1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 25 struct mempolicy; 26 struct anon_vma; 27 struct anon_vma_chain; 28 struct file_ra_state; 29 struct user_struct; 30 struct writeback_control; 31 struct bdi_writeback; 32 33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 34 extern unsigned long max_mapnr; 35 36 static inline void set_max_mapnr(unsigned long limit) 37 { 38 max_mapnr = limit; 39 } 40 #else 41 static inline void set_max_mapnr(unsigned long limit) { } 42 #endif 43 44 extern unsigned long totalram_pages; 45 extern void * high_memory; 46 extern int page_cluster; 47 48 #ifdef CONFIG_SYSCTL 49 extern int sysctl_legacy_va_layout; 50 #else 51 #define sysctl_legacy_va_layout 0 52 #endif 53 54 #include <asm/page.h> 55 #include <asm/pgtable.h> 56 #include <asm/processor.h> 57 58 #ifndef __pa_symbol 59 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 60 #endif 61 62 /* 63 * To prevent common memory management code establishing 64 * a zero page mapping on a read fault. 65 * This macro should be defined within <asm/pgtable.h>. 66 * s390 does this to prevent multiplexing of hardware bits 67 * related to the physical page in case of virtualization. 68 */ 69 #ifndef mm_forbids_zeropage 70 #define mm_forbids_zeropage(X) (0) 71 #endif 72 73 extern unsigned long sysctl_user_reserve_kbytes; 74 extern unsigned long sysctl_admin_reserve_kbytes; 75 76 extern int sysctl_overcommit_memory; 77 extern int sysctl_overcommit_ratio; 78 extern unsigned long sysctl_overcommit_kbytes; 79 80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 83 size_t *, loff_t *); 84 85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 86 87 /* to align the pointer to the (next) page boundary */ 88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 89 90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 91 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 92 93 /* 94 * Linux kernel virtual memory manager primitives. 95 * The idea being to have a "virtual" mm in the same way 96 * we have a virtual fs - giving a cleaner interface to the 97 * mm details, and allowing different kinds of memory mappings 98 * (from shared memory to executable loading to arbitrary 99 * mmap() functions). 100 */ 101 102 extern struct kmem_cache *vm_area_cachep; 103 104 #ifndef CONFIG_MMU 105 extern struct rb_root nommu_region_tree; 106 extern struct rw_semaphore nommu_region_sem; 107 108 extern unsigned int kobjsize(const void *objp); 109 #endif 110 111 /* 112 * vm_flags in vm_area_struct, see mm_types.h. 113 */ 114 #define VM_NONE 0x00000000 115 116 #define VM_READ 0x00000001 /* currently active flags */ 117 #define VM_WRITE 0x00000002 118 #define VM_EXEC 0x00000004 119 #define VM_SHARED 0x00000008 120 121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 122 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 123 #define VM_MAYWRITE 0x00000020 124 #define VM_MAYEXEC 0x00000040 125 #define VM_MAYSHARE 0x00000080 126 127 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 128 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 129 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 130 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 131 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 132 133 #define VM_LOCKED 0x00002000 134 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 135 136 /* Used by sys_madvise() */ 137 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 138 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 139 140 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 141 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 142 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 146 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 147 #define VM_ARCH_2 0x02000000 148 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 149 150 #ifdef CONFIG_MEM_SOFT_DIRTY 151 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 152 #else 153 # define VM_SOFTDIRTY 0 154 #endif 155 156 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 157 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 158 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 159 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 160 161 #if defined(CONFIG_X86) 162 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 163 #elif defined(CONFIG_PPC) 164 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 165 #elif defined(CONFIG_PARISC) 166 # define VM_GROWSUP VM_ARCH_1 167 #elif defined(CONFIG_METAG) 168 # define VM_GROWSUP VM_ARCH_1 169 #elif defined(CONFIG_IA64) 170 # define VM_GROWSUP VM_ARCH_1 171 #elif !defined(CONFIG_MMU) 172 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 173 #endif 174 175 #if defined(CONFIG_X86) 176 /* MPX specific bounds table or bounds directory */ 177 # define VM_MPX VM_ARCH_2 178 #endif 179 180 #ifndef VM_GROWSUP 181 # define VM_GROWSUP VM_NONE 182 #endif 183 184 /* Bits set in the VMA until the stack is in its final location */ 185 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 186 187 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 189 #endif 190 191 #ifdef CONFIG_STACK_GROWSUP 192 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 193 #else 194 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 195 #endif 196 197 /* 198 * Special vmas that are non-mergable, non-mlock()able. 199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 200 */ 201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 202 203 /* This mask defines which mm->def_flags a process can inherit its parent */ 204 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 205 206 /* This mask is used to clear all the VMA flags used by mlock */ 207 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 208 209 /* 210 * mapping from the currently active vm_flags protection bits (the 211 * low four bits) to a page protection mask.. 212 */ 213 extern pgprot_t protection_map[16]; 214 215 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 216 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 217 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 218 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 219 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 220 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 221 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 222 223 /* 224 * vm_fault is filled by the the pagefault handler and passed to the vma's 225 * ->fault function. The vma's ->fault is responsible for returning a bitmask 226 * of VM_FAULT_xxx flags that give details about how the fault was handled. 227 * 228 * pgoff should be used in favour of virtual_address, if possible. 229 */ 230 struct vm_fault { 231 unsigned int flags; /* FAULT_FLAG_xxx flags */ 232 pgoff_t pgoff; /* Logical page offset based on vma */ 233 void __user *virtual_address; /* Faulting virtual address */ 234 235 struct page *cow_page; /* Handler may choose to COW */ 236 struct page *page; /* ->fault handlers should return a 237 * page here, unless VM_FAULT_NOPAGE 238 * is set (which is also implied by 239 * VM_FAULT_ERROR). 240 */ 241 /* for ->map_pages() only */ 242 pgoff_t max_pgoff; /* map pages for offset from pgoff till 243 * max_pgoff inclusive */ 244 pte_t *pte; /* pte entry associated with ->pgoff */ 245 }; 246 247 /* 248 * These are the virtual MM functions - opening of an area, closing and 249 * unmapping it (needed to keep files on disk up-to-date etc), pointer 250 * to the functions called when a no-page or a wp-page exception occurs. 251 */ 252 struct vm_operations_struct { 253 void (*open)(struct vm_area_struct * area); 254 void (*close)(struct vm_area_struct * area); 255 int (*mremap)(struct vm_area_struct * area); 256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 258 pmd_t *, unsigned int flags); 259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 260 261 /* notification that a previously read-only page is about to become 262 * writable, if an error is returned it will cause a SIGBUS */ 263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 264 265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 267 268 /* called by access_process_vm when get_user_pages() fails, typically 269 * for use by special VMAs that can switch between memory and hardware 270 */ 271 int (*access)(struct vm_area_struct *vma, unsigned long addr, 272 void *buf, int len, int write); 273 274 /* Called by the /proc/PID/maps code to ask the vma whether it 275 * has a special name. Returning non-NULL will also cause this 276 * vma to be dumped unconditionally. */ 277 const char *(*name)(struct vm_area_struct *vma); 278 279 #ifdef CONFIG_NUMA 280 /* 281 * set_policy() op must add a reference to any non-NULL @new mempolicy 282 * to hold the policy upon return. Caller should pass NULL @new to 283 * remove a policy and fall back to surrounding context--i.e. do not 284 * install a MPOL_DEFAULT policy, nor the task or system default 285 * mempolicy. 286 */ 287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 288 289 /* 290 * get_policy() op must add reference [mpol_get()] to any policy at 291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 292 * in mm/mempolicy.c will do this automatically. 293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 296 * must return NULL--i.e., do not "fallback" to task or system default 297 * policy. 