xref: /linux-6.15/include/linux/mm.h (revision fc4fa6e1)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32 
33 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35 
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 	max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43 
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47 
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53 
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 
58 #ifndef __pa_symbol
59 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
60 #endif
61 
62 /*
63  * To prevent common memory management code establishing
64  * a zero page mapping on a read fault.
65  * This macro should be defined within <asm/pgtable.h>.
66  * s390 does this to prevent multiplexing of hardware bits
67  * related to the physical page in case of virtualization.
68  */
69 #ifndef mm_forbids_zeropage
70 #define mm_forbids_zeropage(X)	(0)
71 #endif
72 
73 extern unsigned long sysctl_user_reserve_kbytes;
74 extern unsigned long sysctl_admin_reserve_kbytes;
75 
76 extern int sysctl_overcommit_memory;
77 extern int sysctl_overcommit_ratio;
78 extern unsigned long sysctl_overcommit_kbytes;
79 
80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 				    size_t *, loff_t *);
82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 				    size_t *, loff_t *);
84 
85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86 
87 /* to align the pointer to the (next) page boundary */
88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89 
90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92 
93 /*
94  * Linux kernel virtual memory manager primitives.
95  * The idea being to have a "virtual" mm in the same way
96  * we have a virtual fs - giving a cleaner interface to the
97  * mm details, and allowing different kinds of memory mappings
98  * (from shared memory to executable loading to arbitrary
99  * mmap() functions).
100  */
101 
102 extern struct kmem_cache *vm_area_cachep;
103 
104 #ifndef CONFIG_MMU
105 extern struct rb_root nommu_region_tree;
106 extern struct rw_semaphore nommu_region_sem;
107 
108 extern unsigned int kobjsize(const void *objp);
109 #endif
110 
111 /*
112  * vm_flags in vm_area_struct, see mm_types.h.
113  */
114 #define VM_NONE		0x00000000
115 
116 #define VM_READ		0x00000001	/* currently active flags */
117 #define VM_WRITE	0x00000002
118 #define VM_EXEC		0x00000004
119 #define VM_SHARED	0x00000008
120 
121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
123 #define VM_MAYWRITE	0x00000020
124 #define VM_MAYEXEC	0x00000040
125 #define VM_MAYSHARE	0x00000080
126 
127 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
128 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
129 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
130 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
131 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
132 
133 #define VM_LOCKED	0x00002000
134 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
135 
136 					/* Used by sys_madvise() */
137 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
138 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
139 
140 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
141 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
142 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
143 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
144 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
145 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
146 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
147 #define VM_ARCH_2	0x02000000
148 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
149 
150 #ifdef CONFIG_MEM_SOFT_DIRTY
151 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
152 #else
153 # define VM_SOFTDIRTY	0
154 #endif
155 
156 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
157 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
158 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
159 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
160 
161 #if defined(CONFIG_X86)
162 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
163 #elif defined(CONFIG_PPC)
164 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
165 #elif defined(CONFIG_PARISC)
166 # define VM_GROWSUP	VM_ARCH_1
167 #elif defined(CONFIG_METAG)
168 # define VM_GROWSUP	VM_ARCH_1
169 #elif defined(CONFIG_IA64)
170 # define VM_GROWSUP	VM_ARCH_1
171 #elif !defined(CONFIG_MMU)
172 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
173 #endif
174 
175 #if defined(CONFIG_X86)
176 /* MPX specific bounds table or bounds directory */
177 # define VM_MPX		VM_ARCH_2
178 #endif
179 
180 #ifndef VM_GROWSUP
181 # define VM_GROWSUP	VM_NONE
182 #endif
183 
184 /* Bits set in the VMA until the stack is in its final location */
185 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
186 
187 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189 #endif
190 
191 #ifdef CONFIG_STACK_GROWSUP
192 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #else
194 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195 #endif
196 
197 /*
198  * Special vmas that are non-mergable, non-mlock()able.
199  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
200  */
201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
202 
203 /* This mask defines which mm->def_flags a process can inherit its parent */
204 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
205 
206 /* This mask is used to clear all the VMA flags used by mlock */
207 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
208 
209 /*
210  * mapping from the currently active vm_flags protection bits (the
211  * low four bits) to a page protection mask..
212  */
213 extern pgprot_t protection_map[16];
214 
215 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
216 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
217 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
218 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
219 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
220 #define FAULT_FLAG_TRIED	0x20	/* Second try */
221 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
222 
223 /*
224  * vm_fault is filled by the the pagefault handler and passed to the vma's
225  * ->fault function. The vma's ->fault is responsible for returning a bitmask
226  * of VM_FAULT_xxx flags that give details about how the fault was handled.
227  *
228  * pgoff should be used in favour of virtual_address, if possible.
229  */
230 struct vm_fault {
231 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
232 	pgoff_t pgoff;			/* Logical page offset based on vma */
233 	void __user *virtual_address;	/* Faulting virtual address */
234 
235 	struct page *cow_page;		/* Handler may choose to COW */
236 	struct page *page;		/* ->fault handlers should return a
237 					 * page here, unless VM_FAULT_NOPAGE
238 					 * is set (which is also implied by
239 					 * VM_FAULT_ERROR).
240 					 */
241 	/* for ->map_pages() only */
242 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
243 					 * max_pgoff inclusive */
244 	pte_t *pte;			/* pte entry associated with ->pgoff */
245 };
246 
247 /*
248  * These are the virtual MM functions - opening of an area, closing and
249  * unmapping it (needed to keep files on disk up-to-date etc), pointer
250  * to the functions called when a no-page or a wp-page exception occurs.
251  */
252 struct vm_operations_struct {
253 	void (*open)(struct vm_area_struct * area);
254 	void (*close)(struct vm_area_struct * area);
255 	int (*mremap)(struct vm_area_struct * area);
256 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
257 	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 						pmd_t *, unsigned int flags);
259 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
260 
261 	/* notification that a previously read-only page is about to become
262 	 * writable, if an error is returned it will cause a SIGBUS */
263 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
264 
265 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267 
268 	/* called by access_process_vm when get_user_pages() fails, typically
269 	 * for use by special VMAs that can switch between memory and hardware
270 	 */
271 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 		      void *buf, int len, int write);
273 
274 	/* Called by the /proc/PID/maps code to ask the vma whether it
275 	 * has a special name.  Returning non-NULL will also cause this
276 	 * vma to be dumped unconditionally. */
277 	const char *(*name)(struct vm_area_struct *vma);
278 
279 #ifdef CONFIG_NUMA
280 	/*
281 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 	 * to hold the policy upon return.  Caller should pass NULL @new to
283 	 * remove a policy and fall back to surrounding context--i.e. do not
284 	 * install a MPOL_DEFAULT policy, nor the task or system default
285 	 * mempolicy.
286 	 */
287 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
288 
289 	/*
290 	 * get_policy() op must add reference [mpol_get()] to any policy at
291 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
292 	 * in mm/mempolicy.c will do this automatically.
293 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 	 * must return NULL--i.e., do not "fallback" to task or system default
297 	 * policy.
298 	 */
299 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 					unsigned long addr);
301 #endif
302 	/*
303 	 * Called by vm_normal_page() for special PTEs to find the
304 	 * page for @addr.  This is useful if the default behavior
305 	 * (using pte_page()) would not find the correct page.
306 	 */
307 	struct page *(*find_special_page)(struct vm_area_struct *vma,
308 					  unsigned long addr);
309 };
310 
311 struct mmu_gather;
312 struct inode;
313 
314 #define page_private(page)		((page)->private)
315 #define set_page_private(page, v)	((page)->private = (v))
316 
317 /*
318  * FIXME: take this include out, include page-flags.h in
319  * files which need it (119 of them)
320  */
321 #include <linux/page-flags.h>
322 #include <linux/huge_mm.h>
323 
324 /*
325  * Methods to modify the page usage count.
326  *
327  * What counts for a page usage:
328  * - cache mapping   (page->mapping)
329  * - private data    (page->private)
330  * - page mapped in a task's page tables, each mapping
331  *   is counted separately
332  *
333  * Also, many kernel routines increase the page count before a critical
334  * routine so they can be sure the page doesn't go away from under them.
335  */
336 
337 /*
338  * Drop a ref, return true if the refcount fell to zero (the page has no users)
339  */
340 static inline int put_page_testzero(struct page *page)
341 {
342 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
343 	return atomic_dec_and_test(&page->_count);
344 }
345 
346 /*
347  * Try to grab a ref unless the page has a refcount of zero, return false if
348  * that is the case.
