ifdef CONFIG_FS_DAX 1480 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1481 unsigned int gup_flags, struct page **pages, 1482 struct vm_area_struct **vmas); 1483 #else 1484 static inline long get_user_pages_longterm(unsigned long start, 1485 unsigned long nr_pages, unsigned int gup_flags, 1486 struct page **pages, struct vm_area_struct **vmas) 1487 { 1488 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1489 } 1490 #endif /* CONFIG_FS_DAX */ 1491 1492 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1493 struct page **pages); 1494 1495 /* Container for pinned pfns / pages */ 1496 struct frame_vector { 1497 unsigned int nr_allocated; /* Number of frames we have space for */ 1498 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1499 bool got_ref; /* Did we pin pages by getting page ref? */ 1500 bool is_pfns; /* Does array contain pages or pfns? */ 1501 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1502 * pfns_vector_pages() or pfns_vector_pfns() 1503 * for access */ 1504 }; 1505 1506 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1507 void frame_vector_destroy(struct frame_vector *vec); 1508 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1509 unsigned int gup_flags, struct frame_vector *vec); 1510 void put_vaddr_frames(struct frame_vector *vec); 1511 int frame_vector_to_pages(struct frame_vector *vec); 1512 void frame_vector_to_pfns(struct frame_vector *vec); 1513 1514 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1515 { 1516 return vec->nr_frames; 1517 } 1518 1519 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1520 { 1521 if (vec->is_pfns) { 1522 int err = frame_vector_to_pages(vec); 1523 1524 if (err) 1525 return ERR_PTR(err); 1526 } 1527 return (struct page **)(vec->ptrs); 1528 } 1529 1530 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1531 { 1532 if (!vec->is_pfns) 1533 frame_vector_to_pfns(vec); 1534 return (unsigned long *)(vec->ptrs); 1535 } 1536 1537 struct kvec; 1538 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1539 struct page **pages); 1540 int get_kernel_page(unsigned long start, int write, struct page **pages); 1541 struct page *get_dump_page(unsigned long addr); 1542 1543 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1544 extern void do_invalidatepage(struct page *page, unsigned int offset, 1545 unsigned int length); 1546 1547 void __set_page_dirty(struct page *, struct address_space *, int warn); 1548 int __set_page_dirty_nobuffers(struct page *page); 1549 int __set_page_dirty_no_writeback(struct page *page); 1550 int redirty_page_for_writepage(struct writeback_control *wbc, 1551 struct page *page); 1552 void account_page_dirtied(struct page *page, struct address_space *mapping); 1553 void account_page_cleaned(struct page *page, struct address_space *mapping, 1554 struct bdi_writeback *wb); 1555 int set_page_dirty(struct page *page); 1556 int set_page_dirty_lock(struct page *page); 1557 void __cancel_dirty_page(struct page *page); 1558 static inline void cancel_dirty_page(struct page *page) 1559 { 1560 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1561 if (PageDirty(page)) 1562 __cancel_dirty_page(page); 1563 } 1564 int clear_page_dirty_for_io(struct page *page); 1565 1566 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1567 1568 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1569 { 1570 return !vma->vm_ops; 1571 } 1572 1573 #ifdef CONFIG_SHMEM 1574 /* 1575 * The vma_is_shmem is not inline because it is used only by slow 1576 * paths in userfault. 1577 */ 1578 bool vma_is_shmem(struct vm_area_struct *vma); 1579 #else 1580 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1581 #endif 1582 1583 int vma_is_stack_for_current(struct vm_area_struct *vma); 1584 1585 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1586 unsigned long old_addr, struct vm_area_struct *new_vma, 1587 unsigned long new_addr, unsigned long len, 1588 bool need_rmap_locks); 1589 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1590 unsigned long end, pgprot_t newprot, 1591 int dirty_accountable, int prot_numa); 1592 extern int mprotect_fixup(struct vm_area_struct *vma, 1593 struct vm_area_struct **pprev, unsigned long start, 1594 unsigned long end, unsigned long newflags); 1595 1596 /* 1597 * doesn't attempt to fault and will return short. 1598 */ 1599 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1600 struct page **pages); 1601 /* 1602 * per-process(per-mm_struct) statistics. 1603 */ 1604 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1605 { 1606 long val = atomic_long_read(&mm->rss_stat.count[member]); 1607 1608 #ifdef SPLIT_RSS_COUNTING 1609 /* 1610 * counter is updated in asynchronous manner and may go to minus. 1611 * But it's never be expected number for users. 