298 */ 299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 300 unsigned long addr); 301 #endif 302 /* 303 * Called by vm_normal_page() for special PTEs to find the 304 * page for @addr. This is useful if the default behavior 305 * (using pte_page()) would not find the correct page. 306 */ 307 struct page *(*find_special_page)(struct vm_area_struct *vma, 308 unsigned long addr); 309 }; 310 311 struct mmu_gather; 312 struct inode; 313 314 #define page_private(page) ((page)->private) 315 #define set_page_private(page, v) ((page)->private = (v)) 316 317 /* 318 * FIXME: take this include out, include page-flags.h in 319 * files which need it (119 of them) 320 */ 321 #include <linux/page-flags.h> 322 #include <linux/huge_mm.h> 323 324 /* 325 * Methods to modify the page usage count. 326 * 327 * What counts for a page usage: 328 * - cache mapping (page->mapping) 329 * - private data (page->private) 330 * - page mapped in a task's page tables, each mapping 331 * is counted separately 332 * 333 * Also, many kernel routines increase the page count before a critical 334 * routine so they can be sure the page doesn't go away from under them. 335 */ 336 337 /* 338 * Drop a ref, return true if the refcount fell to zero (the page has no users) 339 */ 340 static inline int put_page_testzero(struct page *page) 341 { 342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 343 return atomic_dec_and_test(&page->_count); 344 } 345 346 /* 347 * Try to grab a ref unless the page has a refcount of zero, return false if 348 * that is the case. 349 * This can be called when MMU is off so it must not access 350 * any of the virtual mappings. 351 */ 352 static inline int get_page_unless_zero(struct page *page) 353 { 354 return atomic_inc_not_zero(&page->_count); 355 } 356 357 extern int page_is_ram(unsigned long pfn); 358 359 enum { 360 REGION_INTERSECTS, 361 REGION_DISJOINT, 362 REGION_MIXED, 363 }; 364 365 int region_intersects(resource_size_t offset, size_t size, const char *type); 366 367 /* Support for virtually mapped pages */ 368 struct page *vmalloc_to_page(const void *addr); 369 unsigned long vmalloc_to_pfn(const void *addr); 370 371 /* 372 * Determine if an address is within the vmalloc range 373 * 374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 375 * is no special casing required. 376 */ 377 static inline int is_vmalloc_addr(const void *x) 378 { 379 #ifdef CONFIG_MMU 380 unsigned long addr = (unsigned long)x; 381 382 return addr >= VMALLOC_START && addr < VMALLOC_END; 383 #else 384 return 0; 385 #endif 386 } 387 #ifdef CONFIG_MMU 388 extern int is_vmalloc_or_module_addr(const void *x); 389 #else 390 static inline int is_vmalloc_or_module_addr(const void *x) 391 { 392 return 0; 393 } 394 #endif 395 396 extern void kvfree(const void *addr); 397 398 static inline void compound_lock(struct page *page) 399 { 400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 401 VM_BUG_ON_PAGE(PageSlab(page), page); 402 bit_spin_lock(PG_compound_lock, &page->flags); 403 #endif 404 } 405 406 static inline void compound_unlock(struct page *page) 407 { 408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 409 VM_BUG_ON_PAGE(PageSlab(page), page); 410 bit_spin_unlock(PG_compound_lock, &page->flags); 411 #endif 412 } 413 414 static inline unsigned long compound_lock_irqsave(struct page *page) 415 { 416 unsigned long uninitialized_var(flags); 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 local_irq_save(flags); 419 compound_lock(page); 420 #endif 421 return flags; 422 } 423 424 static inline void compound_unlock_irqrestore(struct page *page, 425 unsigned long flags) 426 { 427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 428 compound_unlock(page); 429 local_irq_restore(flags); 430 #endif 431 } 432 433 static inline struct page *compound_head_by_tail(struct page *tail) 434 { 435 struct page *head = tail->first_page; 436 437 /* 438 * page->first_page may be a dangling pointer to an old 439 * compound page, so recheck that it is still a tail 440 * page before returning. 441 */ 442 smp_rmb(); 443 if (likely(PageTail(tail))) 444 return head; 445 return tail; 446 } 447 448 /* 449 * Since either compound page could be dismantled asynchronously in THP 450 * or we access asynchronously arbitrary positioned struct page, there 451 * would be tail flag race. To handle this race, we should call 452 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 453 */ 454 static inline struct page *compound_head(struct page *page) 455 { 456 if (unlikely(PageTail(page))) 457 return compound_head_by_tail(page); 458 return page; 459 } 460 461 /* 462 * If we access compound page synchronously such as access to 463 * allocated page, there is no need to handle tail flag race, so we can 464 * check tail flag directly without any synchronization primitive. 465 */ 466 static inline struct page *compound_head_fast(struct page *page) 467 { 468 if (unlikely(PageTail(page))) 469 return page->first_page; 470 return page; 471 } 472 473 /* 474 * The atomic page->_mapcount, starts from -1: so that transitions 475 * both from it and to it can be tracked, using atomic_inc_and_test 476 * and atomic_add_negative(-1). 477 */ 478 static inline void page_mapcount_reset(struct page *page) 479 { 480 atomic_set(&(page)->_mapcount, -1); 481 } 482 483 static inline int page_mapcount(struct page *page) 484 { 485 VM_BUG_ON_PAGE(PageSlab(page), page); 486 return atomic_read(&page->_mapcount) + 1; 487 } 488 489 static inline int page_count(struct page *page) 490 { 491 return atomic_read(&compound_head(page)->_count); 492 } 493 494 static inline bool __compound_tail_refcounted(struct page *page) 495 { 496 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 497 } 498 499 /* 500 * This takes a head page as parameter and tells if the 501 * tail page reference counting can be skipped. 502 * 503 * For this to be safe, PageSlab and PageHeadHuge must remain true on 504 * any given page where they return true here, until all tail pins 505 * have been released. 506 */ 507 static inline bool compound_tail_refcounted(struct page *page) 508 { 509 VM_BUG_ON_PAGE(!PageHead(page), page); 510 return __compound_tail_refcounted(page); 511 } 512 513 static inline void get_huge_page_tail(struct page *page) 514 { 515 /* 516 * __split_huge_page_refcount() cannot run from under us. 517 */ 518 VM_BUG_ON_PAGE(!PageTail(page), page); 519 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 520 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 521 if (compound_tail_refcounted(page->first_page)) 522 atomic_inc(&page->_mapcount); 523 } 524 525 extern bool __get_page_tail(struct page *page); 526 527 static inline void get_page(struct page *page) 528 { 529 if (unlikely(PageTail(page))) 530 if (likely(__get_page_tail(page))) 531 return; 532 /* 533 * Getting a normal page or the head of a compound page 534 * requires to already have an elevated page->_count. 535 */ 536 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 537 atomic_inc(&page->_count); 538 } 539 540 static inline struct page *virt_to_head_page(const void *x) 541 { 542 struct page *page = virt_to_page(x); 543 544 /* 545 * We don't need to worry about synchronization of tail flag 546 * when we call virt_to_head_page() since it is only called for 547 * already allocated page and this page won't be freed until 548 * this virt_to_head_page() is finished. So use _fast variant. 549 */ 550 return compound_head_fast(page); 551 } 552 553 /* 554 * Setup the page count before being freed into the page allocator for 555 * the first time (boot or memory hotplug) 556 */ 557 static inline void init_page_count(struct page *page) 558 { 559 atomic_set(&page->_count, 1); 560 } 561 562 void put_page(struct page *page); 563 void put_pages_list(struct list_head *pages); 564 565 void split_page(struct page *page, unsigned int order); 566 int split_free_page(struct page *page); 567 568 /* 569 * Compound pages have a destructor function. Provide a 570 * prototype for that function and accessor functions. 571 * These are _only_ valid on the head of a PG_compound page. 572 */ 573 574 static inline void set_compound_page_dtor(struct page *page, 575 compound_page_dtor *dtor) 576 { 577 page[1].compound_dtor = dtor; 578 } 579 580 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 581 { 582 return page[1].compound_dtor; 583 } 584 585 static inline int compound_order(struct page *page) 586 { 587 if (!PageHead(page)) 588 return 0; 589 return page[1].compound_order; 590 } 591 592 static inline void set_compound_order(struct page *page, unsigned long order) 593 { 594 page[1].compound_order = order; 595 } 596 597 #ifdef CONFIG_MMU 598 /* 599 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 600 * servicing faults for write access. In the normal case, do always want 601 * pte_mkwrite. But get_user_pages can cause write faults for mappings 602 * that do not have writing enabled, when used by access_process_vm. 603 */ 604 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 605 { 606 if (likely(vma->vm_flags & VM_WRITE)) 607 pte = pte_mkwrite(pte); 608 return pte; 609 } 610 611 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 612 struct page *page, pte_t *pte, bool write, bool anon); 613 #endif 614 615 /* 616 * Multiple processes may "see" the same page. E.g. for untouched 617 * mappings of /dev/null, all processes see the same page full of 618 * zeroes, and text pages of executables and shared libraries have 619 * only one copy in memory, at most, normally. 620 * 621 * For the non-reserved pages, page_count(page) denotes a reference count. 622 * page_count() == 0 means the page is free. page->lru is then used for 623 * freelist management in the buddy allocator. 624 * page_count() > 0 means the page has been allocated. 