349  * This can be called when MMU is off so it must not access
350  * any of the virtual mappings.
351  */
352 static inline int get_page_unless_zero(struct page *page)
353 {
354 	return atomic_inc_not_zero(&page->_count);
355 }
356 
357 extern int page_is_ram(unsigned long pfn);
358 
359 enum {
360 	REGION_INTERSECTS,
361 	REGION_DISJOINT,
362 	REGION_MIXED,
363 };
364 
365 int region_intersects(resource_size_t offset, size_t size, const char *type);
366 
367 /* Support for virtually mapped pages */
368 struct page *vmalloc_to_page(const void *addr);
369 unsigned long vmalloc_to_pfn(const void *addr);
370 
371 /*
372  * Determine if an address is within the vmalloc range
373  *
374  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375  * is no special casing required.
376  */
377 static inline int is_vmalloc_addr(const void *x)
378 {
379 #ifdef CONFIG_MMU
380 	unsigned long addr = (unsigned long)x;
381 
382 	return addr >= VMALLOC_START && addr < VMALLOC_END;
383 #else
384 	return 0;
385 #endif
386 }
387 #ifdef CONFIG_MMU
388 extern int is_vmalloc_or_module_addr(const void *x);
389 #else
390 static inline int is_vmalloc_or_module_addr(const void *x)
391 {
392 	return 0;
393 }
394 #endif
395 
396 extern void kvfree(const void *addr);
397 
398 static inline void compound_lock(struct page *page)
399 {
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 	VM_BUG_ON_PAGE(PageSlab(page), page);
402 	bit_spin_lock(PG_compound_lock, &page->flags);
403 #endif
404 }
405 
406 static inline void compound_unlock(struct page *page)
407 {
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 	VM_BUG_ON_PAGE(PageSlab(page), page);
410 	bit_spin_unlock(PG_compound_lock, &page->flags);
411 #endif
412 }
413 
414 static inline unsigned long compound_lock_irqsave(struct page *page)
415 {
416 	unsigned long uninitialized_var(flags);
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	local_irq_save(flags);
419 	compound_lock(page);
420 #endif
421 	return flags;
422 }
423 
424 static inline void compound_unlock_irqrestore(struct page *page,
425 					      unsigned long flags)
426 {
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 	compound_unlock(page);
429 	local_irq_restore(flags);
430 #endif
431 }
432 
433 static inline struct page *compound_head_by_tail(struct page *tail)
434 {
435 	struct page *head = tail->first_page;
436 
437 	/*
438 	 * page->first_page may be a dangling pointer to an old
439 	 * compound page, so recheck that it is still a tail
440 	 * page before returning.
441 	 */
442 	smp_rmb();
443 	if (likely(PageTail(tail)))
444 		return head;
445 	return tail;
446 }
447 
448 /*
449  * Since either compound page could be dismantled asynchronously in THP
450  * or we access asynchronously arbitrary positioned struct page, there
451  * would be tail flag race. To handle this race, we should call
452  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
453  */
454 static inline struct page *compound_head(struct page *page)
455 {
456 	if (unlikely(PageTail(page)))
457 		return compound_head_by_tail(page);
458 	return page;
459 }
460 
461 /*
462  * If we access compound page synchronously such as access to
463  * allocated page, there is no need to handle tail flag race, so we can
464  * check tail flag directly without any synchronization primitive.
465  */
466 static inline struct page *compound_head_fast(struct page *page)
467 {
468 	if (unlikely(PageTail(page)))
469 		return page->first_page;
470 	return page;
471 }
472 
473 /*
474  * The atomic page->_mapcount, starts from -1: so that transitions
475  * both from it and to it can be tracked, using atomic_inc_and_test
476  * and atomic_add_negative(-1).
477  */
478 static inline void page_mapcount_reset(struct page *page)
479 {
480 	atomic_set(&(page)->_mapcount, -1);
481 }
482 
483 static inline int page_mapcount(struct page *page)
484 {
485 	VM_BUG_ON_PAGE(PageSlab(page), page);
486 	return atomic_read(&page->_mapcount) + 1;
487 }
488 
489 static inline int page_count(struct page *page)
490 {
491 	return atomic_read(&compound_head(page)->_count);
492 }
493 
494 static inline bool __compound_tail_refcounted(struct page *page)
495 {
496 	return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
497 }
498 
499 /*
500  * This takes a head page as parameter and tells if the
501  * tail page reference counting can be skipped.
502  *
503  * For this to be safe, PageSlab and PageHeadHuge must remain true on
504  * any given page where they return true here, until all tail pins
505  * have been released.
506  */
507 static inline bool compound_tail_refcounted(struct page *page)
508 {
509 	VM_BUG_ON_PAGE(!PageHead(page), page);
510 	return __compound_tail_refcounted(page);
511 }
512 
513 static inline void get_huge_page_tail(struct page *page)
514 {
515 	/*
516 	 * __split_huge_page_refcount() cannot run from under us.
517 	 */
518 	VM_BUG_ON_PAGE(!PageTail(page), page);
519 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
520 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
521 	if (compound_tail_refcounted(page->first_page))
522 		atomic_inc(&page->_mapcount);
523 }
524 
525 extern bool __get_page_tail(struct page *page);
526 
527 static inline void get_page(struct page *page)
528 {
529 	if (unlikely(PageTail(page)))
530 		if (likely(__get_page_tail(page)))
531 			return;
532 	/*
533 	 * Getting a normal page or the head of a compound page
534 	 * requires to already have an elevated page->_count.
535 	 */
536 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
537 	atomic_inc(&page->_count);
538 }
539 
540 static inline struct page *virt_to_head_page(const void *x)
541 {
542 	struct page *page = virt_to_page(x);
543 
544 	/*
545 	 * We don't need to worry about synchronization of tail flag
546 	 * when we call virt_to_head_page() since it is only called for
547 	 * already allocated page and this page won't be freed until
548 	 * this virt_to_head_page() is finished. So use _fast variant.
549 	 */
550 	return compound_head_fast(page);
551 }
552 
553 /*
554  * Setup the page count before being freed into the page allocator for
555  * the first time (boot or memory hotplug)
556  */
557 static inline void init_page_count(struct page *page)
558 {
559 	atomic_set(&page->_count, 1);
560 }
561 
562 void put_page(struct page *page);
563 void put_pages_list(struct list_head *pages);
564 
565 void split_page(struct page *page, unsigned int order);
566 int split_free_page(struct page *page);
567 
568 /*
569  * Compound pages have a destructor function.  Provide a
570  * prototype for that function and accessor functions.
571  * These are _only_ valid on the head of a PG_compound page.
572  */
573 
574 static inline void set_compound_page_dtor(struct page *page,
575 						compound_page_dtor *dtor)
576 {
577 	page[1].compound_dtor = dtor;
578 }
579 
580 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
581 {
582 	return page[1].compound_dtor;
583 }
584 
585 static inline int compound_order(struct page *page)
586 {
587 	if (!PageHead(page))
588 		return 0;
589 	return page[1].compound_order;
590 }
591 
592 static inline void set_compound_order(struct page *page, unsigned long order)
593 {
594 	page[1].compound_order = order;
595 }
596 
597 #ifdef CONFIG_MMU
598 /*
599  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
600  * servicing faults for write access.  In the normal case, do always want
601  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
602  * that do not have writing enabled, when used by access_process_vm.
603  */
604 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
605 {
606 	if (likely(vma->vm_flags & VM_WRITE))
607 		pte = pte_mkwrite(pte);
608 	return pte;
609 }
610 
611 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
612 		struct page *page, pte_t *pte, bool write, bool anon);
613 #endif
614 
615 /*
616  * Multiple processes may "see" the same page. E.g. for untouched
617  * mappings of /dev/null, all processes see the same page full of
618  * zeroes, and text pages of executables and shared libraries have
619  * only one copy in memory, at most, normally.
620  *
621  * For the non-reserved pages, page_count(page) denotes a reference count.
622  *   page_count() == 0 means the page is free. page->lru is then used for
623  *   freelist management in the buddy allocator.
624  *   page_count() > 0  means the page has been allocated.
625  *
626  * Pages are allocated by the slab allocator in order to provide memory
627  * to kmalloc and kmem_cache_alloc. In this case, the management of the
628  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
629  * unless a particular usage is carefully commented. (the responsibility of
630  * freeing the kmalloc memory is the caller's, of course).
