1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statments if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180 } 181 #else 182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183 #endif 184 185 /* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201 #define MAPCOUNT_ELF_CORE_MARGIN (5) 202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204 extern int sysctl_max_map_count; 205 206 extern unsigned long sysctl_user_reserve_kbytes; 207 extern unsigned long sysctl_admin_reserve_kbytes; 208 209 extern int sysctl_overcommit_memory; 210 extern int sysctl_overcommit_ratio; 211 extern unsigned long sysctl_overcommit_kbytes; 212 213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 220 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 226 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 227 228 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 229 230 /* 231 * Linux kernel virtual memory manager primitives. 232 * The idea being to have a "virtual" mm in the same way 233 * we have a virtual fs - giving a cleaner interface to the 234 * mm details, and allowing different kinds of memory mappings 235 * (from shared memory to executable loading to arbitrary 236 * mmap() functions). 237 */ 238 239 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 240 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 241 void vm_area_free(struct vm_area_struct *); 242 243 #ifndef CONFIG_MMU 244 extern struct rb_root nommu_region_tree; 245 extern struct rw_semaphore nommu_region_sem; 246 247 extern unsigned int kobjsize(const void *objp); 248 #endif 249 250 /* 251 * vm_flags in vm_area_struct, see mm_types.h. 252 * When changing, update also include/trace/events/mmflags.h 253 */ 254 #define VM_NONE 0x00000000 255 256 #define VM_READ 0x00000001 /* currently active flags */ 257 #define VM_WRITE 0x00000002 258 #define VM_EXEC 0x00000004 259 #define VM_SHARED 0x00000008 260 261 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 262 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 263 #define VM_MAYWRITE 0x00000020 264 #define VM_MAYEXEC 0x00000040 265 #define VM_MAYSHARE 0x00000080 266 267 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 268 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 269 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 270 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 271 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 272 273 #define VM_LOCKED 0x00002000 274 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 275 276 /* Used by sys_madvise() */ 277 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 278 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 279 280 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 281 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 282 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 283 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 284 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 285 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 286 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 287 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 288 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 289 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 290 291 #ifdef CONFIG_MEM_SOFT_DIRTY 292 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 293 #else 294 # define VM_SOFTDIRTY 0 295 #endif 296 297 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 298 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 299 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 300 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 301 302 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 303 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 309 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 310 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 311 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 312 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 313 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 314 315 #ifdef CONFIG_ARCH_HAS_PKEYS 316 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 317 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 318 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 319 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 320 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 321 #ifdef CONFIG_PPC 322 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 323 #else 324 # define VM_PKEY_BIT4 0 325 #endif 326 #endif /* CONFIG_ARCH_HAS_PKEYS */ 327 328 #if defined(CONFIG_X86) 329 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 330 #elif defined(CONFIG_PPC) 331 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 332 #elif defined(CONFIG_PARISC) 333 # define VM_GROWSUP VM_ARCH_1 334 #elif defined(CONFIG_IA64) 335 # define VM_GROWSUP VM_ARCH_1 336 #elif defined(CONFIG_SPARC64) 337 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 338 # define VM_ARCH_CLEAR VM_SPARC_ADI 339 #elif defined(CONFIG_ARM64) 340 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 341 # define VM_ARCH_CLEAR VM_ARM64_BTI 342 #elif !defined(CONFIG_MMU) 343 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 344 #endif 345 346 #if defined(CONFIG_ARM64_MTE) 347 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 348 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 349 #else 350 # define VM_MTE VM_NONE 351 # define VM_MTE_ALLOWED VM_NONE 352 #endif 353 354 #ifndef VM_GROWSUP 355 # define VM_GROWSUP VM_NONE 356 #endif 357 358 /* Bits set in the VMA until the stack is in its final location */ 359 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 360 361 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 362 363 /* Common data flag combinations */ 364 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 365 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 366 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 367 VM_MAYWRITE | VM_MAYEXEC) 368 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 369 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 370 371 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 372 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 373 #endif 374 375 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 376 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 377 #endif 378 379 #ifdef CONFIG_STACK_GROWSUP 380 #define VM_STACK VM_GROWSUP 381 #else 382 #define VM_STACK VM_GROWSDOWN 383 #endif 384 385 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 386 387 /* VMA basic access permission flags */ 388 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 389 390 391 /* 392 * Special vmas that are non-mergable, non-mlock()able. 393 */ 394 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 395 396 /* This mask prevents VMA from being scanned with khugepaged */ 397 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 398 399 /* This mask defines which mm->def_flags a process can inherit its parent */ 400 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 401 402 /* This mask is used to clear all the VMA flags used by mlock */ 403 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 404 405 /* Arch-specific flags to clear when updating VM flags on protection change */ 406 #ifndef VM_ARCH_CLEAR 407 # define VM_ARCH_CLEAR VM_NONE 408 #endif 409 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 410 411 /* 412 * mapping from the currently active vm_flags protection bits (the 413 * low four bits) to a page protection mask.. 414 */ 415 extern pgprot_t protection_map[16]; 416 417 /** 418 * Fault flag definitions. 