1612 */ 1613 if (val < 0) 1614 val = 0; 1615 #endif 1616 return (unsigned long)val; 1617 } 1618 1619 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1620 { 1621 atomic_long_add(value, &mm->rss_stat.count[member]); 1622 } 1623 1624 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1625 { 1626 atomic_long_inc(&mm->rss_stat.count[member]); 1627 } 1628 1629 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1630 { 1631 atomic_long_dec(&mm->rss_stat.count[member]); 1632 } 1633 1634 /* Optimized variant when page is already known not to be PageAnon */ 1635 static inline int mm_counter_file(struct page *page) 1636 { 1637 if (PageSwapBacked(page)) 1638 return MM_SHMEMPAGES; 1639 return MM_FILEPAGES; 1640 } 1641 1642 static inline int mm_counter(struct page *page) 1643 { 1644 if (PageAnon(page)) 1645 return MM_ANONPAGES; 1646 return mm_counter_file(page); 1647 } 1648 1649 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1650 { 1651 return get_mm_counter(mm, MM_FILEPAGES) + 1652 get_mm_counter(mm, MM_ANONPAGES) + 1653 get_mm_counter(mm, MM_SHMEMPAGES); 1654 } 1655 1656 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1657 { 1658 return max(mm->hiwater_rss, get_mm_rss(mm)); 1659 } 1660 1661 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1662 { 1663 return max(mm->hiwater_vm, mm->total_vm); 1664 } 1665 1666 static inline void update_hiwater_rss(struct mm_struct *mm) 1667 { 1668 unsigned long _rss = get_mm_rss(mm); 1669 1670 if ((mm)->hiwater_rss < _rss) 1671 (mm)->hiwater_rss = _rss; 1672 } 1673 1674 static inline void update_hiwater_vm(struct mm_struct *mm) 1675 { 1676 if (mm->hiwater_vm < mm->total_vm) 1677 mm->hiwater_vm = mm->total_vm; 1678 } 1679 1680 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1681 { 1682 mm->hiwater_rss = get_mm_rss(mm); 1683 } 1684 1685 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1686 struct mm_struct *mm) 1687 { 1688 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1689 1690 if (*maxrss < hiwater_rss) 1691 *maxrss = hiwater_rss; 1692 } 1693 1694 #if defined(SPLIT_RSS_COUNTING) 1695 void sync_mm_rss(struct mm_struct *mm); 1696 #else 1697 static inline void sync_mm_rss(struct mm_struct *mm) 1698 { 1699 } 1700 #endif 1701 1702 #ifndef __HAVE_ARCH_PTE_DEVMAP 1703 static inline int pte_devmap(pte_t pte) 1704 { 1705 return 0; 1706 } 1707 #endif 1708 1709 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1710 1711 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1712 spinlock_t **ptl); 1713 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1714 spinlock_t **ptl) 1715 { 1716 pte_t *ptep; 1717 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1718 return ptep; 1719 } 1720 1721 #ifdef __PAGETABLE_P4D_FOLDED 1722 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1723 unsigned long address) 1724 { 1725 return 0; 1726 } 1727 #else 1728 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1729 #endif 1730 1731 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1732 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1733 unsigned long address) 1734 { 1735 return 0; 1736 } 1737 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1738 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1739 1740 #else 1741 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1742 1743 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1744 { 1745 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1746 } 1747 1748 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1749 { 1750 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1751 } 1752 #endif 1753 1754 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1755 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1756 unsigned long address) 1757 { 1758 return 0; 1759 } 1760 1761 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1762 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1763 1764 #else 1765 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1766 1767 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1768 { 1769 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1770 } 1771 1772 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1773 { 1774 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1775 } 1776 #endif 1777 1778 #ifdef CONFIG_MMU 1779 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1780 { 1781 atomic_long_set(&mm->pgtables_bytes, 0); 1782 } 1783 1784 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1785 { 1786 return atomic_long_read(&mm->pgtables_bytes); 1787 } 1788 1789 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1790 { 1791 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1792 } 1793 1794 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1795 { 1796 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1797 } 1798 #else 1799 1800 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1801 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1802 { 1803 return 0; 1804 } 1805 1806 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1807 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1808 #endif 1809 1810 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1811 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1812 1813 /* 1814 * The following ifdef needed to get the 4level-fixup.h header to work. 1815 * Remove it when 4level-fixup.h has been removed. 1816 */ 1817 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1818 1819 #ifndef __ARCH_HAS_5LEVEL_HACK 1820 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1821 unsigned long address) 1822 { 1823 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1824 NULL : p4d_offset(pgd, address); 1825 } 1826 1827 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1828 unsigned long address) 1829 { 1830 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1831 NULL : pud_offset(p4d, address); 1832 } 1833 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1834 1835 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1836 { 1837 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1838 NULL: pmd_offset(pud, address); 1839 } 1840 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1841 1842 #if USE_SPLIT_PTE_PTLOCKS 