631  *
632  * A page may be used by anyone else who does a __get_free_page().
633  * In this case, page_count still tracks the references, and should only
634  * be used through the normal accessor functions. The top bits of page->flags
635  * and page->virtual store page management information, but all other fields
636  * are unused and could be used privately, carefully. The management of this
637  * page is the responsibility of the one who allocated it, and those who have
638  * subsequently been given references to it.
639  *
640  * The other pages (we may call them "pagecache pages") are completely
641  * managed by the Linux memory manager: I/O, buffers, swapping etc.
642  * The following discussion applies only to them.
643  *
644  * A pagecache page contains an opaque `private' member, which belongs to the
645  * page's address_space. Usually, this is the address of a circular list of
646  * the page's disk buffers. PG_private must be set to tell the VM to call
647  * into the filesystem to release these pages.
648  *
649  * A page may belong to an inode's memory mapping. In this case, page->mapping
650  * is the pointer to the inode, and page->index is the file offset of the page,
651  * in units of PAGE_CACHE_SIZE.
652  *
653  * If pagecache pages are not associated with an inode, they are said to be
654  * anonymous pages. These may become associated with the swapcache, and in that
655  * case PG_swapcache is set, and page->private is an offset into the swapcache.
656  *
657  * In either case (swapcache or inode backed), the pagecache itself holds one
658  * reference to the page. Setting PG_private should also increment the
659  * refcount. The each user mapping also has a reference to the page.
660  *
661  * The pagecache pages are stored in a per-mapping radix tree, which is
662  * rooted at mapping->page_tree, and indexed by offset.
663  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
664  * lists, we instead now tag pages as dirty/writeback in the radix tree.
665  *
666  * All pagecache pages may be subject to I/O:
667  * - inode pages may need to be read from disk,
668  * - inode pages which have been modified and are MAP_SHARED may need
669  *   to be written back to the inode on disk,
670  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
671  *   modified may need to be swapped out to swap space and (later) to be read
672  *   back into memory.
673  */
674 
675 /*
676  * The zone field is never updated after free_area_init_core()
677  * sets it, so none of the operations on it need to be atomic.
678  */
679 
680 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
681 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
682 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
683 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
684 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
685 
686 /*
687  * Define the bit shifts to access each section.  For non-existent
688  * sections we define the shift as 0; that plus a 0 mask ensures
689  * the compiler will optimise away reference to them.
690  */
691 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
692 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
693 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
694 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
695 
696 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
697 #ifdef NODE_NOT_IN_PAGE_FLAGS
698 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
699 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
700 						SECTIONS_PGOFF : ZONES_PGOFF)
701 #else
702 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
703 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
704 						NODES_PGOFF : ZONES_PGOFF)
705 #endif
706 
707 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
708 
709 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
710 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
711 #endif
712 
713 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
714 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
715 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
716 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
717 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
718 
719 static inline enum zone_type page_zonenum(const struct page *page)
720 {
721 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
722 }
723 
724 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
725 #define SECTION_IN_PAGE_FLAGS
726 #endif
727 
728 /*
729  * The identification function is mainly used by the buddy allocator for
730  * determining if two pages could be buddies. We are not really identifying
731  * the zone since we could be using the section number id if we do not have
732  * node id available in page flags.
733  * We only guarantee that it will return the same value for two combinable
734  * pages in a zone.
735  */
736 static inline int page_zone_id(struct page *page)
737 {
738 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
739 }
740 
741 static inline int zone_to_nid(struct zone *zone)
742 {
743 #ifdef CONFIG_NUMA
744 	return zone->node;
745 #else
746 	return 0;
747 #endif
748 }
749 
750 #ifdef NODE_NOT_IN_PAGE_FLAGS
751 extern int page_to_nid(const struct page *page);
752 #else
753 static inline int page_to_nid(const struct page *page)
754 {
755 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
756 }
757 #endif
758 
759 #ifdef CONFIG_NUMA_BALANCING
760 static inline int cpu_pid_to_cpupid(int cpu, int pid)
761 {
762 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
763 }
764 
765 static inline int cpupid_to_pid(int cpupid)
766 {
767 	return cpupid & LAST__PID_MASK;
768 }
769 
770 static inline int cpupid_to_cpu(int cpupid)
771 {
772 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
773 }
774 
775 static inline int cpupid_to_nid(int cpupid)
776 {
777 	return cpu_to_node(cpupid_to_cpu(cpupid));
778 }
779 
780 static inline bool cpupid_pid_unset(int cpupid)
781 {
782 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
783 }
784 
785 static inline bool cpupid_cpu_unset(int cpupid)
786 {
787 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
788 }
789 
790 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
791 {
792 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
793 }
794 
795 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
796 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
797 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
798 {
799 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
800 }
801 
802 static inline int page_cpupid_last(struct page *page)
803 {
804 	return page->_last_cpupid;
805 }
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
809 }
810 #else
811 static inline int page_cpupid_last(struct page *page)
812 {
813 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
814 }
815 
816 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
817 
818 static inline void page_cpupid_reset_last(struct page *page)
819 {
820 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
821 
822 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
823 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
824 }
825 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
826 #else /* !CONFIG_NUMA_BALANCING */
827 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
828 {
829 	return page_to_nid(page); /* XXX */
830 }
831 
832 static inline int page_cpupid_last(struct page *page)
833 {
834 	return page_to_nid(page); /* XXX */
835 }
836 
837 static inline int cpupid_to_nid(int cpupid)
838 {
839 	return -1;
840 }
841 
842 static inline int cpupid_to_pid(int cpupid)
843 {
844 	return -1;
845 }
846 
847 static inline int cpupid_to_cpu(int cpupid)
848 {
849 	return -1;
850 }
851 
852 static inline int cpu_pid_to_cpupid(int nid, int pid)
853 {
854 	return -1;
855 }
856 
857 static inline bool cpupid_pid_unset(int cpupid)
858 {
859 	return 1;
860 }
861 
862 static inline void page_cpupid_reset_last(struct page *page)
863 {
864 }
865 
866 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
867 {
868 	return false;
869 }
870 #endif /* CONFIG_NUMA_BALANCING */
871 
872 static inline struct zone *page_zone(const struct page *page)
873 {
874 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
875 }
876 
877 #ifdef SECTION_IN_PAGE_FLAGS
878 static inline void set_page_section(struct page *page, unsigned long section)
879 {
880 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
881 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
882 }
883 
884 static inline unsigned long page_to_section(const struct page *page)
885 {
886 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
887 }
888 #endif
889 
890 static inline void set_page_zone(struct page *page, enum zone_type zone)
891 {
892 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
893 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
894 }
895 
896 static inline void set_page_node(struct page *page, unsigned long node)
897 {
898 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
899 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
900 }
901 
902 static inline void set_page_links(struct page *page, enum zone_type zone,
903 	unsigned long node, unsigned long pfn)
904 {
905 	set_page_zone(page, zone);
906 	set_page_node(page, node);
907 #ifdef SECTION_IN_PAGE_FLAGS
908 	set_page_section(page, pfn_to_section_nr(pfn));
909 #endif
910 }
911 
912 #ifdef CONFIG_MEMCG
913 static inline struct mem_cgroup *page_memcg(struct page *page)
914 {
915 	return page->mem_cgroup;
916 }
917 
918 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
919 {
920 	page->mem_cgroup = memcg;
921 }
922 #else
923 static inline struct mem_cgroup *page_memcg(struct page *page)
924 {
925 	return NULL;
926 }
927 
928 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
929 {
930 }
931 #endif
932 
933 /*
934  * Some inline functions in vmstat.h depend on page_zone()
935  */
936 #include <linux/vmstat.h>
937 
938 static __always_inline void *lowmem_page_address(const struct page *page)
939 {
940 	return __va(PFN_PHYS(page_to_pfn(page)));
941 }
942 
943 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
944 #define HASHED_PAGE_VIRTUAL
945 #endif
946 
947 #if defined(WANT_PAGE_VIRTUAL)
948 static inline void *page_address(const struct page *page)
949 {
950 	return page->virtual;
951 }
952 static inline void set_page_address(struct page *page, void *address)
953 {
954 	page->virtual = address;
955 }
956 #define page_address_init()  do { } while(0)
957 #endif
958 
959 #if defined(HASHED_PAGE_VIRTUAL)
960 void *page_address(const struct page *page);
961 void set_page_address(struct page *page, void *virtual);
962 void page_address_init(void);
963 #endif
964 
965 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
966 #define page_address(page) lowmem_page_address(page)
967 #define set_page_address(page, address)  do { } while(0)
968 #define page_address_init()  do { } while(0)
969 #endif
970 
971 extern void *page_rmapping(struct page *page);
972 extern struct anon_vma *page_anon_vma(struct page *page);
973 extern struct address_space *page_mapping(struct page *page);
974 
975 extern struct address_space *__page_file_mapping(struct page *);
976 
977 static inline
978 struct address_space *page_file_mapping(struct page *page)
979 {
980 	if (unlikely(PageSwapCache(page)))
981 		return __page_file_mapping(page);
982 
983 	return page->mapping;
984 }
985 
986 /*
987  * Return the pagecache index of the passed page.  Regular pagecache pages
988  * use ->index whereas swapcache pages use ->private
989  */
990 static inline pgoff_t page_index(struct page *page)
991 {
992 	if (unlikely(PageSwapCache(page)))
993 		return page_private(page);
994 	return page->index;
995 }
996 
997 extern pgoff_t __page_file_index(struct page *page);
998 
999 /*
1000  * Return the file index of the page. Regular pagecache pages use ->index
1001  * whereas swapcache pages use swp_offset(->private)
1002  */
1003 static inline pgoff_t page_file_index(struct page *page)
1004 {
1005 	if (unlikely(PageSwapCache(page)))
1006 		return __page_file_index(page);
1007 
1008 	return page->index;
1009 }
1010 
1011 /*
1012  * Return true if this page is mapped into pagetables.