419 * 420 * @FAULT_FLAG_WRITE: Fault was a write fault. 421 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 422 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 423 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 424 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 425 * @FAULT_FLAG_TRIED: The fault has been tried once. 426 * @FAULT_FLAG_USER: The fault originated in userspace. 427 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 428 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 429 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 430 * 431 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 432 * whether we would allow page faults to retry by specifying these two 433 * fault flags correctly. Currently there can be three legal combinations: 434 * 435 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 436 * this is the first try 437 * 438 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 439 * we've already tried at least once 440 * 441 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 442 * 443 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 444 * be used. Note that page faults can be allowed to retry for multiple times, 445 * in which case we'll have an initial fault with flags (a) then later on 446 * continuous faults with flags (b). We should always try to detect pending 447 * signals before a retry to make sure the continuous page faults can still be 448 * interrupted if necessary. 449 */ 450 #define FAULT_FLAG_WRITE 0x01 451 #define FAULT_FLAG_MKWRITE 0x02 452 #define FAULT_FLAG_ALLOW_RETRY 0x04 453 #define FAULT_FLAG_RETRY_NOWAIT 0x08 454 #define FAULT_FLAG_KILLABLE 0x10 455 #define FAULT_FLAG_TRIED 0x20 456 #define FAULT_FLAG_USER 0x40 457 #define FAULT_FLAG_REMOTE 0x80 458 #define FAULT_FLAG_INSTRUCTION 0x100 459 #define FAULT_FLAG_INTERRUPTIBLE 0x200 460 461 /* 462 * The default fault flags that should be used by most of the 463 * arch-specific page fault handlers. 464 */ 465 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 466 FAULT_FLAG_KILLABLE | \ 467 FAULT_FLAG_INTERRUPTIBLE) 468 469 /** 470 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 471 * 472 * This is mostly used for places where we want to try to avoid taking 473 * the mmap_lock for too long a time when waiting for another condition 474 * to change, in which case we can try to be polite to release the 475 * mmap_lock in the first round to avoid potential starvation of other 476 * processes that would also want the mmap_lock. 477 * 478 * Return: true if the page fault allows retry and this is the first 479 * attempt of the fault handling; false otherwise. 480 */ 481 static inline bool fault_flag_allow_retry_first(unsigned int flags) 482 { 483 return (flags & FAULT_FLAG_ALLOW_RETRY) && 484 (!(flags & FAULT_FLAG_TRIED)); 485 } 486 487 #define FAULT_FLAG_TRACE \ 488 { FAULT_FLAG_WRITE, "WRITE" }, \ 489 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 490 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 491 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 492 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 493 { FAULT_FLAG_TRIED, "TRIED" }, \ 494 { FAULT_FLAG_USER, "USER" }, \ 495 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 496 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 497 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 498 499 /* 500 * vm_fault is filled by the pagefault handler and passed to the vma's 501 * ->fault function. The vma's ->fault is responsible for returning a bitmask 502 * of VM_FAULT_xxx flags that give details about how the fault was handled. 503 * 504 * MM layer fills up gfp_mask for page allocations but fault handler might 505 * alter it if its implementation requires a different allocation context. 506 * 507 * pgoff should be used in favour of virtual_address, if possible. 508 */ 509 struct vm_fault { 510 struct vm_area_struct *vma; /* Target VMA */ 511 unsigned int flags; /* FAULT_FLAG_xxx flags */ 512 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 513 pgoff_t pgoff; /* Logical page offset based on vma */ 514 unsigned long address; /* Faulting virtual address */ 515 pmd_t *pmd; /* Pointer to pmd entry matching 516 * the 'address' */ 517 pud_t *pud; /* Pointer to pud entry matching 518 * the 'address' 519 */ 520 pte_t orig_pte; /* Value of PTE at the time of fault */ 521 522 struct page *cow_page; /* Page handler may use for COW fault */ 523 struct page *page; /* ->fault handlers should return a 524 * page here, unless VM_FAULT_NOPAGE 525 * is set (which is also implied by 526 * VM_FAULT_ERROR). 527 */ 528 /* These three entries are valid only while holding ptl lock */ 529 pte_t *pte; /* Pointer to pte entry matching 530 * the 'address'. NULL if the page 531 * table hasn't been allocated. 532 */ 533 spinlock_t *ptl; /* Page table lock. 534 * Protects pte page table if 'pte' 535 * is not NULL, otherwise pmd. 536 */ 537 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 538 * vm_ops->map_pages() calls 539 * alloc_set_pte() from atomic context. 540 * do_fault_around() pre-allocates 541 * page table to avoid allocation from 542 * atomic context. 543 */ 544 }; 545 546 /* page entry size for vm->huge_fault() */ 547 enum page_entry_size { 548 PE_SIZE_PTE = 0, 549 PE_SIZE_PMD, 550 PE_SIZE_PUD, 551 }; 552 553 /* 554 * These are the virtual MM functions - opening of an area, closing and 555 * unmapping it (needed to keep files on disk up-to-date etc), pointer 556 * to the functions called when a no-page or a wp-page exception occurs. 557 */ 558 struct vm_operations_struct { 559 void (*open)(struct vm_area_struct * area); 560 void (*close)(struct vm_area_struct * area); 561 /* Called any time before splitting to check if it's allowed */ 562 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 563 int (*mremap)(struct vm_area_struct *area, unsigned long flags); 564 /* 565 * Called by mprotect() to make driver-specific permission 566 * checks before mprotect() is finalised. The VMA must not 567 * be modified. Returns 0 if eprotect() can proceed. 568 */ 569 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 570 unsigned long end, unsigned long newflags); 571 vm_fault_t (*fault)(struct vm_fault *vmf); 572 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 573 enum page_entry_size pe_size); 574 void (*map_pages)(struct vm_fault *vmf, 575 pgoff_t start_pgoff, pgoff_t end_pgoff); 576 unsigned long (*pagesize)(struct vm_area_struct * area); 577 578 /* notification that a previously read-only page is about to become 579 * writable, if an error is returned it will cause a SIGBUS */ 580 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 581 582 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 583 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 584 585 /* called by access_process_vm when get_user_pages() fails, typically 586 * for use by special VMAs that can switch between memory and hardware 587 */ 588 int (*access)(struct vm_area_struct *vma, unsigned long addr, 589 void *buf, int len, int write); 590 591 /* Called by the /proc/PID/maps code to ask the vma whether it 592 * has a special name. Returning non-NULL will also cause this 593 * vma to be dumped unconditionally. */ 594 const char *(*name)(struct vm_area_struct *vma); 595 596 #ifdef CONFIG_NUMA 597 /* 598 * set_policy() op must add a reference to any non-NULL @new mempolicy 599 * to hold the policy upon return. Caller should pass NULL @new to 600 * remove a policy and fall back to surrounding context--i.e. do not 601 * install a MPOL_DEFAULT policy, nor the task or system default 602 * mempolicy. 