625 * 626 * Pages are allocated by the slab allocator in order to provide memory 627 * to kmalloc and kmem_cache_alloc. In this case, the management of the 628 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 629 * unless a particular usage is carefully commented. (the responsibility of 630 * freeing the kmalloc memory is the caller's, of course). 631 * 632 * A page may be used by anyone else who does a __get_free_page(). 633 * In this case, page_count still tracks the references, and should only 634 * be used through the normal accessor functions. The top bits of page->flags 635 * and page->virtual store page management information, but all other fields 636 * are unused and could be used privately, carefully. The management of this 637 * page is the responsibility of the one who allocated it, and those who have 638 * subsequently been given references to it. 639 * 640 * The other pages (we may call them "pagecache pages") are completely 641 * managed by the Linux memory manager: I/O, buffers, swapping etc. 642 * The following discussion applies only to them. 643 * 644 * A pagecache page contains an opaque `private' member, which belongs to the 645 * page's address_space. Usually, this is the address of a circular list of 646 * the page's disk buffers. PG_private must be set to tell the VM to call 647 * into the filesystem to release these pages. 648 * 649 * A page may belong to an inode's memory mapping. In this case, page->mapping 650 * is the pointer to the inode, and page->index is the file offset of the page, 651 * in units of PAGE_CACHE_SIZE. 652 * 653 * If pagecache pages are not associated with an inode, they are said to be 654 * anonymous pages. These may become associated with the swapcache, and in that 655 * case PG_swapcache is set, and page->private is an offset into the swapcache. 656 * 657 * In either case (swapcache or inode backed), the pagecache itself holds one 658 * reference to the page. Setting PG_private should also increment the 659 * refcount. The each user mapping also has a reference to the page. 660 * 661 * The pagecache pages are stored in a per-mapping radix tree, which is 662 * rooted at mapping->page_tree, and indexed by offset. 663 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 664 * lists, we instead now tag pages as dirty/writeback in the radix tree. 665 * 666 * All pagecache pages may be subject to I/O: 667 * - inode pages may need to be read from disk, 668 * - inode pages which have been modified and are MAP_SHARED may need 669 * to be written back to the inode on disk, 670 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 671 * modified may need to be swapped out to swap space and (later) to be read 672 * back into memory. 673 */ 674 675 /* 676 * The zone field is never updated after free_area_init_core() 677 * sets it, so none of the operations on it need to be atomic. 678 */ 679 680 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 681 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 682 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 683 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 684 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 685 686 /* 687 * Define the bit shifts to access each section. For non-existent 688 * sections we define the shift as 0; that plus a 0 mask ensures 689 * the compiler will optimise away reference to them. 690 */ 691 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 692 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 693 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 694 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 695 696 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 697 #ifdef NODE_NOT_IN_PAGE_FLAGS 698 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 699 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 700 SECTIONS_PGOFF : ZONES_PGOFF) 701 #else 702 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 703 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 704 NODES_PGOFF : ZONES_PGOFF) 705 #endif 706 707 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 708 709 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 710 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 711 #endif 712 713 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 714 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 715 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 716 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 717 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 718 719 static inline enum zone_type page_zonenum(const struct page *page) 720 { 721 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 722 } 723 724 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 725 #define SECTION_IN_PAGE_FLAGS 726 #endif 727 728 /* 729 * The identification function is mainly used by the buddy allocator for 730 * determining if two pages could be buddies. We are not really identifying 731 * the zone since we could be using the section number id if we do not have 732 * node id available in page flags. 733 * We only guarantee that it will return the same value for two combinable 734 * pages in a zone. 735 */ 736 static inline int page_zone_id(struct page *page) 737 { 738 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 739 } 740 741 static inline int zone_to_nid(struct zone *zone) 742 { 743 #ifdef CONFIG_NUMA 744 return zone->node; 745 #else 746 return 0; 747 #endif 748 } 749 750 #ifdef NODE_NOT_IN_PAGE_FLAGS 751 extern int page_to_nid(const struct page *page); 752 #else 753 static inline int page_to_nid(const struct page *page) 754 { 755 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 756 } 757 #endif 758 759 #ifdef CONFIG_NUMA_BALANCING 760 static inline int cpu_pid_to_cpupid(int cpu, int pid) 761 { 762 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 763 } 764 765 static inline int cpupid_to_pid(int cpupid) 766 { 767 return cpupid & LAST__PID_MASK; 768 } 769 770 static inline int cpupid_to_cpu(int cpupid) 771 { 772 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 773 } 774 775 static inline int cpupid_to_nid(int cpupid) 776 { 777 return cpu_to_node(cpupid_to_cpu(cpupid)); 778 } 779 780 static inline bool cpupid_pid_unset(int cpupid) 781 { 782 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 783 } 784 785 static inline bool cpupid_cpu_unset(int cpupid) 786 { 787 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 788 } 789 790 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 791 { 792 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 793 } 794 795 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 796 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 797 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 798 { 799 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 800 } 801 802 static inline int page_cpupid_last(struct page *page) 803 { 804 return page->_last_cpupid; 805 } 806 static inline void page_cpupid_reset_last(struct page *page) 807 { 808 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 809 } 810 #else 811 static inline int page_cpupid_last(struct page *page) 812 { 813 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 814 } 815 816 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 817 818 static inline void page_cpupid_reset_last(struct page *page) 819 { 820 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 821 822 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 823 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 824 } 825 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 826 #else /* !CONFIG_NUMA_BALANCING */ 827 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 828 { 829 return page_to_nid(page); /* XXX */ 830 } 831 832 static inline int page_cpupid_last(struct page *page) 833 { 834 return page_to_nid(page); /* XXX */ 835 } 836 837 static inline int cpupid_to_nid(int cpupid) 838 { 839 return -1; 840 } 841 842 static inline int cpupid_to_pid(int cpupid) 843 { 844 return -1; 845 } 846 847 static inline int cpupid_to_cpu(int cpupid) 848 { 849 return -1; 850 } 851 852 static inline int cpu_pid_to_cpupid(int nid, int pid) 853 { 854 return -1; 855 } 856 857 static inline bool cpupid_pid_unset(int cpupid) 858 { 859 return 1; 860 } 861 862 static inline void page_cpupid_reset_last(struct page *page) 863 { 864 } 865 866 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 867 { 868 return false; 869 } 870 #endif /* CONFIG_NUMA_BALANCING */ 871 872 static inline struct zone *page_zone(const struct page *page) 873 { 874 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 875 } 876 877 #ifdef SECTION_IN_PAGE_FLAGS 878 static inline void set_page_section(struct page *page, unsigned long section) 879 { 880 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 881 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 882 } 883 884 static inline unsigned long page_to_section(const struct page *page) 885 { 886 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 887 } 888 #endif 889 890 static inline void set_page_zone(struct page *page, enum zone_type zone) 891 { 892 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 893 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 894 } 895 896 static inline void set_page_node(struct page *page, unsigned long node) 897 { 898 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 899 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 900 } 901 902 static inline void set_page_links(struct page *page, enum zone_type zone, 903 unsigned long node, unsigned long pfn) 904 { 905 set_page_zone(page, zone); 906 set_page_node(page, node); 907 #ifdef SECTION_IN_PAGE_FLAGS 908 set_page_section(page, pfn_to_section_nr(pfn)); 