1013  */
1014 static inline int page_mapped(struct page *page)
1015 {
1016 	return atomic_read(&(page)->_mapcount) >= 0;
1017 }
1018 
1019 /*
1020  * Return true only if the page has been allocated with
1021  * ALLOC_NO_WATERMARKS and the low watermark was not
1022  * met implying that the system is under some pressure.
1023  */
1024 static inline bool page_is_pfmemalloc(struct page *page)
1025 {
1026 	/*
1027 	 * Page index cannot be this large so this must be
1028 	 * a pfmemalloc page.
1029 	 */
1030 	return page->index == -1UL;
1031 }
1032 
1033 /*
1034  * Only to be called by the page allocator on a freshly allocated
1035  * page.
1036  */
1037 static inline void set_page_pfmemalloc(struct page *page)
1038 {
1039 	page->index = -1UL;
1040 }
1041 
1042 static inline void clear_page_pfmemalloc(struct page *page)
1043 {
1044 	page->index = 0;
1045 }
1046 
1047 /*
1048  * Different kinds of faults, as returned by handle_mm_fault().
1049  * Used to decide whether a process gets delivered SIGBUS or
1050  * just gets major/minor fault counters bumped up.
1051  */
1052 
1053 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1054 
1055 #define VM_FAULT_OOM	0x0001
1056 #define VM_FAULT_SIGBUS	0x0002
1057 #define VM_FAULT_MAJOR	0x0004
1058 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1059 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1060 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1061 #define VM_FAULT_SIGSEGV 0x0040
1062 
1063 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1064 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1065 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1066 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1067 
1068 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1069 
1070 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1071 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1072 			 VM_FAULT_FALLBACK)
1073 
1074 /* Encode hstate index for a hwpoisoned large page */
1075 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1076 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1077 
1078 /*
1079  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1080  */
1081 extern void pagefault_out_of_memory(void);
1082 
1083 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1084 
1085 /*
1086  * Flags passed to show_mem() and show_free_areas() to suppress output in
1087  * various contexts.
1088  */
1089 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1090 
1091 extern void show_free_areas(unsigned int flags);
1092 extern bool skip_free_areas_node(unsigned int flags, int nid);
1093 
1094 int shmem_zero_setup(struct vm_area_struct *);
1095 #ifdef CONFIG_SHMEM
1096 bool shmem_mapping(struct address_space *mapping);
1097 #else
1098 static inline bool shmem_mapping(struct address_space *mapping)
1099 {
1100 	return false;
1101 }
1102 #endif
1103 
1104 extern int can_do_mlock(void);
1105 extern int user_shm_lock(size_t, struct user_struct *);
1106 extern void user_shm_unlock(size_t, struct user_struct *);
1107 
1108 /*
1109  * Parameter block passed down to zap_pte_range in exceptional cases.
1110  */
1111 struct zap_details {
1112 	struct address_space *check_mapping;	/* Check page->mapping if set */
1113 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1114 	pgoff_t last_index;			/* Highest page->index to unmap */
1115 };
1116 
1117 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1118 		pte_t pte);
1119 
1120 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1121 		unsigned long size);
1122 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1123 		unsigned long size, struct zap_details *);
1124 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1125 		unsigned long start, unsigned long end);
1126 
1127 /**
1128  * mm_walk - callbacks for walk_page_range
1129  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1130  *	       this handler is required to be able to handle
1131  *	       pmd_trans_huge() pmds.  They may simply choose to
1132  *	       split_huge_page() instead of handling it explicitly.
1133  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1134  * @pte_hole: if set, called for each hole at all levels
1135  * @hugetlb_entry: if set, called for each hugetlb entry
1136  * @test_walk: caller specific callback function to determine whether
1137  *             we walk over the current vma or not. A positive returned
1138  *             value means "do page table walk over the current vma,"
1139  *             and a negative one means "abort current page table walk
1140  *             right now." 0 means "skip the current vma."
1141  * @mm:        mm_struct representing the target process of page table walk
1142  * @vma:       vma currently walked (NULL if walking outside vmas)
1143  * @private:   private data for callbacks' usage
1144  *
1145  * (see the comment on walk_page_range() for more details)
1146  */
1147 struct mm_walk {
1148 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1149 			 unsigned long next, struct mm_walk *walk);
1150 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1151 			 unsigned long next, struct mm_walk *walk);
1152 	int (*pte_hole)(unsigned long addr, unsigned long next,
1153 			struct mm_walk *walk);
1154 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1155 			     unsigned long addr, unsigned long next,
1156 			     struct mm_walk *walk);
1157 	int (*test_walk)(unsigned long addr, unsigned long next,
1158 			struct mm_walk *walk);
1159 	struct mm_struct *mm;
1160 	struct vm_area_struct *vma;
1161 	void *private;
1162 };
1163 
1164 int walk_page_range(unsigned long addr, unsigned long end,
1165 		struct mm_walk *walk);
1166 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1167 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1168 		unsigned long end, unsigned long floor, unsigned long ceiling);
1169 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1170 			struct vm_area_struct *vma);
1171 void unmap_mapping_range(struct address_space *mapping,
1172 		loff_t const holebegin, loff_t const holelen, int even_cows);
1173 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1174 	unsigned long *pfn);
1175 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1176 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1177 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1178 			void *buf, int len, int write);
1179 
1180 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1181 		loff_t const holebegin, loff_t const holelen)
1182 {
1183 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1184 }
1185 
1186 extern void truncate_pagecache(struct inode *inode, loff_t new);
1187 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1188 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1189 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1190 int truncate_inode_page(struct address_space *mapping, struct page *page);
1191 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1192 int invalidate_inode_page(struct page *page);
1193 
1194 #ifdef CONFIG_MMU
1195 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1196 			unsigned long address, unsigned int flags);
1197 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1198 			    unsigned long address, unsigned int fault_flags);
1199 #else
1200 static inline int handle_mm_fault(struct mm_struct *mm,
1201 			struct vm_area_struct *vma, unsigned long address,
1202 			unsigned int flags)
1203 {
1204 	/* should never happen if there's no MMU */
1205 	BUG();
1206 	return VM_FAULT_SIGBUS;
1207 }
1208 static inline int fixup_user_fault(struct task_struct *tsk,
1209 		struct mm_struct *mm, unsigned long address,
1210 		unsigned int fault_flags)
1211 {
1212 	/* should never happen if there's no MMU */
1213 	BUG();
1214 	return -EFAULT;
1215 }
1216 #endif
1217 
1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1220 		void *buf, int len, int write);
1221 
1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 		      unsigned long start, unsigned long nr_pages,
1224 		      unsigned int foll_flags, struct page **pages,
1225 		      struct vm_area_struct **vmas, int *nonblocking);
1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1227 		    unsigned long start, unsigned long nr_pages,
1228 		    int write, int force, struct page **pages,
1229 		    struct vm_area_struct **vmas);
1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1231 		    unsigned long start, unsigned long nr_pages,
1232 		    int write, int force, struct page **pages,
1233 		    int *locked);
1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 			       unsigned long start, unsigned long nr_pages,
1236 			       int write, int force, struct page **pages,
1237 			       unsigned int gup_flags);