1843 #if ALLOC_SPLIT_PTLOCKS 1844 void __init ptlock_cache_init(void); 1845 extern bool ptlock_alloc(struct page *page); 1846 extern void ptlock_free(struct page *page); 1847 1848 static inline spinlock_t *ptlock_ptr(struct page *page) 1849 { 1850 return page->ptl; 1851 } 1852 #else /* ALLOC_SPLIT_PTLOCKS */ 1853 static inline void ptlock_cache_init(void) 1854 { 1855 } 1856 1857 static inline bool ptlock_alloc(struct page *page) 1858 { 1859 return true; 1860 } 1861 1862 static inline void ptlock_free(struct page *page) 1863 { 1864 } 1865 1866 static inline spinlock_t *ptlock_ptr(struct page *page) 1867 { 1868 return &page->ptl; 1869 } 1870 #endif /* ALLOC_SPLIT_PTLOCKS */ 1871 1872 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1873 { 1874 return ptlock_ptr(pmd_page(*pmd)); 1875 } 1876 1877 static inline bool ptlock_init(struct page *page) 1878 { 1879 /* 1880 * prep_new_page() initialize page->private (and therefore page->ptl) 1881 * with 0. Make sure nobody took it in use in between. 1882 * 1883 * It can happen if arch try to use slab for page table allocation: 1884 * slab code uses page->slab_cache, which share storage with page->ptl. 1885 */ 1886 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1887 if (!ptlock_alloc(page)) 1888 return false; 1889 spin_lock_init(ptlock_ptr(page)); 1890 return true; 1891 } 1892 1893 /* Reset page->mapping so free_pages_check won't complain. */ 1894 static inline void pte_lock_deinit(struct page *page) 1895 { 1896 page->mapping = NULL; 1897 ptlock_free(page); 1898 } 1899 1900 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1901 /* 1902 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1903 */ 1904 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1905 { 1906 return &mm->page_table_lock; 1907 } 1908 static inline void ptlock_cache_init(void) {} 1909 static inline bool ptlock_init(struct page *page) { return true; } 1910 static inline void pte_lock_deinit(struct page *page) {} 1911 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1912 1913 static inline void pgtable_init(void) 1914 { 1915 ptlock_cache_init(); 1916 pgtable_cache_init(); 1917 } 1918 1919 static inline bool pgtable_page_ctor(struct page *page) 1920 { 1921 if (!ptlock_init(page)) 1922 return false; 1923 __SetPageTable(page); 1924 inc_zone_page_state(page, NR_PAGETABLE); 1925 return true; 1926 } 1927 1928 static inline void pgtable_page_dtor(struct page *page) 1929 { 1930 pte_lock_deinit(page); 1931 __ClearPageTable(page); 1932 dec_zone_page_state(page, NR_PAGETABLE); 1933 } 1934 1935 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1936 ({ \ 1937 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1938 pte_t *__pte = pte_offset_map(pmd, address); \ 1939 *(ptlp) = __ptl; \ 1940 spin_lock(__ptl); \ 1941 __pte; \ 1942 }) 1943 1944 #define pte_unmap_unlock(pte, ptl) do { \ 1945 spin_unlock(ptl); \ 1946 pte_unmap(pte); \ 1947 } while (0) 1948 1949 #define pte_alloc(mm, pmd, address) \ 1950 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1951 1952 #define pte_alloc_map(mm, pmd, address) \ 1953 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1954 1955 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1956 (pte_alloc(mm, pmd, address) ? \ 1957 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1958 1959 #define pte_alloc_kernel(pmd, address) \ 1960 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1961 NULL: pte_offset_kernel(pmd, address)) 1962 1963 #if USE_SPLIT_PMD_PTLOCKS 1964 1965 static struct page *pmd_to_page(pmd_t *pmd) 1966 { 1967 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1968 return virt_to_page((void *)((unsigned long) pmd & mask)); 1969 } 1970 1971 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1972 { 1973 return ptlock_ptr(pmd_to_page(pmd)); 1974 } 1975 1976 static inline bool pgtable_pmd_page_ctor(struct page *page) 1977 { 1978 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1979 page->pmd_huge_pte = NULL; 1980 #endif 1981 return ptlock_init(page); 1982 } 1983 1984 static inline void pgtable_pmd_page_dtor(struct page *page) 1985 { 1986 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1987 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1988 #endif 1989 ptlock_free(page); 1990 } 1991 1992 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1993 1994 #else 1995 1996 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1997 { 1998 return &mm->page_table_lock; 1999 } 2000 2001 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2002 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2003 2004 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2005 2006 #endif 2007 2008 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2009 { 2010 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2011 spin_lock(ptl); 2012 return ptl; 2013 } 2014 2015 /* 2016 * No scalability reason to split PUD locks yet, but follow the same pattern 2017 * as the PMD locks to make it easier if we decide to. The VM should not be 2018 * considered ready to switch to split PUD locks yet; there may be places 2019 * which need to be converted from page_table_lock. 2020 */ 2021 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2022 { 2023 return &mm->page_table_lock; 2024 } 2025 2026 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2027 { 2028 spinlock_t *ptl = pud_lockptr(mm, pud); 2029 2030 spin_lock(ptl); 2031 return ptl; 2032 } 2033 2034 extern void __init pagecache_init(void); 2035 extern void free_area_init(unsigned long * zones_size); 2036 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2037 unsigned long zone_start_pfn, unsigned long *zholes_size); 2038 extern void free_initmem(void); 2039 2040 /* 2041 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2042 * into the buddy system. The freed pages will be poisoned with pattern 2043 * "poison" if it's within range [0, UCHAR_MAX]. 