909 #endif 910 } 911 912 #ifdef CONFIG_MEMCG 913 static inline struct mem_cgroup *page_memcg(struct page *page) 914 { 915 return page->mem_cgroup; 916 } 917 918 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 919 { 920 page->mem_cgroup = memcg; 921 } 922 #else 923 static inline struct mem_cgroup *page_memcg(struct page *page) 924 { 925 return NULL; 926 } 927 928 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 929 { 930 } 931 #endif 932 933 /* 934 * Some inline functions in vmstat.h depend on page_zone() 935 */ 936 #include <linux/vmstat.h> 937 938 static __always_inline void *lowmem_page_address(const struct page *page) 939 { 940 return __va(PFN_PHYS(page_to_pfn(page))); 941 } 942 943 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 944 #define HASHED_PAGE_VIRTUAL 945 #endif 946 947 #if defined(WANT_PAGE_VIRTUAL) 948 static inline void *page_address(const struct page *page) 949 { 950 return page->virtual; 951 } 952 static inline void set_page_address(struct page *page, void *address) 953 { 954 page->virtual = address; 955 } 956 #define page_address_init() do { } while(0) 957 #endif 958 959 #if defined(HASHED_PAGE_VIRTUAL) 960 void *page_address(const struct page *page); 961 void set_page_address(struct page *page, void *virtual); 962 void page_address_init(void); 963 #endif 964 965 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 966 #define page_address(page) lowmem_page_address(page) 967 #define set_page_address(page, address) do { } while(0) 968 #define page_address_init() do { } while(0) 969 #endif 970 971 extern void *page_rmapping(struct page *page); 972 extern struct anon_vma *page_anon_vma(struct page *page); 973 extern struct address_space *page_mapping(struct page *page); 974 975 extern struct address_space *__page_file_mapping(struct page *); 976 977 static inline 978 struct address_space *page_file_mapping(struct page *page) 979 { 980 if (unlikely(PageSwapCache(page))) 981 return __page_file_mapping(page); 982 983 return page->mapping; 984 } 985 986 /* 987 * Return the pagecache index of the passed page. Regular pagecache pages 988 * use ->index whereas swapcache pages use ->private 989 */ 990 static inline pgoff_t page_index(struct page *page) 991 { 992 if (unlikely(PageSwapCache(page))) 993 return page_private(page); 994 return page->index; 995 } 996 997 extern pgoff_t __page_file_index(struct page *page); 998 999 /* 1000 * Return the file index of the page. Regular pagecache pages use ->index 1001 * whereas swapcache pages use swp_offset(->private) 1002 */ 1003 static inline pgoff_t page_file_index(struct page *page) 1004 { 1005 if (unlikely(PageSwapCache(page))) 1006 return __page_file_index(page); 1007 1008 return page->index; 1009 } 1010 1011 /* 1012 * Return true if this page is mapped into pagetables. 1013 */ 1014 static inline int page_mapped(struct page *page) 1015 { 1016 return atomic_read(&(page)->_mapcount) >= 0; 1017 } 1018 1019 /* 1020 * Return true only if the page has been allocated with 1021 * ALLOC_NO_WATERMARKS and the low watermark was not 1022 * met implying that the system is under some pressure. 1023 */ 1024 static inline bool page_is_pfmemalloc(struct page *page) 1025 { 1026 /* 1027 * Page index cannot be this large so this must be 1028 * a pfmemalloc page. 1029 */ 1030 return page->index == -1UL; 1031 } 1032 1033 /* 1034 * Only to be called by the page allocator on a freshly allocated 1035 * page. 1036 */ 1037 static inline void set_page_pfmemalloc(struct page *page) 1038 { 1039 page->index = -1UL; 1040 } 1041 1042 static inline void clear_page_pfmemalloc(struct page *page) 1043 { 1044 page->index = 0; 1045 } 1046 1047 /* 1048 * Different kinds of faults, as returned by handle_mm_fault(). 1049 * Used to decide whether a process gets delivered SIGBUS or 1050 * just gets major/minor fault counters bumped up. 1051 */ 1052 1053 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1054 1055 #define VM_FAULT_OOM 0x0001 1056 #define VM_FAULT_SIGBUS 0x0002 1057 #define VM_FAULT_MAJOR 0x0004 1058 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1059 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1060 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1061 #define VM_FAULT_SIGSEGV 0x0040 1062 1063 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1064 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1065 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1066 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1067 1068 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1069 1070 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1071 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1072 VM_FAULT_FALLBACK) 1073 1074 /* Encode hstate index for a hwpoisoned large page */ 1075 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1076 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1077 1078 /* 1079 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1080 */ 1081 extern void pagefault_out_of_memory(void); 1082 1083 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1084 1085 /* 1086 * Flags passed to show_mem() and show_free_areas() to suppress output in 1087 * various contexts. 1088 */ 1089 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1090 1091 extern void show_free_areas(unsigned int flags); 1092 extern bool skip_free_areas_node(unsigned int flags, int nid); 1093 1094 int shmem_zero_setup(struct vm_area_struct *); 1095 #ifdef CONFIG_SHMEM 1096 bool shmem_mapping(struct address_space *mapping); 1097 #else 1098 static inline bool shmem_mapping(struct address_space *mapping) 1099 { 1100 return false; 1101 } 1102 #endif 1103 1104 extern int can_do_mlock(void); 1105 extern int user_shm_lock(size_t, struct user_struct *); 1106 extern void user_shm_unlock(size_t, struct user_struct *); 1107 1108 /* 1109 * Parameter block passed down to zap_pte_range in exceptional cases. 1110 */ 1111 struct zap_details { 1112 struct address_space *check_mapping; /* Check page->mapping if set */ 1113 pgoff_t first_index; /* Lowest page->index to unmap */ 1114 pgoff_t last_index; /* Highest page->index to unmap */ 1115 }; 1116 1117 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1118 pte_t pte); 1119 1120 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1121 unsigned long size); 1122 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1123 unsigned long size, struct zap_details *); 1124 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1125 unsigned long start, unsigned long end); 1126 1127 /** 1128 * mm_walk - callbacks for walk_page_range 1129 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1130 * this handler is required to be able to handle 1131 * pmd_trans_huge() pmds. They may simply choose to 1132 * split_huge_page() instead of handling it explicitly. 1133 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1134 * @pte_hole: if set, called for each hole at all levels 1135 * @hugetlb_entry: if set, called for each hugetlb entry 1136 * @test_walk: caller specific callback function to determine whether 1137 * we walk over the current vma or not. A positive returned 1138 * value means "do page table walk over the current vma," 1139 * and a negative one means "abort current page table walk 1140 * right now." 0 means "skip the current vma." 1141 * @mm: mm_struct representing the target process of page table walk 1142 * @vma: vma currently walked (NULL if walking outside vmas) 1143 * @private: private data for callbacks' usage 1144 * 1145 * (see the comment on walk_page_range() for more details) 1146 */ 1147 struct mm_walk { 1148 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1149 unsigned long next, struct mm_walk *walk); 1150 int (*pte_entry)(pte_t *pte, unsigned long addr, 1151 unsigned long next, struct mm_walk *walk); 1152 int (*pte_hole)(unsigned long addr, unsigned long next, 1153 struct mm_walk *walk); 1154 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1155 unsigned long addr, unsigned long next, 1156 struct mm_walk *walk); 1157 int (*test_walk)(unsigned long addr, unsigned long next, 1158 struct mm_walk *walk); 1159 struct mm_struct *mm; 1160 struct vm_area_struct *vma; 1161 void *private; 1162 }; 1163 1164 int walk_page_range(unsigned long addr, unsigned long end, 1165 struct mm_walk *walk); 1166 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1167 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1168 unsigned long end, unsigned long floor, unsigned long ceiling); 1169 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1170 struct vm_area_struct *vma); 1171 void unmap_mapping_range(struct address_space *mapping, 1172 loff_t const holebegin, loff_t const holelen, int even_cows); 1173 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1174 unsigned long *pfn); 1175 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1176 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1177 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1178 void *buf, int len, int write); 1179 1180 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1181 loff_t const holebegin, loff_t const holelen) 1182 { 1183 unmap_mapping_range(mapping, holebegin, holelen, 0); 1184 } 1185 1186 extern void truncate_pagecache(struct inode *inode, loff_t new); 1187 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1188 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1189 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1190 int truncate_inode_page(struct address_space *mapping, struct page *page); 1191 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1192 int invalidate_inode_page(struct page *page); 1193 1194 #ifdef CONFIG_MMU 1195 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1196 unsigned long address, unsigned int flags); 1197 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1198 unsigned long address, unsigned int fault_flags); 1199 #else 1200 static inline int handle_mm_fault(struct mm_struct *mm, 1201 struct vm_area_struct *vma, unsigned long address, 1202 unsigned int flags) 1203 { 1204 /* should never happen if there's no MMU */ 1205 BUG(); 1206 return VM_FAULT_SIGBUS; 1207 } 1208 static inline int fixup_user_fault(struct task_struct *tsk, 1209 struct mm_struct *mm, unsigned long address, 1210 unsigned int fault_flags) 1211 { 1212 /* should never happen if there's no MMU */ 1213 BUG(); 1214 return -EFAULT; 1215 } 1216 #endif 1217 1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1220 void *buf, int len, int write); 1221 1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1223 unsigned long start, unsigned long nr_pages, 1224 unsigned int foll_flags, struct page **pages, 1225 struct vm_area_struct **vmas, int *nonblocking); 1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1227 unsigned long start, unsigned long nr_pages, 1228 int write, int force, struct page **pages, 1229 struct vm_area_struct **vmas); 1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1231 unsigned long start, unsigned long nr_pages, 1232 int write, int force, struct page **pages, 1233 int *locked); 1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1235 unsigned long start, unsigned long nr_pages, 1236 int write, int force, struct page **pages, 1237 unsigned int gup_flags); 1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1239 unsigned long start, unsigned long nr_pages, 1240 int write, int force, struct page **pages); 1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1242 struct page **pages); 1243 1244 /* Container for pinned pfns / pages */ 1245 struct frame_vector { 1246 unsigned int nr_allocated; /* Number of frames we have space for */ 1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1248 bool got_ref; /* Did we pin pages by getting page ref? */ 1249 bool is_pfns; /* Does array contain pages or pfns? */ 1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1251 * pfns_vector_pages() or pfns_vector_pfns() 1252 * for access */ 1253 }; 1254 1255 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1256 void frame_vector_destroy(struct frame_vector *vec); 1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1258 bool write, bool force, struct frame_vector *vec); 1259 void put_vaddr_frames(struct frame_vector *vec); 1260 int frame_vector_to_pages(struct frame_vector *vec); 1261 void frame_vector_to_pfns(struct frame_vector *vec); 1262 1263 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1264 { 1265 return vec->nr_frames; 1266 } 1267 1268 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1269 { 1270 if (vec->is_pfns) { 1271 int err = frame_vector_to_pages(vec); 1272 1273 if (err) 1274 return ERR_PTR(err); 1275 } 1276 return (struct page **)(vec->ptrs); 1277 } 1278 1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1280 { 1281 if (!vec->is_pfns) 1282 frame_vector_to_pfns(vec); 1283 return (unsigned long *)(vec->ptrs); 1284 } 1285 1286 struct kvec; 1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1288 struct page **pages); 1289 int get_kernel_page(unsigned long start, int write, struct page **pages); 1290 struct page *get_dump_page(unsigned long addr); 1291 1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1293 extern void do_invalidatepage(struct page *page, unsigned int offset, 1294 unsigned int length); 1295 1296 int __set_page_dirty_nobuffers(struct page *page); 1297 int __set_page_dirty_no_writeback(struct page *page); 1298 int redirty_page_for_writepage(struct writeback_control *wbc, 1299 struct page *page); 1300 void account_page_dirtied(struct page *page, struct address_space *mapping, 1301 struct mem_cgroup *memcg); 1302 void account_page_cleaned(struct page *page, struct address_space *mapping, 1303 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1304 int set_page_dirty(struct page *page); 1305 int set_page_dirty_lock(struct page *page); 1306 void cancel_dirty_page(struct page *page); 1307 int clear_page_dirty_for_io(struct page *page); 1308 1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1310 1311 /* Is the vma a continuation of the stack vma above it? */ 1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1313 { 1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1315 } 1316 1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1318 { 1319 return !vma->vm_ops; 1320 } 1321 1322 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1323 unsigned long addr) 1324 { 1325 return (vma->vm_flags & VM_GROWSDOWN) && 1326 (vma->vm_start == addr) && 1327 !vma_growsdown(vma->vm_prev, addr); 1328 } 1329 1330 /* Is the vma a continuation of the stack vma below it? */ 1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1332 { 1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1334 } 1335 1336 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1337 unsigned long addr) 1338 { 1339 return (vma->vm_flags & VM_GROWSUP) && 1340 (vma->vm_end == addr) && 1341 !vma_growsup(vma->vm_next, addr); 1342 } 1343 1344 extern struct task_struct *task_of_stack(struct task_struct *task, 1345 struct vm_area_struct *vma, bool in_group); 1346 1347 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1348 unsigned long old_addr, struct vm_area_struct *new_vma, 1349 unsigned long new_addr, unsigned long len, 1350 bool need_rmap_locks); 1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long end, pgprot_t newprot, 1353 int dirty_accountable, int prot_numa); 1354 extern int mprotect_fixup(struct vm_area_struct *vma, 1355 struct vm_area_struct **pprev, unsigned long start, 1356 unsigned long end, unsigned long newflags); 1357 1358 /* 1359 * doesn't attempt to fault and will return short. 1360 */ 1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1362 struct page **pages); 1363 /* 1364 * per-process(per-mm_struct) statistics. 1365 */ 1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1367 { 1368 long val = atomic_long_read(&mm->rss_stat.count[member]); 1369 1370 #ifdef SPLIT_RSS_COUNTING 1371 /* 1372 * counter is updated in asynchronous manner and may go to minus. 1373 * But it's never be expected number for users. 1374 */ 1375 if (val < 0) 1376 val = 0; 1377 #endif 1378 return (unsigned long)val; 1379 } 1380 1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1382 { 1383 atomic_long_add(value, &mm->rss_stat.count[member]); 1384 } 1385 1386 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1387 { 1388 atomic_long_inc(&mm->rss_stat.count[member]); 1389 } 1390 1391 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1392 { 1393 atomic_long_dec(&mm->rss_stat.count[member]); 1394 } 1395 1396 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1397 { 1398 return get_mm_counter(mm, MM_FILEPAGES) + 1399 get_mm_counter(mm, MM_ANONPAGES); 1400 } 1401 1402 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1403 { 1404 return max(mm->hiwater_rss, get_mm_rss(mm)); 1405 } 1406 1407 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1408 { 1409 return max(mm->hiwater_vm, mm->total_vm); 1410 } 1411 1412 static inline void update_hiwater_rss(struct mm_struct *mm) 1413 { 1414 unsigned long _rss = get_mm_rss(mm); 1415 1416 if ((mm)->hiwater_rss < _rss) 1417 (mm)->hiwater_rss = _rss; 1418 } 1419 1420 static inline void update_hiwater_vm(struct mm_struct *mm) 1421 { 1422 if (mm->hiwater_vm < mm->total_vm) 1423 mm->hiwater_vm = mm->total_vm; 1424 } 1425 1426 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1427 { 1428 mm->hiwater_rss = get_mm_rss(mm); 1429 } 1430 1431 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1432 struct mm_struct *mm) 1433 { 1434 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1435 1436 if (*maxrss < hiwater_rss) 1437 *maxrss = hiwater_rss; 1438 } 1439 1440 #if defined(SPLIT_RSS_COUNTING) 1441 void sync_mm_rss(struct mm_struct *mm); 1442 #else 1443 static inline void sync_mm_rss(struct mm_struct *mm) 1444 { 1445 } 1446 #endif 1447 1448 int vma_wants_writenotify(struct vm_area_struct *vma); 1449 1450 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1451 spinlock_t **ptl); 1452 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1453 spinlock_t **ptl) 1454 { 1455 pte_t *ptep; 1456 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1457 return ptep; 1458 } 1459 1460 #ifdef __PAGETABLE_PUD_FOLDED 1461 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1462 unsigned long address) 1463 { 1464 return 0; 1465 } 1466 #else 1467 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1468 #endif 1469 1470 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1471 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1472 unsigned long address) 1473 { 1474 return 0; 1475 } 1476 1477 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1478 1479 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1480 { 1481 return 0; 1482 } 1483 1484 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1485 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1486 1487 #else 1488 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1489 1490 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1491 { 1492 atomic_long_set(&mm->nr_pmds, 0); 1493 } 1494 1495 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1496 { 1497 return atomic_long_read(&mm->nr_pmds); 1498 } 1499 1500 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1501 { 1502 atomic_long_inc(&mm->nr_pmds); 1503 } 1504 1505 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1506 { 1507 atomic_long_dec(&mm->nr_pmds); 1508 } 1509 #endif 1510 1511 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1512 pmd_t *pmd, unsigned long address); 1513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1514 1515 /* 1516 * The following ifdef needed to get the 4level-fixup.h header to work. 1517 * Remove it when 4level-fixup.h has been removed. 