1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1239 		    unsigned long start, unsigned long nr_pages,
1240 		    int write, int force, struct page **pages);
1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1242 			struct page **pages);
1243 
1244 /* Container for pinned pfns / pages */
1245 struct frame_vector {
1246 	unsigned int nr_allocated;	/* Number of frames we have space for */
1247 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1248 	bool got_ref;		/* Did we pin pages by getting page ref? */
1249 	bool is_pfns;		/* Does array contain pages or pfns? */
1250 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1251 				 * pfns_vector_pages() or pfns_vector_pfns()
1252 				 * for access */
1253 };
1254 
1255 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1256 void frame_vector_destroy(struct frame_vector *vec);
1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1258 		     bool write, bool force, struct frame_vector *vec);
1259 void put_vaddr_frames(struct frame_vector *vec);
1260 int frame_vector_to_pages(struct frame_vector *vec);
1261 void frame_vector_to_pfns(struct frame_vector *vec);
1262 
1263 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1264 {
1265 	return vec->nr_frames;
1266 }
1267 
1268 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1269 {
1270 	if (vec->is_pfns) {
1271 		int err = frame_vector_to_pages(vec);
1272 
1273 		if (err)
1274 			return ERR_PTR(err);
1275 	}
1276 	return (struct page **)(vec->ptrs);
1277 }
1278 
1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1280 {
1281 	if (!vec->is_pfns)
1282 		frame_vector_to_pfns(vec);
1283 	return (unsigned long *)(vec->ptrs);
1284 }
1285 
1286 struct kvec;
1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1288 			struct page **pages);
1289 int get_kernel_page(unsigned long start, int write, struct page **pages);
1290 struct page *get_dump_page(unsigned long addr);
1291 
1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1293 extern void do_invalidatepage(struct page *page, unsigned int offset,
1294 			      unsigned int length);
1295 
1296 int __set_page_dirty_nobuffers(struct page *page);
1297 int __set_page_dirty_no_writeback(struct page *page);
1298 int redirty_page_for_writepage(struct writeback_control *wbc,
1299 				struct page *page);
1300 void account_page_dirtied(struct page *page, struct address_space *mapping,
1301 			  struct mem_cgroup *memcg);
1302 void account_page_cleaned(struct page *page, struct address_space *mapping,
1303 			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
1304 int set_page_dirty(struct page *page);
1305 int set_page_dirty_lock(struct page *page);
1306 void cancel_dirty_page(struct page *page);
1307 int clear_page_dirty_for_io(struct page *page);
1308 
1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1310 
1311 /* Is the vma a continuation of the stack vma above it? */
1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1313 {
1314 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315 }
1316 
1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318 {
1319 	return !vma->vm_ops;
1320 }
1321 
1322 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 					     unsigned long addr)
1324 {
1325 	return (vma->vm_flags & VM_GROWSDOWN) &&
1326 		(vma->vm_start == addr) &&
1327 		!vma_growsdown(vma->vm_prev, addr);
1328 }
1329 
1330 /* Is the vma a continuation of the stack vma below it? */
1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332 {
1333 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334 }
1335 
1336 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 					   unsigned long addr)
1338 {
1339 	return (vma->vm_flags & VM_GROWSUP) &&
1340 		(vma->vm_end == addr) &&
1341 		!vma_growsup(vma->vm_next, addr);
1342 }
1343 
1344 extern struct task_struct *task_of_stack(struct task_struct *task,
1345 				struct vm_area_struct *vma, bool in_group);
1346 
1347 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1348 		unsigned long old_addr, struct vm_area_struct *new_vma,
1349 		unsigned long new_addr, unsigned long len,
1350 		bool need_rmap_locks);
1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1352 			      unsigned long end, pgprot_t newprot,
1353 			      int dirty_accountable, int prot_numa);
1354 extern int mprotect_fixup(struct vm_area_struct *vma,
1355 			  struct vm_area_struct **pprev, unsigned long start,
1356 			  unsigned long end, unsigned long newflags);
1357 
1358 /*
1359  * doesn't attempt to fault and will return short.
1360  */
1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1362 			  struct page **pages);
1363 /*
1364  * per-process(per-mm_struct) statistics.
1365  */
1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1367 {
1368 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1369 
1370 #ifdef SPLIT_RSS_COUNTING
1371 	/*
1372 	 * counter is updated in asynchronous manner and may go to minus.
1373 	 * But it's never be expected number for users.
1374 	 */
1375 	if (val < 0)
1376 		val = 0;
1377 #endif
1378 	return (unsigned long)val;
1379 }
1380 
1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1382 {
1383 	atomic_long_add(value, &mm->rss_stat.count[member]);
1384 }
1385 
1386 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1387 {
1388 	atomic_long_inc(&mm->rss_stat.count[member]);
1389 }
1390 
1391 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1392 {
1393 	atomic_long_dec(&mm->rss_stat.count[member]);
1394 }
1395 
1396 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1397 {
1398 	return get_mm_counter(mm, MM_FILEPAGES) +
1399 		get_mm_counter(mm, MM_ANONPAGES);
1400 }
1401 
1402 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1403 {
1404 	return max(mm->hiwater_rss, get_mm_rss(mm));
1405 }
1406 
1407 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1408 {
1409 	return max(mm->hiwater_vm, mm->total_vm);
1410 }
1411 
1412 static inline void update_hiwater_rss(struct mm_struct *mm)
1413 {
1414 	unsigned long _rss = get_mm_rss(mm);
1415 
1416 	if ((mm)->hiwater_rss < _rss)
1417 		(mm)->hiwater_rss = _rss;
1418 }
1419 
1420 static inline void update_hiwater_vm(struct mm_struct *mm)
1421 {
1422 	if (mm->hiwater_vm < mm->total_vm)
1423 		mm->hiwater_vm = mm->total_vm;
1424 }
1425 
1426 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1427 {
1428 	mm->hiwater_rss = get_mm_rss(mm);
1429 }
1430 
1431 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1432 					 struct mm_struct *mm)
1433 {
1434 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1435 
1436 	if (*maxrss < hiwater_rss)
1437 		*maxrss = hiwater_rss;
1438 }
1439 
1440 #if defined(SPLIT_RSS_COUNTING)
1441 void sync_mm_rss(struct mm_struct *mm);
1442 #else
1443 static inline void sync_mm_rss(struct mm_struct *mm)
1444 {
1445 }
1446 #endif
1447 
1448 int vma_wants_writenotify(struct vm_area_struct *vma);
1449 
1450 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1451 			       spinlock_t **ptl);
1452 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1453 				    spinlock_t **ptl)
1454 {
1455 	pte_t *ptep;
1456 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1457 	return ptep;
1458 }
1459 
1460 #ifdef __PAGETABLE_PUD_FOLDED
1461 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1462 						unsigned long address)
1463 {
1464 	return 0;
1465 }
1466 #else
1467 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1468 #endif
1469 
1470 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1471 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1472 						unsigned long address)
1473 {
1474 	return 0;
1475 }
1476 
1477 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1478 
1479 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1480 {
1481 	return 0;
1482 }
1483 
1484 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1485 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1486 
1487 #else
1488 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1489 
1490 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1491 {
1492 	atomic_long_set(&mm->nr_pmds, 0);
1493 }
1494 
1495 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1496 {
1497 	return atomic_long_read(&mm->nr_pmds);
1498 }
1499 
1500 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1501 {
1502 	atomic_long_inc(&mm->nr_pmds);
1503 }
1504 
1505 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1506 {
1507 	atomic_long_dec(&mm->nr_pmds);
1508 }
1509 #endif
1510 
1511 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1512 		pmd_t *pmd, unsigned long address);
1513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1514 
1515 /*
1516  * The following ifdef needed to get the 4level-fixup.h header to work.
1517  * Remove it when 4level-fixup.h has been removed.