2044 * Return pages freed into the buddy system. 2045 */ 2046 extern unsigned long free_reserved_area(void *start, void *end, 2047 int poison, char *s); 2048 2049 #ifdef CONFIG_HIGHMEM 2050 /* 2051 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2052 * and totalram_pages. 2053 */ 2054 extern void free_highmem_page(struct page *page); 2055 #endif 2056 2057 extern void adjust_managed_page_count(struct page *page, long count); 2058 extern void mem_init_print_info(const char *str); 2059 2060 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2061 2062 /* Free the reserved page into the buddy system, so it gets managed. */ 2063 static inline void __free_reserved_page(struct page *page) 2064 { 2065 ClearPageReserved(page); 2066 init_page_count(page); 2067 __free_page(page); 2068 } 2069 2070 static inline void free_reserved_page(struct page *page) 2071 { 2072 __free_reserved_page(page); 2073 adjust_managed_page_count(page, 1); 2074 } 2075 2076 static inline void mark_page_reserved(struct page *page) 2077 { 2078 SetPageReserved(page); 2079 adjust_managed_page_count(page, -1); 2080 } 2081 2082 /* 2083 * Default method to free all the __init memory into the buddy system. 2084 * The freed pages will be poisoned with pattern "poison" if it's within 2085 * range [0, UCHAR_MAX]. 2086 * Return pages freed into the buddy system. 2087 */ 2088 static inline unsigned long free_initmem_default(int poison) 2089 { 2090 extern char __init_begin[], __init_end[]; 2091 2092 return free_reserved_area(&__init_begin, &__init_end, 2093 poison, "unused kernel"); 2094 } 2095 2096 static inline unsigned long get_num_physpages(void) 2097 { 2098 int nid; 2099 unsigned long phys_pages = 0; 2100 2101 for_each_online_node(nid) 2102 phys_pages += node_present_pages(nid); 2103 2104 return phys_pages; 2105 } 2106 2107 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2108 /* 2109 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2110 * zones, allocate the backing mem_map and account for memory holes in a more 2111 * architecture independent manner. This is a substitute for creating the 2112 * zone_sizes[] and zholes_size[] arrays and passing them to 2113 * free_area_init_node() 2114 * 2115 * An architecture is expected to register range of page frames backed by 2116 * physical memory with memblock_add[_node]() before calling 2117 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2118 * usage, an architecture is expected to do something like 2119 * 2120 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2121 * max_highmem_pfn}; 2122 * for_each_valid_physical_page_range() 2123 * memblock_add_node(base, size, nid) 2124 * free_area_init_nodes(max_zone_pfns); 2125 * 2126 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2127 * registered physical page range. Similarly 2128 * sparse_memory_present_with_active_regions() calls memory_present() for 2129 * each range when SPARSEMEM is enabled. 2130 * 2131 * See mm/page_alloc.c for more information on each function exposed by 2132 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2133 */ 2134 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2135 unsigned long node_map_pfn_alignment(void); 2136 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2137 unsigned long end_pfn); 2138 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2139 unsigned long end_pfn); 2140 extern void get_pfn_range_for_nid(unsigned int nid, 2141 unsigned long *start_pfn, unsigned long *end_pfn); 2142 extern unsigned long find_min_pfn_with_active_regions(void); 2143 extern void free_bootmem_with_active_regions(int nid, 2144 unsigned long max_low_pfn); 2145 extern void sparse_memory_present_with_active_regions(int nid); 2146 2147 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2148 2149 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2150 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2151 static inline int __early_pfn_to_nid(unsigned long pfn, 2152 struct mminit_pfnnid_cache *state) 2153 { 2154 return 0; 2155 } 2156 #else 2157 /* please see mm/page_alloc.c */ 2158 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2159 /* there is a per-arch backend function. */ 2160 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2161 struct mminit_pfnnid_cache *state); 2162 #endif 2163 2164 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) 2165 void zero_resv_unavail(void); 2166 #else 2167 static inline void zero_resv_unavail(void) {} 2168 #endif 2169 2170 extern void set_dma_reserve(unsigned long new_dma_reserve); 2171 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2172 enum memmap_context, struct vmem_altmap *); 2173 extern void setup_per_zone_wmarks(void); 2174 extern int __meminit init_per_zone_wmark_min(void); 2175 extern void mem_init(void); 2176 extern void __init mmap_init(void); 2177 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2178 extern long si_mem_available(void); 2179 extern void si_meminfo(struct sysinfo * val); 2180 extern void si_meminfo_node(struct sysinfo *val, int nid); 2181 