603 */ 604 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 605 606 /* 607 * get_policy() op must add reference [mpol_get()] to any policy at 608 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 609 * in mm/mempolicy.c will do this automatically. 610 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 611 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 612 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 613 * must return NULL--i.e., do not "fallback" to task or system default 614 * policy. 615 */ 616 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 617 unsigned long addr); 618 #endif 619 /* 620 * Called by vm_normal_page() for special PTEs to find the 621 * page for @addr. This is useful if the default behavior 622 * (using pte_page()) would not find the correct page. 623 */ 624 struct page *(*find_special_page)(struct vm_area_struct *vma, 625 unsigned long addr); 626 }; 627 628 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 629 { 630 static const struct vm_operations_struct dummy_vm_ops = {}; 631 632 memset(vma, 0, sizeof(*vma)); 633 vma->vm_mm = mm; 634 vma->vm_ops = &dummy_vm_ops; 635 INIT_LIST_HEAD(&vma->anon_vma_chain); 636 } 637 638 static inline void vma_set_anonymous(struct vm_area_struct *vma) 639 { 640 vma->vm_ops = NULL; 641 } 642 643 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 644 { 645 return !vma->vm_ops; 646 } 647 648 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 649 { 650 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 651 652 if (!maybe_stack) 653 return false; 654 655 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 656 VM_STACK_INCOMPLETE_SETUP) 657 return true; 658 659 return false; 660 } 661 662 static inline bool vma_is_foreign(struct vm_area_struct *vma) 663 { 664 if (!current->mm) 665 return true; 666 667 if (current->mm != vma->vm_mm) 668 return true; 669 670 return false; 671 } 672 673 static inline bool vma_is_accessible(struct vm_area_struct *vma) 674 { 675 return vma->vm_flags & VM_ACCESS_FLAGS; 676 } 677 678 #ifdef CONFIG_SHMEM 679 /* 680 * The vma_is_shmem is not inline because it is used only by slow 681 * paths in userfault. 682 */ 683 bool vma_is_shmem(struct vm_area_struct *vma); 684 #else 685 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 686 #endif 687 688 int vma_is_stack_for_current(struct vm_area_struct *vma); 689 690 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 691 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 692 693 struct mmu_gather; 694 struct inode; 695 696 #include <linux/huge_mm.h> 697 698 /* 699 * Methods to modify the page usage count. 700 * 701 * What counts for a page usage: 702 * - cache mapping (page->mapping) 703 * - private data (page->private) 704 * - page mapped in a task's page tables, each mapping 705 * is counted separately 706 * 707 * Also, many kernel routines increase the page count before a critical 708 * routine so they can be sure the page doesn't go away from under them. 709 */ 710 711 /* 712 * Drop a ref, return true if the refcount fell to zero (the page has no users) 713 */ 714 static inline int put_page_testzero(struct page *page) 715 { 716 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 717 return page_ref_dec_and_test(page); 718 } 719 720 /* 721 * Try to grab a ref unless the page has a refcount of zero, return false if 722 * that is the case. 723 * This can be called when MMU is off so it must not access 724 * any of the virtual mappings. 725 */ 726 static inline int get_page_unless_zero(struct page *page) 727 { 728 return page_ref_add_unless(page, 1, 0); 729 } 730 731 extern int page_is_ram(unsigned long pfn); 732 733 enum { 734 REGION_INTERSECTS, 735 REGION_DISJOINT, 736 REGION_MIXED, 737 }; 738 739 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 740 unsigned long desc); 741 742 /* Support for virtually mapped pages */ 743 struct page *vmalloc_to_page(const void *addr); 744 unsigned long vmalloc_to_pfn(const void *addr); 745 746 /* 747 * Determine if an address is within the vmalloc range 748 * 749 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 750 * is no special casing required. 751 */ 752 753 #ifndef is_ioremap_addr 754 #define is_ioremap_addr(x) is_vmalloc_addr(x) 755 #endif 756 757 #ifdef CONFIG_MMU 758 extern bool is_vmalloc_addr(const void *x); 759 extern int is_vmalloc_or_module_addr(const void *x); 760 #else 761 static inline bool is_vmalloc_addr(const void *x) 762 { 763 return false; 764 } 765 static inline int is_vmalloc_or_module_addr(const void *x) 766 { 767 return 0; 768 } 769 #endif 770 771 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 772 static inline void *kvmalloc(size_t size, gfp_t flags) 773 { 774 return kvmalloc_node(size, flags, NUMA_NO_NODE); 775 } 776 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 777 { 778 return kvmalloc_node(size, flags | __GFP_ZERO, node); 779 } 780 static inline void *kvzalloc(size_t size, gfp_t flags) 781 { 782 return kvmalloc(size, flags | __GFP_ZERO); 783 } 784 785 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 786 { 787 size_t bytes; 788 789 if (unlikely(check_mul_overflow(n, size, &bytes))) 790 return NULL; 791 792 return kvmalloc(bytes, flags); 793 } 794 795 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 796 { 797 return kvmalloc_array(n, size, flags | __GFP_ZERO); 798 } 799 800 extern void kvfree(const void *addr); 801 extern void kvfree_sensitive(const void *addr, size_t len); 802 803 static inline int head_compound_mapcount(struct page *head) 804 { 805 return atomic_read(compound_mapcount_ptr(head)) + 1; 806 } 807 808 /* 809 * Mapcount of compound page as a whole, does not include mapped sub-pages. 810 * 811 * Must be called only for compound pages or any their tail sub-pages. 812 */ 813 static inline int compound_mapcount(struct page *page) 814 { 815 VM_BUG_ON_PAGE(!PageCompound(page), page); 816 page = compound_head(page); 817 return head_compound_mapcount(page); 818 } 819 820 /* 821 * The atomic page->_mapcount, starts from -1: so that transitions 822 * both from it and to it can be tracked, using atomic_inc_and_test 823 * and atomic_add_negative(-1). 824 */ 825 static inline void page_mapcount_reset(struct page *page) 826 { 827 atomic_set(&(page)->_mapcount, -1); 828 } 829 830 int __page_mapcount(struct page *page); 831 832 /* 833 * Mapcount of 0-order page; when compound sub-page, includes 834 * compound_mapcount(). 835 * 836 * Result is undefined for pages which cannot be mapped into userspace. 837 * For example SLAB or special types of pages. See function page_has_type(). 838 * They use this place in struct page differently. 839 */ 840 static inline int page_mapcount(struct page *page) 841 { 842 if (unlikely(PageCompound(page))) 843 return __page_mapcount(page); 844 return atomic_read(&page->_mapcount) + 1; 845 } 846 847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 848 int total_mapcount(struct page *page); 849 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 850 #else 851 static inline int total_mapcount(struct page *page) 852 { 853 return page_mapcount(page); 854 } 855 static inline int page_trans_huge_mapcount(struct page *page, 856 int *total_mapcount) 857 { 858 int mapcount = page_mapcount(page); 859 if (total_mapcount) 860 *total_mapcount = mapcount; 861 return mapcount; 862 } 863 #endif 864 865 static inline struct page *virt_to_head_page(const void *x) 866 { 867 struct page *page = virt_to_page(x); 868 869 return compound_head(page); 870 } 871 872 void __put_page(struct page *page); 873 874 void put_pages_list(struct list_head *pages); 875 876 void split_page(struct page *page, unsigned int order); 877 878 /* 879 * Compound pages have a destructor function. Provide a 880 * prototype for that function and accessor functions. 