1518  */
1519 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1520 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1521 {
1522 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1523 		NULL: pud_offset(pgd, address);
1524 }
1525 
1526 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1527 {
1528 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1529 		NULL: pmd_offset(pud, address);
1530 }
1531 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1532 
1533 #if USE_SPLIT_PTE_PTLOCKS
1534 #if ALLOC_SPLIT_PTLOCKS
1535 void __init ptlock_cache_init(void);
1536 extern bool ptlock_alloc(struct page *page);
1537 extern void ptlock_free(struct page *page);
1538 
1539 static inline spinlock_t *ptlock_ptr(struct page *page)
1540 {
1541 	return page->ptl;
1542 }
1543 #else /* ALLOC_SPLIT_PTLOCKS */
1544 static inline void ptlock_cache_init(void)
1545 {
1546 }
1547 
1548 static inline bool ptlock_alloc(struct page *page)
1549 {
1550 	return true;
1551 }
1552 
1553 static inline void ptlock_free(struct page *page)
1554 {
1555 }
1556 
1557 static inline spinlock_t *ptlock_ptr(struct page *page)
1558 {
1559 	return &page->ptl;
1560 }
1561 #endif /* ALLOC_SPLIT_PTLOCKS */
1562 
1563 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1564 {
1565 	return ptlock_ptr(pmd_page(*pmd));
1566 }
1567 
1568 static inline bool ptlock_init(struct page *page)
1569 {
1570 	/*
1571 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1572 	 * with 0. Make sure nobody took it in use in between.
1573 	 *
1574 	 * It can happen if arch try to use slab for page table allocation:
1575 	 * slab code uses page->slab_cache and page->first_page (for tail
1576 	 * pages), which share storage with page->ptl.
1577 	 */
1578 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1579 	if (!ptlock_alloc(page))
1580 		return false;
1581 	spin_lock_init(ptlock_ptr(page));
1582 	return true;
1583 }
1584 
1585 /* Reset page->mapping so free_pages_check won't complain. */
1586 static inline void pte_lock_deinit(struct page *page)
1587 {
1588 	page->mapping = NULL;
1589 	ptlock_free(page);
1590 }
1591 
1592 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1593 /*
1594  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1595  */
1596 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1597 {
1598 	return &mm->page_table_lock;
1599 }
1600 static inline void ptlock_cache_init(void) {}
1601 static inline bool ptlock_init(struct page *page) { return true; }
1602 static inline void pte_lock_deinit(struct page *page) {}
1603 #endif /* USE_SPLIT_PTE_PTLOCKS */
1604 
1605 static inline void pgtable_init(void)
1606 {
1607 	ptlock_cache_init();
1608 	pgtable_cache_init();
1609 }
1610 
1611 static inline bool pgtable_page_ctor(struct page *page)
1612 {
1613 	if (!ptlock_init(page))
1614 		return false;
1615 	inc_zone_page_state(page, NR_PAGETABLE);
1616 	return true;
1617 }
1618 
1619 static inline void pgtable_page_dtor(struct page *page)
1620 {
1621 	pte_lock_deinit(page);
1622 	dec_zone_page_state(page, NR_PAGETABLE);
1623 }
1624 
1625 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1626 ({							\
1627 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1628 	pte_t *__pte = pte_offset_map(pmd, address);	\
1629 	*(ptlp) = __ptl;				\
1630 	spin_lock(__ptl);				\
1631 	__pte;						\
1632 })
1633 
1634 #define pte_unmap_unlock(pte, ptl)	do {		\
1635 	spin_unlock(ptl);				\
1636 	pte_unmap(pte);					\
1637 } while (0)
1638 
1639 #define pte_alloc_map(mm, vma, pmd, address)				\
1640 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1641 							pmd, address))?	\
1642 	 NULL: pte_offset_map(pmd, address))
1643 
1644 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1645 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1646 							pmd, address))?	\
1647 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1648 
1649 #define pte_alloc_kernel(pmd, address)			\
1650 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1651 		NULL: pte_offset_kernel(pmd, address))
1652 
1653 #if USE_SPLIT_PMD_PTLOCKS
1654 
1655 static struct page *pmd_to_page(pmd_t *pmd)
1656 {
1657 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1658 	return virt_to_page((void *)((unsigned long) pmd & mask));
1659 }
1660 
1661 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1662 {
1663 	return ptlock_ptr(pmd_to_page(pmd));
1664 }
1665 
1666 static inline bool pgtable_pmd_page_ctor(struct page *page)
1667 {
1668 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1669 	page->pmd_huge_pte = NULL;
1670 #endif
1671 	return ptlock_init(page);
1672 }
1673 
1674 static inline void pgtable_pmd_page_dtor(struct page *page)
1675 {
1676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1677 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1678 #endif
1679 	ptlock_free(page);
1680 }
1681 
1682 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1683 
1684 #else
1685 
1686 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1687 {
1688 	return &mm->page_table_lock;
1689 }
1690 
1691 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1692 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1693 
1694 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1695 
1696 #endif
1697 
1698 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1699 {
1700 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1701 	spin_lock(ptl);
1702 	return ptl;
1703 }
1704 
1705 extern void free_area_init(unsigned long * zones_size);
1706 extern void free_area_init_node(int nid, unsigned long * zones_size,
1707 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1708 extern void free_initmem(void);
1709 
1710 /*
1711  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1712  * into the buddy system. The freed pages will be poisoned with pattern
1713  * "poison" if it's within range [0, UCHAR_MAX].
1714  * Return pages freed into the buddy system.
1715  */
1716 extern unsigned long free_reserved_area(void *start, void *end,
1717 					int poison, char *s);
1718 
1719 #ifdef	CONFIG_HIGHMEM
1720 /*
1721  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1722  * and totalram_pages.
1723  */
1724 extern void free_highmem_page(struct page *page);
1725 #endif
1726 
1727 extern void adjust_managed_page_count(struct page *page, long count);
1728 extern void mem_init_print_info(const char *str);
1729 
1730 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1731 
1732 /* Free the reserved page into the buddy system, so it gets managed. */
1733 static inline void __free_reserved_page(struct page *page)
1734 {
1735 	ClearPageReserved(page);
1736 	init_page_count(page);
1737 	__free_page(page);
1738 }
1739 
1740 static inline void free_reserved_page(struct page *page)
1741 {
1742 	__free_reserved_page(page);
1743 	adjust_managed_page_count(page, 1);
1744 }
1745 
1746 static inline void mark_page_reserved(struct page *page)
1747 {
1748 	SetPageReserved(page);
1749 	adjust_managed_page_count(page, -1);
1750 }
1751 
1752 /*
1753  * Default method to free all the __init memory into the buddy system.
1754  * The freed pages will be poisoned with pattern "poison" if it's within
1755  * range [0, UCHAR_MAX].
1756  * Return pages freed into the buddy system.
1757  */
1758 static inline unsigned long free_initmem_default(int poison)
1759 {
1760 	extern char __init_begin[], __init_end[];
1761 
1762 	return free_reserved_area(&__init_begin, &__init_end,
1763 				  poison, "unused kernel");
1764 }
1765 
1766 static inline unsigned long get_num_physpages(void)
1767 {
1768 	int nid;
1769 	unsigned long phys_pages = 0;
1770 
1771 	for_each_online_node(nid)
1772 		phys_pages += node_present_pages(nid);
1773 
1774 	return phys_pages;
1775 }
1776 
1777 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1778 /*
1779  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1780  * zones, allocate the backing mem_map and account for memory holes in a more
1781  * architecture independent manner. This is a substitute for creating the
1782  * zone_sizes[] and zholes_size[] arrays and passing them to
1783  * free_area_init_node()
1784  *
1785  * An architecture is expected to register range of page frames backed by
1786  * physical memory with memblock_add[_node]() before calling
1787  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1788  * usage, an architecture is expected to do something like
1789  *
1790  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1791  * 							 max_highmem_pfn};
1792  * for_each_valid_physical_page_range()
1793  * 	memblock_add_node(base, size, nid)
1794  * free_area_init_nodes(max_zone_pfns);
1795  *
1796  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1797  * registered physical page range.  Similarly
1798  * sparse_memory_present_with_active_regions() calls memory_present() for
1799  * each range when SPARSEMEM is enabled.