1518 */ 1519 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1520 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1521 { 1522 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1523 NULL: pud_offset(pgd, address); 1524 } 1525 1526 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1527 { 1528 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1529 NULL: pmd_offset(pud, address); 1530 } 1531 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1532 1533 #if USE_SPLIT_PTE_PTLOCKS 1534 #if ALLOC_SPLIT_PTLOCKS 1535 void __init ptlock_cache_init(void); 1536 extern bool ptlock_alloc(struct page *page); 1537 extern void ptlock_free(struct page *page); 1538 1539 static inline spinlock_t *ptlock_ptr(struct page *page) 1540 { 1541 return page->ptl; 1542 } 1543 #else /* ALLOC_SPLIT_PTLOCKS */ 1544 static inline void ptlock_cache_init(void) 1545 { 1546 } 1547 1548 static inline bool ptlock_alloc(struct page *page) 1549 { 1550 return true; 1551 } 1552 1553 static inline void ptlock_free(struct page *page) 1554 { 1555 } 1556 1557 static inline spinlock_t *ptlock_ptr(struct page *page) 1558 { 1559 return &page->ptl; 1560 } 1561 #endif /* ALLOC_SPLIT_PTLOCKS */ 1562 1563 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1564 { 1565 return ptlock_ptr(pmd_page(*pmd)); 1566 } 1567 1568 static inline bool ptlock_init(struct page *page) 1569 { 1570 /* 1571 * prep_new_page() initialize page->private (and therefore page->ptl) 1572 * with 0. Make sure nobody took it in use in between. 1573 * 1574 * It can happen if arch try to use slab for page table allocation: 1575 * slab code uses page->slab_cache and page->first_page (for tail 1576 * pages), which share storage with page->ptl. 1577 */ 1578 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1579 if (!ptlock_alloc(page)) 1580 return false; 1581 spin_lock_init(ptlock_ptr(page)); 1582 return true; 1583 } 1584 1585 /* Reset page->mapping so free_pages_check won't complain. */ 1586 static inline void pte_lock_deinit(struct page *page) 1587 { 1588 page->mapping = NULL; 1589 ptlock_free(page); 1590 } 1591 1592 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1593 /* 1594 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1595 */ 1596 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1597 { 1598 return &mm->page_table_lock; 1599 } 1600 static inline void ptlock_cache_init(void) {} 1601 static inline bool ptlock_init(struct page *page) { return true; } 1602 static inline void pte_lock_deinit(struct page *page) {} 1603 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1604 1605 static inline void pgtable_init(void) 1606 { 1607 ptlock_cache_init(); 1608 pgtable_cache_init(); 1609 } 1610 1611 static inline bool pgtable_page_ctor(struct page *page) 1612 { 1613 if (!ptlock_init(page)) 1614 return false; 1615 inc_zone_page_state(page, NR_PAGETABLE); 1616 return true; 1617 } 1618 1619 static inline void pgtable_page_dtor(struct page *page) 1620 { 1621 pte_lock_deinit(page); 1622 dec_zone_page_state(page, NR_PAGETABLE); 1623 } 1624 1625 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1626 ({ \ 1627 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1628 pte_t *__pte = pte_offset_map(pmd, address); \ 1629 *(ptlp) = __ptl; \ 1630 spin_lock(__ptl); \ 1631 __pte; \ 1632 }) 1633 1634 #define pte_unmap_unlock(pte, ptl) do { \ 1635 spin_unlock(ptl); \ 1636 pte_unmap(pte); \ 1637 } while (0) 1638 1639 #define pte_alloc_map(mm, vma, pmd, address) \ 1640 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1641 pmd, address))? \ 1642 NULL: pte_offset_map(pmd, address)) 1643 1644 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1645 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1646 pmd, address))? \ 1647 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1648 1649 #define pte_alloc_kernel(pmd, address) \ 1650 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1651 NULL: pte_offset_kernel(pmd, address)) 1652 1653 #if USE_SPLIT_PMD_PTLOCKS 1654 1655 static struct page *pmd_to_page(pmd_t *pmd) 1656 { 1657 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1658 return virt_to_page((void *)((unsigned long) pmd & mask)); 1659 } 1660 1661 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1662 { 1663 return ptlock_ptr(pmd_to_page(pmd)); 1664 } 1665 1666 static inline bool pgtable_pmd_page_ctor(struct page *page) 1667 { 1668 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1669 page->pmd_huge_pte = NULL; 1670 #endif 1671 return ptlock_init(page); 1672 } 1673 1674 static inline void pgtable_pmd_page_dtor(struct page *page) 1675 { 1676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1677 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1678 #endif 1679 ptlock_free(page); 1680 } 1681 1682 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1683 1684 #else 1685 1686 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1687 { 1688 return &mm->page_table_lock; 1689 } 1690 1691 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1692 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1693 1694 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1695 1696 #endif 1697 1698 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1699 { 1700 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1701 spin_lock(ptl); 1702 return ptl; 1703 } 1704 1705 extern void free_area_init(unsigned long * zones_size); 1706 extern void free_area_init_node(int nid, unsigned long * zones_size, 1707 unsigned long zone_start_pfn, unsigned long *zholes_size); 1708 extern void free_initmem(void); 1709 1710 /* 1711 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1712 * into the buddy system. The freed pages will be poisoned with pattern 1713 * "poison" if it's within range [0, UCHAR_MAX]. 1714 * Return pages freed into the buddy system. 1715 */ 1716 extern unsigned long free_reserved_area(void *start, void *end, 1717 int poison, char *s); 1718 1719 #ifdef CONFIG_HIGHMEM 1720 /* 1721 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1722 * and totalram_pages. 1723 */ 1724 extern void free_highmem_page(struct page *page); 1725 #endif 1726 1727 extern void adjust_managed_page_count(struct page *page, long count); 1728 extern void mem_init_print_info(const char *str); 1729 1730 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1731 1732 /* Free the reserved page into the buddy system, so it gets managed. */ 1733 static inline void __free_reserved_page(struct page *page) 1734 { 1735 ClearPageReserved(page); 1736 init_page_count(page); 1737 __free_page(page); 1738 } 1739 1740 static inline void free_reserved_page(struct page *page) 1741 { 1742 __free_reserved_page(page); 1743 adjust_managed_page_count(page, 1); 1744 } 1745 1746 static inline void mark_page_reserved(struct page *page) 1747 { 1748 SetPageReserved(page); 1749 adjust_managed_page_count(page, -1); 1750 } 1751 1752 /* 1753 * Default method to free all the __init memory into the buddy system. 1754 * The freed pages will be poisoned with pattern "poison" if it's within 1755 * range [0, UCHAR_MAX]. 1756 * Return pages freed into the buddy system. 1757 */ 1758 static inline unsigned long free_initmem_default(int poison) 1759 { 1760 extern char __init_begin[], __init_end[]; 1761 1762 return free_reserved_area(&__init_begin, &__init_end, 1763 poison, "unused kernel"); 1764 } 1765 1766 static inline unsigned long get_num_physpages(void) 1767 { 1768 int nid; 1769 unsigned long phys_pages = 0; 1770 1771 for_each_online_node(nid) 1772 phys_pages += node_present_pages(nid); 1773 1774 return phys_pages; 1775 } 1776 1777 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1778 /* 1779 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1780 * zones, allocate the backing mem_map and account for memory holes in a more 1781 * architecture independent manner. This is a substitute for creating the 1782 * zone_sizes[] and zholes_size[] arrays and passing them to 1783 * free_area_init_node() 1784 * 1785 * An architecture is expected to register range of page frames backed by 1786 * physical memory with memblock_add[_node]() before calling 1787 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1788 * usage, an architecture is expected to do something like 1789 * 1790 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1791 * max_highmem_pfn}; 1792 * for_each_valid_physical_page_range() 1793 * memblock_add_node(base, size, nid) 1794 * free_area_init_nodes(max_zone_pfns); 1795 * 1796 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1797 * registered physical page range. Similarly 1798 * sparse_memory_present_with_active_regions() calls memory_present() for 1799 * each range when SPARSEMEM is enabled. 