881 * These are _only_ valid on the head of a compound page. 882 */ 883 typedef void compound_page_dtor(struct page *); 884 885 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 886 enum compound_dtor_id { 887 NULL_COMPOUND_DTOR, 888 COMPOUND_PAGE_DTOR, 889 #ifdef CONFIG_HUGETLB_PAGE 890 HUGETLB_PAGE_DTOR, 891 #endif 892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 893 TRANSHUGE_PAGE_DTOR, 894 #endif 895 NR_COMPOUND_DTORS, 896 }; 897 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 898 899 static inline void set_compound_page_dtor(struct page *page, 900 enum compound_dtor_id compound_dtor) 901 { 902 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 903 page[1].compound_dtor = compound_dtor; 904 } 905 906 static inline void destroy_compound_page(struct page *page) 907 { 908 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 909 compound_page_dtors[page[1].compound_dtor](page); 910 } 911 912 static inline unsigned int compound_order(struct page *page) 913 { 914 if (!PageHead(page)) 915 return 0; 916 return page[1].compound_order; 917 } 918 919 static inline bool hpage_pincount_available(struct page *page) 920 { 921 /* 922 * Can the page->hpage_pinned_refcount field be used? That field is in 923 * the 3rd page of the compound page, so the smallest (2-page) compound 924 * pages cannot support it. 925 */ 926 page = compound_head(page); 927 return PageCompound(page) && compound_order(page) > 1; 928 } 929 930 static inline int head_compound_pincount(struct page *head) 931 { 932 return atomic_read(compound_pincount_ptr(head)); 933 } 934 935 static inline int compound_pincount(struct page *page) 936 { 937 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 938 page = compound_head(page); 939 return head_compound_pincount(page); 940 } 941 942 static inline void set_compound_order(struct page *page, unsigned int order) 943 { 944 page[1].compound_order = order; 945 page[1].compound_nr = 1U << order; 946 } 947 948 /* Returns the number of pages in this potentially compound page. */ 949 static inline unsigned long compound_nr(struct page *page) 950 { 951 if (!PageHead(page)) 952 return 1; 953 return page[1].compound_nr; 954 } 955 956 /* Returns the number of bytes in this potentially compound page. */ 957 static inline unsigned long page_size(struct page *page) 958 { 959 return PAGE_SIZE << compound_order(page); 960 } 961 962 /* Returns the number of bits needed for the number of bytes in a page */ 963 static inline unsigned int page_shift(struct page *page) 964 { 965 return PAGE_SHIFT + compound_order(page); 966 } 967 968 void free_compound_page(struct page *page); 969 970 #ifdef CONFIG_MMU 971 /* 972 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 973 * servicing faults for write access. In the normal case, do always want 974 * pte_mkwrite. But get_user_pages can cause write faults for mappings 975 * that do not have writing enabled, when used by access_process_vm. 976 */ 977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 978 { 979 if (likely(vma->vm_flags & VM_WRITE)) 980 pte = pte_mkwrite(pte); 981 return pte; 982 } 983 984 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 985 vm_fault_t finish_fault(struct vm_fault *vmf); 986 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 987 #endif 988 989 /* 990 * Multiple processes may "see" the same page. E.g. for untouched 991 * mappings of /dev/null, all processes see the same page full of 992 * zeroes, and text pages of executables and shared libraries have 993 * only one copy in memory, at most, normally. 994 * 995 * For the non-reserved pages, page_count(page) denotes a reference count. 996 * page_count() == 0 means the page is free. page->lru is then used for 997 * freelist management in the buddy allocator. 998 * page_count() > 0 means the page has been allocated. 999 * 1000 * Pages are allocated by the slab allocator in order to provide memory 1001 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1002 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1003 * unless a particular usage is carefully commented. (the responsibility of 1004 * freeing the kmalloc memory is the caller's, of course). 1005 * 1006 * A page may be used by anyone else who does a __get_free_page(). 1007 * In this case, page_count still tracks the references, and should only 1008 * be used through the normal accessor functions. The top bits of page->flags 1009 * and page->virtual store page management information, but all other fields 1010 * are unused and could be used privately, carefully. The management of this 1011 * page is the responsibility of the one who allocated it, and those who have 1012 * subsequently been given references to it. 1013 * 1014 * The other pages (we may call them "pagecache pages") are completely 1015 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1016 * The following discussion applies only to them. 1017 * 1018 * A pagecache page contains an opaque `private' member, which belongs to the 1019 * page's address_space. Usually, this is the address of a circular list of 1020 * the page's disk buffers. PG_private must be set to tell the VM to call 1021 * into the filesystem to release these pages. 1022 * 1023 * A page may belong to an inode's memory mapping. In this case, page->mapping 1024 * is the pointer to the inode, and page->index is the file offset of the page, 1025 * in units of PAGE_SIZE. 1026 * 1027 * If pagecache pages are not associated with an inode, they are said to be 1028 * anonymous pages. These may become associated with the swapcache, and in that 1029 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1030 * 1031 * In either case (swapcache or inode backed), the pagecache itself holds one 1032 * reference to the page. Setting PG_private should also increment the 1033 * refcount. The each user mapping also has a reference to the page. 1034 * 1035 * The pagecache pages are stored in a per-mapping radix tree, which is 1036 * rooted at mapping->i_pages, and indexed by offset. 1037 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1038 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1039 * 1040 * All pagecache pages may be subject to I/O: 1041 * - inode pages may need to be read from disk, 1042 * - inode pages which have been modified and are MAP_SHARED may need 1043 * to be written back to the inode on disk, 1044 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1045 * modified may need to be swapped out to swap space and (later) to be read 1046 * back into memory. 1047 */ 1048 1049 /* 1050 * The zone field is never updated after free_area_init_core() 1051 * sets it, so none of the operations on it need to be atomic. 