1800  *
1801  * See mm/page_alloc.c for more information on each function exposed by
1802  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1803  */
1804 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1805 unsigned long node_map_pfn_alignment(void);
1806 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1807 						unsigned long end_pfn);
1808 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1809 						unsigned long end_pfn);
1810 extern void get_pfn_range_for_nid(unsigned int nid,
1811 			unsigned long *start_pfn, unsigned long *end_pfn);
1812 extern unsigned long find_min_pfn_with_active_regions(void);
1813 extern void free_bootmem_with_active_regions(int nid,
1814 						unsigned long max_low_pfn);
1815 extern void sparse_memory_present_with_active_regions(int nid);
1816 
1817 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1818 
1819 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1820     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1821 static inline int __early_pfn_to_nid(unsigned long pfn,
1822 					struct mminit_pfnnid_cache *state)
1823 {
1824 	return 0;
1825 }
1826 #else
1827 /* please see mm/page_alloc.c */
1828 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1829 /* there is a per-arch backend function. */
1830 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1831 					struct mminit_pfnnid_cache *state);
1832 #endif
1833 
1834 extern void set_dma_reserve(unsigned long new_dma_reserve);
1835 extern void memmap_init_zone(unsigned long, int, unsigned long,
1836 				unsigned long, enum memmap_context);
1837 extern void setup_per_zone_wmarks(void);
1838 extern int __meminit init_per_zone_wmark_min(void);
1839 extern void mem_init(void);
1840 extern void __init mmap_init(void);
1841 extern void show_mem(unsigned int flags);
1842 extern void si_meminfo(struct sysinfo * val);
1843 extern void si_meminfo_node(struct sysinfo *val, int nid);
1844 
1845 extern __printf(3, 4)
1846 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1847 
1848 extern void setup_per_cpu_pageset(void);
1849 
1850 extern void zone_pcp_update(struct zone *zone);
1851 extern void zone_pcp_reset(struct zone *zone);
1852 
1853 /* page_alloc.c */
1854 extern int min_free_kbytes;
1855 
1856 /* nommu.c */
1857 extern atomic_long_t mmap_pages_allocated;
1858 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1859 
1860 /* interval_tree.c */
1861 void vma_interval_tree_insert(struct vm_area_struct *node,
1862 			      struct rb_root *root);
1863 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1864 				    struct vm_area_struct *prev,
1865 				    struct rb_root *root);
1866 void vma_interval_tree_remove(struct vm_area_struct *node,
1867 			      struct rb_root *root);
1868 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1869 				unsigned long start, unsigned long last);
1870 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1871 				unsigned long start, unsigned long last);
1872 
1873 #define vma_interval_tree_foreach(vma, root, start, last)		\
1874 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1875 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1876 
1877 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1878 				   struct rb_root *root);
1879 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1880 				   struct rb_root *root);
1881 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1882 	struct rb_root *root, unsigned long start, unsigned long last);
1883 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1884 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1885 #ifdef CONFIG_DEBUG_VM_RB
1886 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1887 #endif
1888 
1889 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1890 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1891 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1892 
1893 /* mmap.c */
1894 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1895 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1896 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1897 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1898 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1899 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1900 	struct mempolicy *, struct vm_userfaultfd_ctx);
1901 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1902 extern int split_vma(struct mm_struct *,
1903 	struct vm_area_struct *, unsigned long addr, int new_below);
1904 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1905 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1906 	struct rb_node **, struct rb_node *);
1907 extern void unlink_file_vma(struct vm_area_struct *);
1908 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1909 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1910 	bool *need_rmap_locks);
1911 extern void exit_mmap(struct mm_struct *);
1912 
1913 static inline int check_data_rlimit(unsigned long rlim,
1914 				    unsigned long new,
1915 				    unsigned long start,
1916 				    unsigned long end_data,
1917 				    unsigned long start_data)
1918 {
1919 	if (rlim < RLIM_INFINITY) {
1920 		if (((new - start) + (end_data - start_data)) > rlim)
1921 			return -ENOSPC;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 extern int mm_take_all_locks(struct mm_struct *mm);
1928 extern void mm_drop_all_locks(struct mm_struct *mm);
1929 
1930 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1931 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1932 
1933 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1934 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1935 				   unsigned long addr, unsigned long len,
1936 				   unsigned long flags,
1937 				   const struct vm_special_mapping *spec);
1938 /* This is an obsolete alternative to _install_special_mapping. */
1939 extern int install_special_mapping(struct mm_struct *mm,
1940 				   unsigned long addr, unsigned long len,
1941 				   unsigned long flags, struct page **pages);
1942 
1943 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1944 
1945 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1946 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1947 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1948 	unsigned long len, unsigned long prot, unsigned long flags,
1949 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1950 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1951 
1952 static inline unsigned long
1953 do_mmap_pgoff(struct file *file, unsigned long addr,
1954 	unsigned long len, unsigned long prot, unsigned long flags,
1955 	unsigned long pgoff, unsigned long *populate)
1956 {
1957 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1958 }
1959 
1960 #ifdef CONFIG_MMU
1961 extern int __mm_populate(unsigned long addr, unsigned long len,
1962 			 int ignore_errors);
1963 static inline void mm_populate(unsigned long addr, unsigned long len)
1964 {
1965 	/* Ignore errors */
1966 	(void) __mm_populate(addr, len, 1);
1967 }
1968 #else
1969 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1970 #endif
1971 
1972 /* These take the mm semaphore themselves */
1973 extern unsigned long vm_brk(unsigned long, unsigned long);
1974 extern int vm_munmap(unsigned long, size_t);
1975 extern unsigned long vm_mmap(struct file *, unsigned long,
1976         unsigned long, unsigned long,
1977         unsigned long, unsigned long);
1978 
1979 struct vm_unmapped_area_info {
1980 #define VM_UNMAPPED_AREA_TOPDOWN 1
1981 	unsigned long flags;
1982 	unsigned long length;
1983 	unsigned long low_limit;
1984 	unsigned long high_limit;
1985 	unsigned long align_mask;
1986 	unsigned long align_offset;
1987 };
1988 
1989 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1990 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1991 
1992 /*
1993  * Search for an unmapped address range.
1994  *
1995  * We are looking for a range that:
1996  * - does not intersect with any VMA;
1997  * - is contained within the [low_limit, high_limit) interval;
1998  * - is at least the desired size.
1999  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2000  */
2001 static inline unsigned long
2002 vm_unmapped_area(struct vm_unmapped_area_info *info)
2003 {
2004 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2005 		return unmapped_area_topdown(info);
2006 	else
2007 		return unmapped_area(info);
2008 }
2009 
2010 /* truncate.c */
2011 extern void truncate_inode_pages(struct address_space *, loff_t);
2012 extern void truncate_inode_pages_range(struct address_space *,
2013 				       loff_t lstart, loff_t lend);
2014 extern void truncate_inode_pages_final(struct address_space *);
2015 
2016 /* generic vm_area_ops exported for stackable file systems */
2017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2018 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2019 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2020 
2021 /* mm/page-writeback.c */
2022 int write_one_page(struct page *page, int wait);
2023 void task_dirty_inc(struct task_struct *tsk);
2024 
2025 /* readahead.c */
2026 #define VM_MAX_READAHEAD	128	/* kbytes */
2027 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2028 
2029 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2030 			pgoff_t offset, unsigned long nr_to_read);
2031 
2032 void page_cache_sync_readahead(struct address_space *mapping,
2033 			       struct file_ra_state *ra,
2034 			       struct file *filp,
2035 			       pgoff_t offset,
2036 			       unsigned long size);
2037 
2038 void page_cache_async_readahead(struct address_space *mapping,
2039 				struct file_ra_state *ra,
2040 				struct file *filp,
2041 				struct page *pg,
2042 				pgoff_t offset,
2043 				unsigned long size);
2044 
2045 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2046 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2047 
2048 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2049 extern int expand_downwards(struct vm_area_struct *vma,
2050 		unsigned long address);
2051 #if VM_GROWSUP
2052 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2053 #else