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2182 extern unsigned long arch_reserved_kernel_pages(void); 2183 #endif 2184 2185 extern __printf(3, 4) 2186 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2187 2188 extern void setup_per_cpu_pageset(void); 2189 2190 extern void zone_pcp_update(struct zone *zone); 2191 extern void zone_pcp_reset(struct zone *zone); 2192 2193 /* page_alloc.c */ 2194 extern int min_free_kbytes; 2195 extern int watermark_scale_factor; 2196 2197 /* nommu.c */ 2198 extern atomic_long_t mmap_pages_allocated; 2199 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2200 2201 /* interval_tree.c */ 2202 void vma_interval_tree_insert(struct vm_area_struct *node, 2203 struct rb_root_cached *root); 2204 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2205 struct vm_area_struct *prev, 2206 struct rb_root_cached *root); 2207 void vma_interval_tree_remove(struct vm_area_struct *node, 2208 struct rb_root_cached *root); 2209 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2210 unsigned long start, unsigned long last); 2211 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2212 unsigned long start, unsigned long last); 2213 2214 #define vma_interval_tree_foreach(vma, root, start, last) \ 2215 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2216 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2217 2218 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2219 struct rb_root_cached *root); 2220 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2221 struct rb_root_cached *root); 2222 struct anon_vma_chain * 2223 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2224 unsigned long start, unsigned long last); 2225 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2226 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2227 #ifdef CONFIG_DEBUG_VM_RB 2228 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2229 #endif 2230 2231 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2232 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2233 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2234 2235 /* mmap.c */ 2236 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2237 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2238 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2239 struct vm_area_struct *expand); 2240 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2241 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2242 { 2243 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2244 } 2245 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2246 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2247 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2248 struct mempolicy *, struct vm_userfaultfd_ctx); 2249 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2250 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2251 unsigned long addr, int new_below); 2252 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2253 unsigned long addr, int new_below); 2254 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2255 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2256 struct rb_node **, struct rb_node *); 2257 extern void unlink_file_vma(struct vm_area_struct *); 2258 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2259 unsigned long addr, unsigned long len, pgoff_t pgoff, 2260 bool *need_rmap_locks); 2261 extern void exit_mmap(struct mm_struct *); 2262 2263 static inline int check_data_rlimit(unsigned long rlim, 2264 unsigned long new, 2265 unsigned long start, 2266 unsigned long end_data, 2267 unsigned long start_data) 2268 { 2269 if (rlim < RLIM_INFINITY) { 2270 if (((new - start) + (end_data - start_data)) > rlim) 2271 return -ENOSPC; 2272 } 2273 2274 return 0; 2275 } 2276 2277 extern int mm_take_all_locks(struct mm_struct *mm); 2278 extern void mm_drop_all_locks(struct mm_struct *mm); 2279 2280 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2281 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2282 extern struct file *get_task_exe_file(struct task_struct *task); 2283 2284 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2285 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2286 2287 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2288 const struct vm_special_mapping *sm); 2289 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2290 unsigned long addr, unsigned long len, 2291 unsigned long flags, 2292 const struct vm_special_mapping *spec); 2293 /* This is an obsolete alternative to _install_special_mapping. */ 2294 extern int install_special_mapping(struct mm_struct *mm, 2295 unsigned long addr, unsigned long len, 2296 unsigned long flags, struct page **pages); 2297 2298 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2299 2300 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2301 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2302 struct list_head *uf); 2303 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2304 unsigned long len, unsigned long prot, unsigned long flags, 2305 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2306 struct list_head *uf); 2307 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2308 struct list_head *uf); 2309 2310 static inline unsigned long 2311 do_mmap_pgoff(struct file *file, unsigned long addr, 2312 unsigned long len, unsigned long prot, unsigned long flags, 2313 unsigned long pgoff, unsigned long *populate, 2314 struct list_head *uf) 2315 { 2316 