1052 */ 1053 1054 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1055 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1056 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1057 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1058 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1059 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1060 1061 /* 1062 * Define the bit shifts to access each section. For non-existent 1063 * sections we define the shift as 0; that plus a 0 mask ensures 1064 * the compiler will optimise away reference to them. 1065 */ 1066 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1067 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1068 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1069 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1070 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1071 1072 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1073 #ifdef NODE_NOT_IN_PAGE_FLAGS 1074 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1075 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1076 SECTIONS_PGOFF : ZONES_PGOFF) 1077 #else 1078 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1079 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1080 NODES_PGOFF : ZONES_PGOFF) 1081 #endif 1082 1083 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1084 1085 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1086 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1087 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1088 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1089 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1090 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1091 1092 static inline enum zone_type page_zonenum(const struct page *page) 1093 { 1094 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1095 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1096 } 1097 1098 #ifdef CONFIG_ZONE_DEVICE 1099 static inline bool is_zone_device_page(const struct page *page) 1100 { 1101 return page_zonenum(page) == ZONE_DEVICE; 1102 } 1103 extern void memmap_init_zone_device(struct zone *, unsigned long, 1104 unsigned long, struct dev_pagemap *); 1105 #else 1106 static inline bool is_zone_device_page(const struct page *page) 1107 { 1108 return false; 1109 } 1110 #endif 1111 1112 #ifdef CONFIG_DEV_PAGEMAP_OPS 1113 void free_devmap_managed_page(struct page *page); 1114 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1115 1116 static inline bool page_is_devmap_managed(struct page *page) 1117 { 1118 if (!static_branch_unlikely(&devmap_managed_key)) 1119 return false; 1120 if (!is_zone_device_page(page)) 1121 return false; 1122 switch (page->pgmap->type) { 1123 case MEMORY_DEVICE_PRIVATE: 1124 case MEMORY_DEVICE_FS_DAX: 1125 return true; 1126 default: 1127 break; 1128 } 1129 return false; 1130 } 1131 1132 void put_devmap_managed_page(struct page *page); 1133 1134 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1135 static inline bool page_is_devmap_managed(struct page *page) 1136 { 1137 return false; 1138 } 1139 1140 static inline void put_devmap_managed_page(struct page *page) 1141 { 1142 } 1143 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1144 1145 static inline bool is_device_private_page(const struct page *page) 1146 { 1147 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1148 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1149 is_zone_device_page(page) && 1150 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1151 } 1152 1153 static inline bool is_pci_p2pdma_page(const struct page *page) 1154 { 1155 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1156 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1157 is_zone_device_page(page) && 1158 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1159 } 1160 1161 /* 127: arbitrary random number, small enough to assemble well */ 1162 #define page_ref_zero_or_close_to_overflow(page) \ 1163 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1164 1165 static inline void get_page(struct page *page) 1166 { 1167 page = compound_head(page); 1168 /* 1169 * Getting a normal page or the head of a compound page 1170 * requires to already have an elevated page->_refcount. 1171 */ 1172 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1173 page_ref_inc(page); 1174 } 1175 1176 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1177 1178 static inline __must_check bool try_get_page(struct page *page) 1179 { 1180 page = compound_head(page); 1181 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1182 return false; 1183 page_ref_inc(page); 1184 return true; 1185 } 1186 1187 static inline void put_page(struct page *page) 1188 { 1189 page = compound_head(page); 1190 1191 /* 1192 * For devmap managed pages we need to catch refcount transition from 1193 * 2 to 1, when refcount reach one it means the page is free and we 1194 * need to inform the device driver through callback. See 1195 * include/linux/memremap.h and HMM for details. 1196 */ 1197 if (page_is_devmap_managed(page)) { 1198 put_devmap_managed_page(page); 1199 return; 1200 } 1201 1202 if (put_page_testzero(page)) 1203 __put_page(page); 1204 } 1205 1206 /* 1207 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1208 * the page's refcount so that two separate items are tracked: the original page 1209 * reference count, and also a new count of how many pin_user_pages() calls were 1210 * made against the page. ("gup-pinned" is another term for the latter). 1211 * 1212 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1213 * distinct from normal pages. As such, the unpin_user_page() call (and its 1214 * variants) must be used in order to release gup-pinned pages. 1215 * 1216 * Choice of value: 1217 * 1218 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1219 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1220 * simpler, due to the fact that adding an even power of two to the page 1221 * refcount has the effect of using only the upper N bits, for the code that 1222 * counts up using the bias value. This means that the lower bits are left for 1223 * the exclusive use of the original code that increments and decrements by one 1224 * (or at least, by much smaller values than the bias value). 1225 * 1226 * Of course, once the lower bits overflow into the upper bits (and this is 1227 * OK, because subtraction recovers the original values), then visual inspection 1228 * no longer suffices to directly view the separate counts. However, for normal 1229 * applications that don't have huge page reference counts, this won't be an 1230 * issue. 1231 * 1232 * Locking: the lockless algorithm described in page_cache_get_speculative() 1233 * and page_cache_gup_pin_speculative() provides safe operation for 1234 * get_user_pages and page_mkclean and other calls that race to set up page 1235 * table entries. 1236 */ 1237 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1238 1239 void unpin_user_page(struct page *page); 1240 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1241 bool make_dirty); 1242 void unpin_user_pages(struct page **pages, unsigned long npages); 1243 1244 /** 1245 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1246 * 1247 * This function checks if a page has been pinned via a call to 1248 * pin_user_pages*(). 1249 * 1250 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1251 * because it means "definitely not pinned for DMA", but true means "probably 1252 * pinned for DMA, but possibly a false positive due to having at least 1253 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1254 * 1255 * False positives are OK, because: a) it's unlikely for a page to get that many 1256 * refcounts, and b) all the callers of this routine are expected to be able to 1257 * deal gracefully with a false positive. 1258 * 1259 * For huge pages, the result will be exactly correct. That's because we have 1260 * more tracking data available: the 3rd struct page in the compound page is 1261 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1262 * scheme). 1263 * 1264 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1265 * 1266 * @page: pointer to page to be queried. 