2054   #define expand_upwards(vma, address) (0)
2055 #endif
2056 
2057 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2058 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2059 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2060 					     struct vm_area_struct **pprev);
2061 
2062 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2063    NULL if none.  Assume start_addr < end_addr. */
2064 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2065 {
2066 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2067 
2068 	if (vma && end_addr <= vma->vm_start)
2069 		vma = NULL;
2070 	return vma;
2071 }
2072 
2073 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2074 {
2075 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2076 }
2077 
2078 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2079 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2080 				unsigned long vm_start, unsigned long vm_end)
2081 {
2082 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2083 
2084 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2085 		vma = NULL;
2086 
2087 	return vma;
2088 }
2089 
2090 #ifdef CONFIG_MMU
2091 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2092 void vma_set_page_prot(struct vm_area_struct *vma);
2093 #else
2094 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2095 {
2096 	return __pgprot(0);
2097 }
2098 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2099 {
2100 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2101 }
2102 #endif
2103 
2104 #ifdef CONFIG_NUMA_BALANCING
2105 unsigned long change_prot_numa(struct vm_area_struct *vma,
2106 			unsigned long start, unsigned long end);
2107 #endif
2108 
2109 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2110 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2111 			unsigned long pfn, unsigned long size, pgprot_t);
2112 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2113 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2114 			unsigned long pfn);
2115 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2116 			unsigned long pfn);
2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2118 
2119 
2120 struct page *follow_page_mask(struct vm_area_struct *vma,
2121 			      unsigned long address, unsigned int foll_flags,
2122 			      unsigned int *page_mask);
2123 
2124 static inline struct page *follow_page(struct vm_area_struct *vma,
2125 		unsigned long address, unsigned int foll_flags)
2126 {
2127 	unsigned int unused_page_mask;
2128 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2129 }
2130 
2131 #define FOLL_WRITE	0x01	/* check pte is writable */
2132 #define FOLL_TOUCH	0x02	/* mark page accessed */
2133 #define FOLL_GET	0x04	/* do get_page on page */
2134 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2135 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2136 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2137 				 * and return without waiting upon it */
2138 #define FOLL_POPULATE	0x40	/* fault in page */
2139 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2140 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2141 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2142 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2143 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2144 #define FOLL_MLOCK	0x1000	/* lock present pages */
2145 
2146 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2147 			void *data);
2148 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2149 			       unsigned long size, pte_fn_t fn, void *data);
2150 
2151 #ifdef CONFIG_PROC_FS
2152 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2153 #else
2154 static inline void vm_stat_account(struct mm_struct *mm,
2155 			unsigned long flags, struct file *file, long pages)
2156 {
2157 	mm->total_vm += pages;
2158 }
2159 #endif /* CONFIG_PROC_FS */
2160 
2161 #ifdef CONFIG_DEBUG_PAGEALLOC
2162 extern bool _debug_pagealloc_enabled;
2163 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2164 
2165 static inline bool debug_pagealloc_enabled(void)
2166 {
2167 	return _debug_pagealloc_enabled;
2168 }
2169 
2170 static inline void
2171 kernel_map_pages(struct page *page, int numpages, int enable)
2172 {
2173 	if (!debug_pagealloc_enabled())
2174 		return;
2175 
2176 	__kernel_map_pages(page, numpages, enable);
2177 }
2178 #ifdef CONFIG_HIBERNATION
2179 extern bool kernel_page_present(struct page *page);
2180 #endif /* CONFIG_HIBERNATION */
2181 #else
2182 static inline void
2183 kernel_map_pages(struct page *page, int numpages, int enable) {}
2184 #ifdef CONFIG_HIBERNATION
2185 static inline bool kernel_page_present(struct page *page) { return true; }
2186 #endif /* CONFIG_HIBERNATION */
2187 #endif
2188 
2189 #ifdef __HAVE_ARCH_GATE_AREA
2190 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2191 extern int in_gate_area_no_mm(unsigned long addr);
2192 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2193 #else
2194 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2195 {
2196 	return NULL;
2197 }
2198 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2199 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2200 {
2201 	return 0;
2202 }
2203 #endif	/* __HAVE_ARCH_GATE_AREA */
2204 
2205 #ifdef CONFIG_SYSCTL
2206 extern int sysctl_drop_caches;
2207 int drop_caches_sysctl_handler(struct ctl_table *, int,
2208 					void __user *, size_t *, loff_t *);
2209 #endif
2210 
2211 void drop_slab(void);
2212 void drop_slab_node(int nid);
2213 
2214 #ifndef CONFIG_MMU
2215 #define randomize_va_space 0
2216 #else
2217 extern int randomize_va_space;
2218 #endif
2219 
2220 const char * arch_vma_name(struct vm_area_struct *vma);
2221 void print_vma_addr(char *prefix, unsigned long rip);
2222 
2223 void sparse_mem_maps_populate_node(struct page **map_map,
2224 				   unsigned long pnum_begin,
2225 				   unsigned long pnum_end,
2226 				   unsigned long map_count,
2227 				   int nodeid);
2228 
2229 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2230 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2231 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2232 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2233 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2234 void *vmemmap_alloc_block(unsigned long size, int node);
2235 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2236 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2237 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2238 			       int node);
2239 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2240 void vmemmap_populate_print_last(void);
2241 #ifdef CONFIG_MEMORY_HOTPLUG
2242 void vmemmap_free(unsigned long start, unsigned long end);
2243 #endif
2244 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2245 				  unsigned long size);
2246 
2247 enum mf_flags {
2248 	MF_COUNT_INCREASED = 1 << 0,
2249 	MF_ACTION_REQUIRED = 1 << 1,
2250 	MF_MUST_KILL = 1 << 2,
2251 	MF_SOFT_OFFLINE = 1 << 3,
2252 };
2253 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2254 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2255 extern int unpoison_memory(unsigned long pfn);
2256 extern int get_hwpoison_page(struct page *page);
2257 extern void put_hwpoison_page(struct page *page);
2258 extern int sysctl_memory_failure_early_kill;
2259 extern int sysctl_memory_failure_recovery;
2260 extern void shake_page(struct page *p, int access);
2261 extern atomic_long_t num_poisoned_pages;
2262 extern int soft_offline_page(struct page *page, int flags);
2263 
2264 
2265 /*
2266  * Error handlers for various types of pages.
2267  */
2268 enum mf_result {
2269 	MF_IGNORED,	/* Error: cannot be handled */
2270 	MF_FAILED,	/* Error: handling failed */
2271 	MF_DELAYED,	/* Will be handled later */
2272 	MF_RECOVERED,	/* Successfully recovered */
2273 };
2274 
2275 enum mf_action_page_type {
2276 	MF_MSG_KERNEL,
2277 	MF_MSG_KERNEL_HIGH_ORDER,
2278 	MF_MSG_SLAB,
2279 	MF_MSG_DIFFERENT_COMPOUND,
2280 	MF_MSG_POISONED_HUGE,
2281 	MF_MSG_HUGE,
2282 	MF_MSG_FREE_HUGE,
2283 	MF_MSG_UNMAP_FAILED,
2284 	MF_MSG_DIRTY_SWAPCACHE,
2285 	MF_MSG_CLEAN_SWAPCACHE,
2286 	MF_MSG_DIRTY_MLOCKED_LRU,
2287 	MF_MSG_CLEAN_MLOCKED_LRU,
2288 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2289 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2290 	MF_MSG_DIRTY_LRU,
2291 	MF_MSG_CLEAN_LRU,
2292 	MF_MSG_TRUNCATED_LRU,
2293 	MF_MSG_BUDDY,
2294 	MF_MSG_BUDDY_2ND,
2295 	MF_MSG_UNKNOWN,
2296 };
2297 
2298 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2299 extern void clear_huge_page(struct page *page,
2300 			    unsigned long addr,
2301 			    unsigned int pages_per_huge_page);
2302 extern void copy_user_huge_page(struct page *dst, struct page *src,
2303 				unsigned long addr, struct vm_area_struct *vma,
2304 				unsigned int pages_per_huge_page);
2305 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2306 
2307 extern struct page_ext_operations debug_guardpage_ops;
2308 extern struct page_ext_operations page_poisoning_ops;
2309 
2310 #ifdef CONFIG_DEBUG_PAGEALLOC
2311 extern unsigned int _debug_guardpage_minorder;
2312 extern bool _debug_guardpage_enabled;
2313 
2314 static inline unsigned int debug_guardpage_minorder(void)
2315 {
2316 	return _debug_guardpage_minorder;
2317 }
2318 
2319 static inline bool debug_guardpage_enabled(void)
2320 {
2321 	return _debug_guardpage_enabled;
2322 }
2323 
2324 static inline bool page_is_guard(struct page *page)
2325 {
2326 	struct page_ext *page_ext;
2327 
2328 	if (!debug_guardpage_enabled())
2329 		return false;
2330 
2331 	page_ext = lookup_page_ext(page);
2332 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2333 }
2334 #else
2335 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2336 static inline bool debug_guardpage_enabled(void) { return false; }
2337 static inline bool page_is_guard(struct page *page) { return false; }
2338 #endif /* CONFIG_DEBUG_PAGEALLOC */
2339 
2340 #if MAX_NUMNODES > 1
2341 void __init setup_nr_node_ids(void);
2342 #else
2343 static inline void setup_nr_node_ids(void) {}
2344 #endif
2345 
2346 #endif /* __KERNEL__ */
2347 #endif /* _LINUX_MM_H */
2348