1800 * 1801 * See mm/page_alloc.c for more information on each function exposed by 1802 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1803 */ 1804 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1805 unsigned long node_map_pfn_alignment(void); 1806 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1807 unsigned long end_pfn); 1808 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1809 unsigned long end_pfn); 1810 extern void get_pfn_range_for_nid(unsigned int nid, 1811 unsigned long *start_pfn, unsigned long *end_pfn); 1812 extern unsigned long find_min_pfn_with_active_regions(void); 1813 extern void free_bootmem_with_active_regions(int nid, 1814 unsigned long max_low_pfn); 1815 extern void sparse_memory_present_with_active_regions(int nid); 1816 1817 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1818 1819 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1820 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1821 static inline int __early_pfn_to_nid(unsigned long pfn, 1822 struct mminit_pfnnid_cache *state) 1823 { 1824 return 0; 1825 } 1826 #else 1827 /* please see mm/page_alloc.c */ 1828 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1829 /* there is a per-arch backend function. */ 1830 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1831 struct mminit_pfnnid_cache *state); 1832 #endif 1833 1834 extern void set_dma_reserve(unsigned long new_dma_reserve); 1835 extern void memmap_init_zone(unsigned long, int, unsigned long, 1836 unsigned long, enum memmap_context); 1837 extern void setup_per_zone_wmarks(void); 1838 extern int __meminit init_per_zone_wmark_min(void); 1839 extern void mem_init(void); 1840 extern void __init mmap_init(void); 1841 extern void show_mem(unsigned int flags); 1842 extern void si_meminfo(struct sysinfo * val); 1843 extern void si_meminfo_node(struct sysinfo *val, int nid); 1844 1845 extern __printf(3, 4) 1846 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1847 1848 extern void setup_per_cpu_pageset(void); 1849 1850 extern void zone_pcp_update(struct zone *zone); 1851 extern void zone_pcp_reset(struct zone *zone); 1852 1853 /* page_alloc.c */ 1854 extern int min_free_kbytes; 1855 1856 /* nommu.c */ 1857 extern atomic_long_t mmap_pages_allocated; 1858 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1859 1860 /* interval_tree.c */ 1861 void vma_interval_tree_insert(struct vm_area_struct *node, 1862 struct rb_root *root); 1863 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1864 struct vm_area_struct *prev, 1865 struct rb_root *root); 1866 void vma_interval_tree_remove(struct vm_area_struct *node, 1867 struct rb_root *root); 1868 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1869 unsigned long start, unsigned long last); 1870 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1871 unsigned long start, unsigned long last); 1872 1873 #define vma_interval_tree_foreach(vma, root, start, last) \ 1874 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1875 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1876 1877 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1878 struct rb_root *root); 1879 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1880 struct rb_root *root); 1881 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1882 struct rb_root *root, unsigned long start, unsigned long last); 1883 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1884 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1885 #ifdef CONFIG_DEBUG_VM_RB 1886 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1887 #endif 1888 1889 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1890 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1891 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1892 1893 /* mmap.c */ 1894 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1895 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1896 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1897 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1898 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1899 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1900 struct mempolicy *, struct vm_userfaultfd_ctx); 1901 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1902 extern int split_vma(struct mm_struct *, 1903 struct vm_area_struct *, unsigned long addr, int new_below); 1904 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1905 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1906 struct rb_node **, struct rb_node *); 1907 extern void unlink_file_vma(struct vm_area_struct *); 1908 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1909 unsigned long addr, unsigned long len, pgoff_t pgoff, 1910 bool *need_rmap_locks); 1911 extern void exit_mmap(struct mm_struct *); 1912 1913 static inline int check_data_rlimit(unsigned long rlim, 1914 unsigned long new, 1915 unsigned long start, 1916 unsigned long end_data, 1917 unsigned long start_data) 1918 { 1919 if (rlim < RLIM_INFINITY) { 1920 if (((new - start) + (end_data - start_data)) > rlim) 1921 return -ENOSPC; 1922 } 1923 1924 return 0; 1925 } 1926 1927 extern int mm_take_all_locks(struct mm_struct *mm); 1928 extern void mm_drop_all_locks(struct mm_struct *mm); 1929 1930 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1931 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1932 1933 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1934 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1935 unsigned long addr, unsigned long len, 1936 unsigned long flags, 1937 const struct vm_special_mapping *spec); 1938 /* This is an obsolete alternative to _install_special_mapping. */ 1939 extern int install_special_mapping(struct mm_struct *mm, 1940 unsigned long addr, unsigned long len, 1941 unsigned long flags, struct page **pages); 1942 1943 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1944 1945 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1946 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1947 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1948 unsigned long len, unsigned long prot, unsigned long flags, 1949 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1950 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1951 1952 static inline unsigned long 1953 do_mmap_pgoff(struct file *file, unsigned long addr, 1954 unsigned long len, unsigned long prot, unsigned long flags, 1955 unsigned long pgoff, unsigned long *populate) 1956 { 1957 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1958 } 1959 1960 #ifdef CONFIG_MMU 1961 extern int __mm_populate(unsigned long addr, unsigned long len, 1962 int ignore_errors); 1963 static inline void mm_populate(unsigned long addr, unsigned long len) 1964 { 1965 /* Ignore errors */ 1966 (void) __mm_populate(addr, len, 1); 1967 } 1968 #else 1969 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1970 #endif 1971 1972 /* These take the mm semaphore themselves */ 1973 extern unsigned long vm_brk(unsigned long, unsigned long); 1974 extern int vm_munmap(unsigned long, size_t); 1975 extern unsigned long vm_mmap(struct file *, unsigned long, 1976 unsigned long, unsigned long, 1977 unsigned long, unsigned long); 1978 1979 struct vm_unmapped_area_info { 1980 #define VM_UNMAPPED_AREA_TOPDOWN 1 1981 unsigned long flags; 1982 unsigned long length; 1983 unsigned long low_limit; 1984 unsigned long high_limit; 1985 unsigned long align_mask; 1986 unsigned long align_offset; 1987 }; 1988 1989 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1990 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1991 1992 /* 1993 * Search for an unmapped address range. 1994 * 1995 * We are looking for a range that: 1996 * - does not intersect with any VMA; 1997 * - is contained within the [low_limit, high_limit) interval; 1998 * - is at least the desired size. 1999 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2000 */ 2001 static inline unsigned long 2002 vm_unmapped_area(struct vm_unmapped_area_info *info) 2003 { 2004 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2005 return unmapped_area_topdown(info); 2006 else 2007 return unmapped_area(info); 2008 } 2009 2010 /* truncate.c */ 2011 extern void truncate_inode_pages(struct address_space *, loff_t); 2012 extern void truncate_inode_pages_range(struct address_space *, 2013 loff_t lstart, loff_t lend); 2014 extern void truncate_inode_pages_final(struct address_space *); 2015 2016 /* generic vm_area_ops exported for stackable file systems */ 2017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2018 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2019 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2020 2021 /* mm/page-writeback.c */ 2022 int write_one_page(struct page *page, int wait); 2023 void task_dirty_inc(struct task_struct *tsk); 2024 2025 /* readahead.c */ 2026 #define VM_MAX_READAHEAD 128 /* kbytes */ 2027 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2028 2029 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2030 pgoff_t offset, unsigned long nr_to_read); 2031 2032 void page_cache_sync_readahead(struct address_space *mapping, 2033 struct file_ra_state *ra, 2034 struct file *filp, 2035 pgoff_t offset, 2036 unsigned long size); 2037 2038 void page_cache_async_readahead(struct address_space *mapping, 2039 struct file_ra_state *ra, 2040 struct file *filp, 2041 struct page *pg, 2042 pgoff_t offset, 2043 unsigned long size); 2044 2045 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2046 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2047 2048 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2049 extern int expand_downwards(struct vm_area_struct *vma, 2050 unsigned long address); 2051 #if VM_GROWSUP 2052 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2053 #else 2054 #define expand_upwards(vma, address) (0) 2055 #endif 2056 2057 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2058 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2059 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2060 struct vm_area_struct **pprev); 2061 2062 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2063 