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2317 } 2318 2319 #ifdef CONFIG_MMU 2320 extern int __mm_populate(unsigned long addr, unsigned long len, 2321 int ignore_errors); 2322 static inline void mm_populate(unsigned long addr, unsigned long len) 2323 { 2324 /* Ignore errors */ 2325 (void) __mm_populate(addr, len, 1); 2326 } 2327 #else 2328 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2329 #endif 2330 2331 /* These take the mm semaphore themselves */ 2332 extern int __must_check vm_brk(unsigned long, unsigned long); 2333 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2334 extern int vm_munmap(unsigned long, size_t); 2335 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2336 unsigned long, unsigned long, 2337 unsigned long, unsigned long); 2338 2339 struct vm_unmapped_area_info { 2340 #define VM_UNMAPPED_AREA_TOPDOWN 1 2341 unsigned long flags; 2342 unsigned long length; 2343 unsigned long low_limit; 2344 unsigned long high_limit; 2345 unsigned long align_mask; 2346 unsigned long align_offset; 2347 }; 2348 2349 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2350 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2351 2352 /* 2353 * Search for an unmapped address range. 2354 * 2355 * We are looking for a range that: 2356 * - does not intersect with any VMA; 2357 * - is contained within the [low_limit, high_limit) interval; 2358 * - is at least the desired size. 2359 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2360 */ 2361 static inline unsigned long 2362 vm_unmapped_area(struct vm_unmapped_area_info *info) 2363 { 2364 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2365 return unmapped_area_topdown(info); 2366 else 2367 return unmapped_area(info); 2368 } 2369 2370 /* truncate.c */ 2371 extern void truncate_inode_pages(struct address_space *, loff_t); 2372 extern void truncate_inode_pages_range(struct address_space *, 2373 loff_t lstart, loff_t lend); 2374 extern void truncate_inode_pages_final(struct address_space *); 2375 2376 /* generic vm_area_ops exported for stackable file systems */ 2377 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2378 extern void filemap_map_pages(struct vm_fault *vmf, 2379 pgoff_t start_pgoff, pgoff_t end_pgoff); 2380 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2381 2382 /* mm/page-writeback.c */ 2383 int __must_check write_one_page(struct page *page); 2384 void task_dirty_inc(struct task_struct *tsk); 2385 2386 /* readahead.c */ 2387 #define VM_MAX_READAHEAD 128 /* kbytes */ 2388 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2389 2390 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2391 pgoff_t offset, unsigned long nr_to_read); 2392 2393 void page_cache_sync_readahead(struct address_space *mapping, 2394 struct file_ra_state *ra, 2395 struct file *filp, 2396 pgoff_t offset, 2397 unsigned long size); 2398 2399 void page_cache_async_readahead(struct address_space *mapping, 2400 struct file_ra_state *ra, 2401 struct file *filp, 2402 struct page *pg, 2403 pgoff_t offset, 2404 unsigned long size); 2405 2406 extern unsigned long stack_guard_gap; 2407 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2408 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2409 2410 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2411 extern int expand_downwards(struct vm_area_struct *vma, 2412 unsigned long address); 2413 #if VM_GROWSUP 2414 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2415 #else 2416 #define expand_upwards(vma, address) (0) 2417 #endif 2418 2419 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2420 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2421 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2422 struct vm_area_struct **pprev); 2423 2424 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2425 NULL if none. Assume start_addr < end_addr. */ 2426 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2427 { 2428 struct vm_area_struct * vma = find_vma(mm,start_addr); 2429 2430 if (vma && end_addr <= vma->vm_start) 2431 vma = NULL; 2432 return vma; 2433 } 2434 2435 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2436 { 2437 unsigned long vm_start = vma->vm_start; 2438 2439 if (vma->vm_flags & VM_GROWSDOWN) { 2440 vm_start -= stack_guard_gap; 2441 if (vm_start > vma->vm_start) 2442 vm_start = 0; 2443 } 2444 return vm_start; 2445 } 2446 2447 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2448 { 2449 unsigned long vm_end = vma->vm_end; 2450 2451 if (vma->vm_flags & VM_GROWSUP) { 2452 vm_end += stack_guard_gap; 2453 if (vm_end < vma->vm_end) 2454 vm_end = -PAGE_SIZE; 2455 } 2456 return vm_end; 2457 } 2458 2459 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2460 { 2461 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2462 } 2463 2464 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2465 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2466 unsigned long vm_start, unsigned long vm_end) 2467 { 2468 struct vm_area_struct *vma = find_vma(mm, vm_start); 2469 2470 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2471 vma = NULL; 2472 2473 return vma; 2474 } 2475 2476 #ifdef CONFIG_MMU 2477 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2478 void vma_set_page_prot(struct vm_area_struct *vma); 2479 #else 2480 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2481 { 2482 return __pgprot(0); 2483 } 2484 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2485 { 2486 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2487 } 2488 #endif 2489 2490 #ifdef CONFIG_NUMA_BALANCING 2491 unsigned long change_prot_numa(struct vm_area_struct *vma, 2492 unsigned long start, unsigned long end); 2493 #endif 2494 2495 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2496 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2497 unsigned long pfn, unsigned long size, pgprot_t); 2498 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2499 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2500 unsigned long pfn); 2501 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2502 unsigned long pfn, pgprot_t pgprot); 2503 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2504 pfn_t pfn); 2505 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2506 unsigned long addr, pfn_t pfn); 2507 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2508 2509 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2510 unsigned long addr, struct page *page) 2511 { 2512 int err = vm_insert_page(vma, addr, page); 2513 2514 if (err == -ENOMEM) 2515 return VM_FAULT_OOM; 2516 if (err < 0 && err != -EBUSY) 2517 return VM_FAULT_SIGBUS; 2518 2519 return VM_FAULT_NOPAGE; 2520 } 2521 2522 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, 2523 unsigned long addr, pfn_t pfn) 2524 { 2525 int err = vm_insert_mixed(vma, addr, pfn); 2526 2527 if (err == -ENOMEM) 2528 return VM_FAULT_OOM; 2529 if (err < 0 && err != -EBUSY) 2530 return VM_FAULT_SIGBUS; 2531 2532 return VM_FAULT_NOPAGE; 2533 } 2534 2535 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, 2536 unsigned long addr, unsigned long pfn) 2537 { 2538 int err = vm_insert_pfn(vma, addr, pfn); 2539 2540 if (err == -ENOMEM) 2541 return VM_FAULT_OOM; 2542 if (err < 0 && err != -EBUSY) 2543 return VM_FAULT_SIGBUS; 2544 2545 return VM_FAULT_NOPAGE; 2546 } 2547 2548 static inline vm_fault_t vmf_error(int err) 2549 { 2550 if (err == -ENOMEM) 2551 return VM_FAULT_OOM; 2552 return VM_FAULT_SIGBUS; 2553 } 2554 2555 struct page *follow_page_mask(struct vm_area_struct *vma, 2556 unsigned long address, unsigned int foll_flags, 2557 unsigned int *page_mask); 2558 2559 static inline struct page *follow_page(struct vm_area_struct *vma, 2560 unsigned long address, unsigned int foll_flags) 2561 { 2562 unsigned int unused_page_mask; 2563 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2564 } 2565 2566 #define FOLL_WRITE 0x01 /* check pte is writable */ 2567 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2568 #define FOLL_GET 0x04 /* do get_page on page */ 2569 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2570 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2571 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2572 * and return without waiting upon it */ 2573 #define FOLL_POPULATE 0x40 /* fault in page */ 2574 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2575 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2576 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2577 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2578 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2579 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2580 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2581 #define FOLL_COW 0x4000 /* internal GUP flag */ 2582 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2583 2584 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2585 { 2586 if (vm_fault & VM_FAULT_OOM) 2587 return -ENOMEM; 2588 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2589 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2590 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2591 return -EFAULT; 2592 return 0; 2593 } 2594 2595 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2596 void *data); 2597 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2598 unsigned long size, pte_fn_t fn, void *data); 2599 2600 2601 #ifdef CONFIG_PAGE_POISONING 2602 extern bool page_poisoning_enabled(void); 2603 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2604 #else 2605 static inline bool page_poisoning_enabled(void) { return false; } 2606 static inline void kernel_poison_pages(struct page *page, int numpages, 2607 int enable) { } 2608 #endif 2609 2610 #ifdef CONFIG_DEBUG_PAGEALLOC 2611 extern bool _debug_pagealloc_enabled; 2612 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2613 2614 static inline bool debug_pagealloc_enabled(void) 2615 { 2616 return _debug_pagealloc_enabled; 2617 } 2618 2619 static inline void 2620 kernel_map_pages(struct page *page, int numpages, int enable) 2621 { 2622 if (!debug_pagealloc_enabled()) 2623 return; 2624 2625 __kernel_map_pages(page, numpages, enable); 2626 } 2627 #ifdef CONFIG_HIBERNATION 2628 extern bool kernel_page_present(struct page *page); 2629 #endif /* CONFIG_HIBERNATION */ 2630 #else /* CONFIG_DEBUG_PAGEALLOC */ 2631 static inline void 2632 kernel_map_pages(struct page *page, int numpages, int enable) {} 2633 #ifdef CONFIG_HIBERNATION 2634 static inline bool kernel_page_present(struct page *page) { return true; } 2635 #endif /* CONFIG_HIBERNATION */ 2636 static inline bool debug_pagealloc_enabled(void) 2637 { 2638 return false; 2639 } 2640 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2641 2642 #ifdef __HAVE_ARCH_GATE_AREA 2643 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2644 extern int in_gate_area_no_mm(unsigned long addr); 2645 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2646 #else 2647 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2648 { 2649 return NULL; 2650 } 2651 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2652 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2653 { 2654 return 0; 2655 } 2656 #endif /* __HAVE_ARCH_GATE_AREA */ 2657 2658 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2659 2660 #ifdef CONFIG_SYSCTL 2661 extern int sysctl_drop_caches; 2662 int drop_caches_sysctl_handler(struct ctl_table *, int, 2663 void __user *, size_t *, loff_t *); 2664 #endif 2665 2666 void drop_slab(void); 2667 void drop_slab_node(int nid); 2668 2669 #ifndef CONFIG_MMU 2670 #define randomize_va_space 0 2671 #else 2672 extern int randomize_va_space; 2673 #endif 2674 2675 const char * arch_vma_name(struct vm_area_struct *vma); 2676 void print_vma_addr(char *prefix, unsigned long rip); 2677 2678 void *sparse_buffer_alloc(unsigned long size); 2679 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2680 struct vmem_altmap *altmap); 2681 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2682 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2683 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2684 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2685 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2686 void *vmemmap_alloc_block(unsigned long size, int node); 2687 struct vmem_altmap; 2688 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2689 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2690 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2691 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2692 int node); 2693 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2694 struct vmem_altmap *altmap); 2695 void vmemmap_populate_print_last(void); 2696 #ifdef CONFIG_MEMORY_HOTPLUG 2697 void vmemmap_free(unsigned long start, unsigned long end, 2698 struct vmem_altmap *altmap); 2699 #endif 2700 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2701 unsigned long nr_pages); 2702 2703 enum mf_flags { 2704 MF_COUNT_INCREASED = 1 << 0, 2705 MF_ACTION_REQUIRED = 1 << 1, 2706 MF_MUST_KILL = 1 << 2, 2707 MF_SOFT_OFFLINE = 1 << 3, 2708 }; 2709 extern int memory_failure(unsigned long pfn, int flags); 2710 extern void memory_failure_queue(unsigned long pfn, int flags); 2711 extern int unpoison_memory(unsigned long pfn); 2712 extern int get_hwpoison_page(struct page *page); 2713 #define put_hwpoison_page(page) put_page(page) 2714 extern int sysctl_memory_failure_early_kill; 2715 extern int sysctl_memory_failure_recovery; 2716 extern void shake_page(struct page *p, int access); 2717 extern atomic_long_t num_poisoned_pages __read_mostly; 2718 extern int soft_offline_page(struct page *page, int flags); 2719 2720 2721 /* 2722 * Error handlers for various types of pages. 2723 */ 2724 enum mf_result { 2725 MF_IGNORED, /* Error: cannot be handled */ 2726 MF_FAILED, /* Error: handling failed */ 2727 MF_DELAYED, /* Will be handled later */ 2728 MF_RECOVERED, /* Successfully recovered */ 2729 }; 2730 2731 enum mf_action_page_type { 2732 MF_MSG_KERNEL, 2733 MF_MSG_KERNEL_HIGH_ORDER, 2734 MF_MSG_SLAB, 2735 MF_MSG_DIFFERENT_COMPOUND, 2736 MF_MSG_POISONED_HUGE, 2737 MF_MSG_HUGE, 2738 MF_MSG_FREE_HUGE, 2739 MF_MSG_NON_PMD_HUGE, 2740 MF_MSG_UNMAP_FAILED, 2741 MF_MSG_DIRTY_SWAPCACHE, 2742 MF_MSG_CLEAN_SWAPCACHE, 2743 MF_MSG_DIRTY_MLOCKED_LRU, 2744 MF_MSG_CLEAN_MLOCKED_LRU, 2745 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2746 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2747 MF_MSG_DIRTY_LRU, 2748 MF_MSG_CLEAN_LRU, 2749 MF_MSG_TRUNCATED_LRU, 2750 MF_MSG_BUDDY, 2751 MF_MSG_BUDDY_2ND, 2752 MF_MSG_DAX, 2753 MF_MSG_UNKNOWN, 2754 }; 2755 2756 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2757 extern void clear_huge_page(struct page *page, 2758 unsigned long addr_hint, 2759 unsigned int pages_per_huge_page); 2760 extern void copy_user_huge_page(struct page *dst, struct page *src, 2761 unsigned long addr_hint, 2762 struct vm_area_struct *vma, 2763 unsigned int pages_per_huge_page); 2764 extern long copy_huge_page_from_user(struct page *dst_page, 2765 const void __user *usr_src, 2766 unsigned int pages_per_huge_page, 2767 bool allow_pagefault); 2768 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2769 2770 extern struct page_ext_operations debug_guardpage_ops; 2771 2772 #ifdef CONFIG_DEBUG_PAGEALLOC 2773 extern unsigned int _debug_guardpage_minorder; 2774 extern bool _debug_guardpage_enabled; 2775 2776 static inline unsigned int debug_guardpage_minorder(void) 2777 { 2778 return _debug_guardpage_minorder; 2779 } 2780 2781 static inline bool debug_guardpage_enabled(void) 2782 { 2783 return _debug_guardpage_enabled; 2784 } 2785 2786 static inline bool page_is_guard(struct page *page) 2787 { 2788 struct page_ext *page_ext; 2789 2790 if (!debug_guardpage_enabled()) 2791 return false; 2792 2793 page_ext = lookup_page_ext(page); 2794 if (unlikely(!page_ext)) 2795 return false; 2796 2797 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2798 } 2799 #else 2800 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2801 static inline bool debug_guardpage_enabled(void) { return false; } 2802 static inline bool page_is_guard(struct page *page) { return false; } 2803 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2804 2805 #if MAX_NUMNODES > 1 2806 void __init setup_nr_node_ids(void); 2807 #else 2808 static inline void setup_nr_node_ids(void) {} 2809 #endif 2810 2811 #endif /* __KERNEL__ */ 2812 #endif /* _LINUX_MM_H */ 2813