NULL if none. Assume start_addr < end_addr. */ 2064 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2065 { 2066 struct vm_area_struct * vma = find_vma(mm,start_addr); 2067 2068 if (vma && end_addr <= vma->vm_start) 2069 vma = NULL; 2070 return vma; 2071 } 2072 2073 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2074 { 2075 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2076 } 2077 2078 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2079 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2080 unsigned long vm_start, unsigned long vm_end) 2081 { 2082 struct vm_area_struct *vma = find_vma(mm, vm_start); 2083 2084 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2085 vma = NULL; 2086 2087 return vma; 2088 } 2089 2090 #ifdef CONFIG_MMU 2091 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2092 void vma_set_page_prot(struct vm_area_struct *vma); 2093 #else 2094 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2095 { 2096 return __pgprot(0); 2097 } 2098 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2099 { 2100 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2101 } 2102 #endif 2103 2104 #ifdef CONFIG_NUMA_BALANCING 2105 unsigned long change_prot_numa(struct vm_area_struct *vma, 2106 unsigned long start, unsigned long end); 2107 #endif 2108 2109 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2110 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2111 unsigned long pfn, unsigned long size, pgprot_t); 2112 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2113 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2114 unsigned long pfn); 2115 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2116 unsigned long pfn); 2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2118 2119 2120 struct page *follow_page_mask(struct vm_area_struct *vma, 2121 unsigned long address, unsigned int foll_flags, 2122 unsigned int *page_mask); 2123 2124 static inline struct page *follow_page(struct vm_area_struct *vma, 2125 unsigned long address, unsigned int foll_flags) 2126 { 2127 unsigned int unused_page_mask; 2128 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2129 } 2130 2131 #define FOLL_WRITE 0x01 /* check pte is writable */ 2132 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2133 #define FOLL_GET 0x04 /* do get_page on page */ 2134 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2135 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2136 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2137 * and return without waiting upon it */ 2138 #define FOLL_POPULATE 0x40 /* fault in page */ 2139 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2140 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2141 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2142 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2143 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2144 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2145 2146 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2147 void *data); 2148 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2149 unsigned long size, pte_fn_t fn, void *data); 2150 2151 #ifdef CONFIG_PROC_FS 2152 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2153 #else 2154 static inline void vm_stat_account(struct mm_struct *mm, 2155 unsigned long flags, struct file *file, long pages) 2156 { 2157 mm->total_vm += pages; 2158 } 2159 #endif /* CONFIG_PROC_FS */ 2160 2161 #ifdef CONFIG_DEBUG_PAGEALLOC 2162 extern bool _debug_pagealloc_enabled; 2163 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2164 2165 static inline bool debug_pagealloc_enabled(void) 2166 { 2167 return _debug_pagealloc_enabled; 2168 } 2169 2170 static inline void 2171 kernel_map_pages(struct page *page, int numpages, int enable) 2172 { 2173 if (!debug_pagealloc_enabled()) 2174 return; 2175 2176 __kernel_map_pages(page, numpages, enable); 2177 } 2178 #ifdef CONFIG_HIBERNATION 2179 extern bool kernel_page_present(struct page *page); 2180 #endif /* CONFIG_HIBERNATION */ 2181 #else 2182 static inline void 2183 kernel_map_pages(struct page *page, int numpages, int enable) {} 2184 #ifdef CONFIG_HIBERNATION 2185 static inline bool kernel_page_present(struct page *page) { return true; } 2186 #endif /* CONFIG_HIBERNATION */ 2187 #endif 2188 2189 #ifdef __HAVE_ARCH_GATE_AREA 2190 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2191 extern int in_gate_area_no_mm(unsigned long addr); 2192 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2193 #else 2194 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2195 { 2196 return NULL; 2197 } 2198 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2199 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2200 { 2201 return 0; 2202 } 2203 #endif /* __HAVE_ARCH_GATE_AREA */ 2204 2205 #ifdef CONFIG_SYSCTL 2206 extern int sysctl_drop_caches; 2207 int drop_caches_sysctl_handler(struct ctl_table *, int, 2208 void __user *, size_t *, loff_t *); 2209 #endif 2210 2211 void drop_slab(void); 2212 void drop_slab_node(int nid); 2213 2214 #ifndef CONFIG_MMU 2215 #define randomize_va_space 0 2216 #else 2217 extern int randomize_va_space; 2218 #endif 2219 2220 const char * arch_vma_name(struct vm_area_struct *vma); 2221 void print_vma_addr(char *prefix, unsigned long rip); 2222 2223 void sparse_mem_maps_populate_node(struct page **map_map, 2224 unsigned long pnum_begin, 2225 unsigned long pnum_end, 2226 unsigned long map_count, 2227 int nodeid); 2228 2229 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2230 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2231 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2232 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2233 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2234 void *vmemmap_alloc_block(unsigned long size, int node); 2235 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2236 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2237 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2238 int node); 2239 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2240 void vmemmap_populate_print_last(void); 2241 #ifdef CONFIG_MEMORY_HOTPLUG 2242 void vmemmap_free(unsigned long start, unsigned long end); 2243 #endif 2244 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2245 unsigned long size); 2246 2247 enum mf_flags { 2248 MF_COUNT_INCREASED = 1 << 0, 2249 MF_ACTION_REQUIRED = 1 << 1, 2250 MF_MUST_KILL = 1 << 2, 2251 MF_SOFT_OFFLINE = 1 << 3, 2252 }; 2253 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2254 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2255 extern int unpoison_memory(unsigned long pfn); 2256 extern int get_hwpoison_page(struct page *page); 2257 extern void put_hwpoison_page(struct page *page); 2258 extern int sysctl_memory_failure_early_kill; 2259 extern int sysctl_memory_failure_recovery; 2260 extern void shake_page(struct page *p, int access); 2261 extern atomic_long_t num_poisoned_pages; 2262 extern int soft_offline_page(struct page *page, int flags); 2263 2264 2265 /* 2266 * Error handlers for various types of pages. 2267 */ 2268 enum mf_result { 2269 MF_IGNORED, /* Error: cannot be handled */ 2270 MF_FAILED, /* Error: handling failed */ 2271 MF_DELAYED, /* Will be handled later */ 2272 MF_RECOVERED, /* Successfully recovered */ 2273 }; 2274 2275 enum mf_action_page_type { 2276 MF_MSG_KERNEL, 2277 MF_MSG_KERNEL_HIGH_ORDER, 2278 MF_MSG_SLAB, 2279 MF_MSG_DIFFERENT_COMPOUND, 2280 MF_MSG_POISONED_HUGE, 2281 MF_MSG_HUGE, 2282 MF_MSG_FREE_HUGE, 2283 MF_MSG_UNMAP_FAILED, 2284 MF_MSG_DIRTY_SWAPCACHE, 2285 MF_MSG_CLEAN_SWAPCACHE, 2286 MF_MSG_DIRTY_MLOCKED_LRU, 2287 MF_MSG_CLEAN_MLOCKED_LRU, 2288 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2289 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2290 MF_MSG_DIRTY_LRU, 2291 MF_MSG_CLEAN_LRU, 2292 MF_MSG_TRUNCATED_LRU, 2293 MF_MSG_BUDDY, 2294 MF_MSG_BUDDY_2ND, 2295 MF_MSG_UNKNOWN, 2296 }; 2297 2298 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2299 extern void clear_huge_page(struct page *page, 2300 unsigned long addr, 2301 unsigned int pages_per_huge_page); 2302 extern void copy_user_huge_page(struct page *dst, struct page *src, 2303 unsigned long addr, struct vm_area_struct *vma, 2304 unsigned int pages_per_huge_page); 2305 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2306 2307 extern struct page_ext_operations debug_guardpage_ops; 2308 extern struct page_ext_operations page_poisoning_ops; 2309 2310 #ifdef CONFIG_DEBUG_PAGEALLOC 2311 extern unsigned int _debug_guardpage_minorder; 2312 extern bool _debug_guardpage_enabled; 2313 2314 static inline unsigned int debug_guardpage_minorder(void) 2315 { 2316 return _debug_guardpage_minorder; 2317 } 2318 2319 static inline bool debug_guardpage_enabled(void) 2320 { 2321 return _debug_guardpage_enabled; 2322 } 2323 2324 static inline bool page_is_guard(struct page *page) 2325 { 2326 struct page_ext *page_ext; 2327 2328 if (!debug_guardpage_enabled()) 2329 return false; 2330 2331 page_ext = lookup_page_ext(page); 2332 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2333 } 2334 #else 2335 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2336 static inline bool debug_guardpage_enabled(void) { return false; } 2337 static inline bool page_is_guard(struct page *page) { return false; } 2338 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2339 2340 #if MAX_NUMNODES > 1 2341 void __init setup_nr_node_ids(void); 2342 #else 2343 static inline void setup_nr_node_ids(void) {} 2344 #endif 2345 2346 #endif /* __KERNEL__ */ 2347 #endif /* _LINUX_MM_H */ 2348