1267 * @Return: True, if it is likely that the page has been "dma-pinned". 1268 * False, if the page is definitely not dma-pinned. 1269 */ 1270 static inline bool page_maybe_dma_pinned(struct page *page) 1271 { 1272 if (hpage_pincount_available(page)) 1273 return compound_pincount(page) > 0; 1274 1275 /* 1276 * page_ref_count() is signed. If that refcount overflows, then 1277 * page_ref_count() returns a negative value, and callers will avoid 1278 * further incrementing the refcount. 1279 * 1280 * Here, for that overflow case, use the signed bit to count a little 1281 * bit higher via unsigned math, and thus still get an accurate result. 1282 */ 1283 return ((unsigned int)page_ref_count(compound_head(page))) >= 1284 GUP_PIN_COUNTING_BIAS; 1285 } 1286 1287 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1288 #define SECTION_IN_PAGE_FLAGS 1289 #endif 1290 1291 /* 1292 * The identification function is mainly used by the buddy allocator for 1293 * determining if two pages could be buddies. We are not really identifying 1294 * the zone since we could be using the section number id if we do not have 1295 * node id available in page flags. 1296 * We only guarantee that it will return the same value for two combinable 1297 * pages in a zone. 1298 */ 1299 static inline int page_zone_id(struct page *page) 1300 { 1301 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1302 } 1303 1304 #ifdef NODE_NOT_IN_PAGE_FLAGS 1305 extern int page_to_nid(const struct page *page); 1306 #else 1307 static inline int page_to_nid(const struct page *page) 1308 { 1309 struct page *p = (struct page *)page; 1310 1311 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1312 } 1313 #endif 1314 1315 #ifdef CONFIG_NUMA_BALANCING 1316 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1317 { 1318 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1319 } 1320 1321 static inline int cpupid_to_pid(int cpupid) 1322 { 1323 return cpupid & LAST__PID_MASK; 1324 } 1325 1326 static inline int cpupid_to_cpu(int cpupid) 1327 { 1328 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1329 } 1330 1331 static inline int cpupid_to_nid(int cpupid) 1332 { 1333 return cpu_to_node(cpupid_to_cpu(cpupid)); 1334 } 1335 1336 static inline bool cpupid_pid_unset(int cpupid) 1337 { 1338 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1339 } 1340 1341 static inline bool cpupid_cpu_unset(int cpupid) 1342 { 1343 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1344 } 1345 1346 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1347 { 1348 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1349 } 1350 1351 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1352 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1353 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1354 { 1355 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1356 } 1357 1358 static inline int page_cpupid_last(struct page *page) 1359 { 1360 return page->_last_cpupid; 1361 } 1362 static inline void page_cpupid_reset_last(struct page *page) 1363 { 1364 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1365 } 1366 #else 1367 static inline int page_cpupid_last(struct page *page) 1368 { 1369 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1370 } 1371 1372 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1373 1374 static inline void page_cpupid_reset_last(struct page *page) 1375 { 1376 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1377 } 1378 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1379 #else /* !CONFIG_NUMA_BALANCING */ 1380 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1381 { 1382 return page_to_nid(page); /* XXX */ 1383 } 1384 1385 static inline int page_cpupid_last(struct page *page) 1386 { 1387 return page_to_nid(page); /* XXX */ 1388 } 1389 1390 static inline int cpupid_to_nid(int cpupid) 1391 { 1392 return -1; 1393 } 1394 1395 static inline int cpupid_to_pid(int cpupid) 1396 { 1397 return -1; 1398 } 1399 1400 static inline int cpupid_to_cpu(int cpupid) 1401 { 1402 return -1; 1403 } 1404 1405 static inline int cpu_pid_to_cpupid(int nid, int pid) 1406 { 1407 return -1; 1408 } 1409 1410 static inline bool cpupid_pid_unset(int cpupid) 1411 { 1412 return true; 1413 } 1414 1415 static inline void page_cpupid_reset_last(struct page *page) 1416 { 1417 } 1418 1419 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1420 { 1421 return false; 1422 } 1423 #endif /* CONFIG_NUMA_BALANCING */ 1424 1425 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1426 1427 static inline u8 page_kasan_tag(const struct page *page) 1428 { 1429 if (kasan_enabled()) 1430 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1431 return 0xff; 1432 } 1433 1434 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1435 { 1436 if (kasan_enabled()) { 1437 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1438 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1439 } 1440 } 1441 1442 static inline void page_kasan_tag_reset(struct page *page) 1443 { 1444 if (kasan_enabled()) 1445 page_kasan_tag_set(page, 0xff); 1446 } 1447 1448 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1449 1450 static inline u8 page_kasan_tag(const struct page *page) 1451 { 1452 return 0xff; 1453 } 1454 1455 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1456 static inline void page_kasan_tag_reset(struct page *page) { } 1457 1458 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1459 1460 static inline struct zone *page_zone(const struct page *page) 1461 { 1462 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1463 } 1464 1465 static inline pg_data_t *page_pgdat(const struct page *page) 1466 { 1467 return NODE_DATA(page_to_nid(page)); 1468 } 1469 1470 #ifdef SECTION_IN_PAGE_FLAGS 1471 static inline void set_page_section(struct page *page, unsigned long section) 1472 { 1473 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1474 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1475 } 1476 1477 static inline unsigned long page_to_section(const struct page *page) 1478 { 1479 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1480 } 1481 #endif 1482 1483 static inline void set_page_zone(struct page *page, enum zone_type zone) 1484 { 1485 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1486 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1487 } 1488 1489 static inline void set_page_node(struct page *page, unsigned long node) 1490 { 1491 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1492 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1493 } 1494 1495 static inline void set_page_links(struct page *page, enum zone_type zone, 1496 unsigned long node, unsigned long pfn) 1497 { 1498 set_page_zone(page, zone); 1499 set_page_node(page, node); 1500 #ifdef SECTION_IN_PAGE_FLAGS 1501 set_page_section(page, pfn_to_section_nr(pfn)); 1502 #endif 1503 } 1504 1505 /* 1506 * Some inline functions in vmstat.h depend on page_zone() 1507 */ 1508 #include <linux/vmstat.h> 1509 1510 static __always_inline void *lowmem_page_address(const struct page *page) 1511 { 1512 return page_to_virt(page); 1513 } 1514 1515 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1516 #define HASHED_PAGE_VIRTUAL 1517 #endif 1518 1519 #if defined(WANT_PAGE_VIRTUAL) 1520 static inline void *page_address(const struct page *page) 1521 { 1522 return page->virtual; 1523 } 1524 static inline void set_page_address(struct page *page, void *address) 1525 { 1526 page->virtual = address; 1527 } 1528 #define page_address_init() do { } while(0) 1529 #endif 1530 1531 #if defined(HASHED_PAGE_VIRTUAL) 1532 void *page_address(const struct page *page); 1533 void set_page_address(struct page *page, void *virtual); 1534 void page_address_init(void); 1535 #endif 1536 1537 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1538 #define page_address(page) lowmem_page_address(page) 1539 #define set_page_address(page, address) do { } while(0) 1540 #define page_address_init() do { } while(0) 1541 #endif 1542 1543 extern void *page_rmapping(struct page *page); 1544 extern struct anon_vma *page_anon_vma(struct page *page); 1545 extern struct address_space *page_mapping(struct page *page); 1546 1547 extern struct address_space *__page_file_mapping(struct page *); 1548 1549 static inline 1550 struct address_space *page_file_mapping(struct page *page) 1551 { 1552 if (unlikely(PageSwapCache(page))) 1553 return __page_file_mapping(page); 1554 1555 return page->mapping; 1556 } 1557 1558 extern pgoff_t __page_file_index(struct page *page); 1559 1560 /* 1561 * Return the pagecache index of the passed page. Regular pagecache pages 1562 * use ->index whereas swapcache pages use swp_offset(->private) 1563 */ 1564 static inline pgoff_t page_index(struct page *page) 1565 { 1566 if (unlikely(PageSwapCache(page))) 1567 return __page_file_index(page); 1568 return page->index; 1569 } 1570 1571 bool page_mapped(struct page *page); 1572 struct address_space *page_mapping(struct page *page); 1573 struct address_space *page_mapping_file(struct page *page); 1574 1575 /* 1576 * Return true only if the page has been allocated with 1577 * ALLOC_NO_WATERMARKS and the low watermark was not 1578 * met implying that the system is under some pressure. 1579 */ 1580 static inline bool page_is_pfmemalloc(struct page *page) 1581 { 1582 /* 1583 * Page index cannot be this large so this must be 1584 * a pfmemalloc page. 1585 */ 1586 return page->index == -1UL; 1587 } 1588 1589 /* 1590 * Only to be called by the page allocator on a freshly allocated 1591 * page. 1592 */ 1593 static inline void set_page_pfmemalloc(struct page *page) 1594 { 1595 page->index = -1UL; 1596 } 1597 1598 static inline void clear_page_pfmemalloc(struct page *page) 1599 { 1600 page->index = 0; 1601 } 1602 1603 /* 1604 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1605 */ 1606 extern void pagefault_out_of_memory(void); 1607 1608 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1609 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1610 1611 /* 1612 * Flags passed to show_mem() and show_free_areas() to suppress output in 1613 * various contexts. 1614 */ 1615 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1616 1617 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1618 1619 #ifdef CONFIG_MMU 1620 extern bool can_do_mlock(void); 1621 #else 1622 static inline bool can_do_mlock(void) { return false; } 1623 #endif 1624 extern int user_shm_lock(size_t, struct user_struct *); 1625 extern void user_shm_unlock(size_t, struct user_struct *); 1626 1627 /* 1628 * Parameter block passed down to zap_pte_range in exceptional cases. 1629 */ 1630 struct zap_details { 1631 struct address_space *check_mapping; /* Check page->mapping if set */ 1632 pgoff_t first_index; /* Lowest page->index to unmap */ 1633 pgoff_t last_index; /* Highest page->index to unmap */ 1634 }; 1635 1636 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1637 pte_t pte); 1638 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1639 pmd_t pmd); 1640 1641 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1642 unsigned long size); 1643 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1644 unsigned long size); 1645 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1646 unsigned long start, unsigned long end); 1647 1648 struct mmu_notifier_range; 1649 1650 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1651 unsigned long end, unsigned long floor, unsigned long ceiling); 1652 int 1653 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1654 int follow_pte(struct mm_struct *mm, unsigned long address, 1655 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, 1656 spinlock_t **ptlp); 1657 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1658 unsigned long *pfn); 1659 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1660 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1661 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1662 void *buf, int len, int write); 1663 1664 extern void truncate_pagecache(struct inode *inode, loff_t new); 1665 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1666 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1667 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1668 int truncate_inode_page(struct address_space *mapping, struct page *page); 1669 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1670 int invalidate_inode_page(struct page *page); 1671 1672 #ifdef CONFIG_MMU 1673 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1674 unsigned long address, unsigned int flags, 1675 struct pt_regs *regs); 1676 extern int fixup_user_fault(struct mm_struct *mm, 1677 unsigned long address, unsigned int fault_flags, 1678 bool *unlocked); 1679 void unmap_mapping_pages(struct address_space *mapping, 1680 pgoff_t start, pgoff_t nr, bool even_cows); 1681 void unmap_mapping_range(struct address_space *mapping, 1682 loff_t const holebegin, loff_t const holelen, int even_cows); 1683 #else 1684 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1685 unsigned long address, unsigned int flags, 1686 struct pt_regs *regs) 1687 { 1688 /* should never happen if there's no MMU */ 1689 BUG(); 1690 return VM_FAULT_SIGBUS; 1691 } 1692 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1693 unsigned int fault_flags, bool *unlocked) 1694 { 1695 /* should never happen if there's no MMU */ 1696 BUG(); 1697 return -EFAULT; 1698 } 1699 static inline void unmap_mapping_pages(struct address_space *mapping, 1700 pgoff_t start, pgoff_t nr, bool even_cows) { } 1701 static inline void unmap_mapping_range(struct address_space *mapping, 1702 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1703 #endif 1704 1705 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1706 loff_t const holebegin, loff_t const holelen) 1707 { 1708 unmap_mapping_range(mapping, holebegin, holelen, 0); 1709 } 1710 1711 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1712 void *buf, int len, unsigned int gup_flags); 1713 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1714 void *buf, int len, unsigned int gup_flags); 1715 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1716 void *buf, int len, unsigned int gup_flags); 1717 1718 long get_user_pages_remote(struct mm_struct *mm, 1719 unsigned long start, unsigned long nr_pages, 1720 unsigned int gup_flags, struct page **pages, 1721 struct vm_area_struct **vmas, int *locked); 1722 long pin_user_pages_remote(struct mm_struct *mm, 1723 unsigned long start, unsigned long nr_pages, 1724 unsigned int gup_flags, struct page **pages, 1725 struct vm_area_struct **vmas, int *locked); 1726 long get_user_pages(unsigned long start, unsigned long nr_pages, 1727 unsigned int gup_flags, struct page **pages, 1728 struct vm_area_struct **vmas); 1729 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1730 unsigned int gup_flags, struct page **pages, 1731 struct vm_area_struct **vmas); 1732 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1733 unsigned int gup_flags, struct page **pages, int *locked); 1734 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1735 unsigned int gup_flags, struct page **pages, int *locked); 1736 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1737 struct page **pages, unsigned int gup_flags); 1738 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1739 struct page **pages, unsigned int gup_flags); 1740 1741 int get_user_pages_fast(unsigned long start, int nr_pages, 1742 unsigned int gup_flags, struct page **pages); 1743 int pin_user_pages_fast(unsigned long start, int nr_pages, 1744 unsigned int gup_flags, struct page **pages); 1745 1746 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1747 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1748 struct task_struct *task, bool bypass_rlim); 1749 1750 /* Container for pinned pfns / pages */ 1751 struct frame_vector { 1752 unsigned int nr_allocated; /* Number of frames we have space for */ 1753 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1754 bool got_ref; /* Did we pin pages by getting page ref? */ 1755 bool is_pfns; /* Does array contain pages or pfns? */ 1756 void *ptrs[]; /* Array of pinned pfns / pages. Use 1757 * pfns_vector_pages() or pfns_vector_pfns() 1758 * for access */ 1759 }; 1760 1761 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1762 void frame_vector_destroy(struct frame_vector *vec); 1763 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1764 unsigned int gup_flags, struct frame_vector *vec); 1765 void put_vaddr_frames(struct frame_vector *vec); 1766 int frame_vector_to_pages(struct frame_vector *vec); 1767 void frame_vector_to_pfns(struct frame_vector *vec); 1768 1769 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1770 { 1771 return vec->nr_frames; 1772 } 1773 1774 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1775 { 1776 if (vec->is_pfns) { 1777 int err = frame_vector_to_pages(vec); 1778 1779 if (err) 1780 return ERR_PTR(err); 1781 } 1782 return (struct page **)(vec->ptrs); 1783 } 1784 1785 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1786 { 1787 if (!vec->is_pfns) 1788 frame_vector_to_pfns(vec); 1789 return (unsigned long *)(vec->ptrs); 1790 } 1791 1792 struct kvec; 1793 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1794 struct page **pages); 1795 int get_kernel_page(unsigned long start, int write, struct page **pages); 1796 struct page *get_dump_page(unsigned long addr); 1797 1798 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1799 extern void do_invalidatepage(struct page *page, unsigned int offset, 1800 unsigned int length); 1801 1802 void __set_page_dirty(struct page *, struct address_space *, int warn); 1803 int __set_page_dirty_nobuffers(struct page *page); 1804 int __set_page_dirty_no_writeback(struct page *page); 1805 int redirty_page_for_writepage(struct writeback_control *wbc, 1806 struct page *page); 1807 void account_page_dirtied(struct page *page, struct address_space *mapping); 1808 void account_page_cleaned(struct page *page, struct address_space *mapping, 1809 struct bdi_writeback *wb); 1810 int set_page_dirty(struct page *page); 1811 int set_page_dirty_lock(struct page *page); 1812 void __cancel_dirty_page(struct page *page); 1813 static inline void cancel_dirty_page(struct page *page) 1814 { 1815 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1816 if (PageDirty(page)) 1817 __cancel_dirty_page(page); 1818 } 1819 int clear_page_dirty_for_io(struct page *page); 1820 1821 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1822 1823 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1824 unsigned long old_addr, struct vm_area_struct *new_vma, 1825 unsigned long new_addr, unsigned long len, 1826 bool need_rmap_locks); 1827 1828 /* 1829 * Flags used by change_protection(). For now we make it a bitmap so 1830 * that we can pass in multiple flags just like parameters. However 1831 * for now all the callers are only use one of the flags at the same 1832 * time. 1833 */ 1834 /* Whether we should allow dirty bit accounting */ 1835 #define MM_CP_DIRTY_ACCT (1UL << 0) 1836 /* Whether this protection change is for NUMA hints */ 1837 #define MM_CP_PROT_NUMA (1UL << 1) 1838 /* Whether this change is for write protecting */ 1839 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1840 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1841 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1842 MM_CP_UFFD_WP_RESOLVE) 1843 1844 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1845 unsigned long end, pgprot_t newprot, 1846 unsigned long cp_flags); 1847 extern int mprotect_fixup(struct vm_area_struct *vma, 1848 struct vm_area_struct **pprev, unsigned long start, 1849 unsigned long end, unsigned long newflags); 1850 1851 /* 1852 * doesn't attempt to fault and will return short. 1853 */ 1854 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1855 unsigned int gup_flags, struct page **pages); 1856 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1857 unsigned int gup_flags, struct page **pages); 1858 1859 static inline bool get_user_page_fast_only(unsigned long addr, 1860 unsigned int gup_flags, struct page **pagep) 1861 { 1862 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1863 } 1864 /* 1865 * per-process(per-mm_struct) statistics. 1866 */ 1867 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1868 { 1869 long val = atomic_long_read(&mm->rss_stat.count[member]); 1870 1871 #ifdef SPLIT_RSS_COUNTING 1872 /* 1873 * counter is updated in asynchronous manner and may go to minus. 1874 * But it's never be expected number for users. 1875 */ 1876 if (val < 0) 1877 val = 0; 1878 #endif 1879 return (unsigned long)val; 1880 } 1881 1882 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1883 1884 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1885 { 1886 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1887 1888 mm_trace_rss_stat(mm, member, count); 1889 } 1890 1891 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1892 { 1893 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1894 1895 mm_trace_rss_stat(mm, member, count); 1896 } 1897 1898 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1899 { 1900 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1901 1902 mm_trace_rss_stat(mm, member, count); 1903 } 1904 1905 /* Optimized variant when page is already known not to be PageAnon */ 1906 static inline int mm_counter_file(struct page *page) 1907 { 1908 if (PageSwapBacked(page)) 1909 return MM_SHMEMPAGES; 1910 return MM_FILEPAGES; 1911 } 1912 1913 static inline int mm_counter(struct page *page) 1914 { 1915 if (PageAnon(page)) 1916 return MM_ANONPAGES; 1917 return mm_counter_file(page); 1918 } 1919 1920 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1921 { 1922 return get_mm_counter(mm, MM_FILEPAGES) + 1923 get_mm_counter(mm, MM_ANONPAGES) + 1924 get_mm_counter(mm, MM_SHMEMPAGES); 1925 } 1926 1927 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1928 { 1929 return max(mm->hiwater_rss, get_mm_rss(mm)); 1930 } 1931 1932 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1933 { 1934 return max(mm->hiwater_vm, mm->total_vm); 1935 } 1936 1937 static inline void update_hiwater_rss(struct mm_struct *mm) 1938 { 1939 unsigned long _rss = get_mm_rss(mm); 1940 1941 if ((mm)->hiwater_rss < _rss) 1942 (mm)->hiwater_rss = _rss; 1943 } 1944 1945 static inline void update_hiwater_vm(struct mm_struct *mm) 1946 { 1947 if (mm->hiwater_vm < mm->total_vm) 1948 mm->hiwater_vm = mm->total_vm; 1949 } 1950 1951 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1952 { 1953 mm->hiwater_rss = get_mm_rss(mm); 1954 } 1955 1956 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1957 struct mm_struct *mm) 1958 { 1959 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1960 1961 if (*maxrss < hiwater_rss) 1962 *maxrss = hiwater_rss; 1963 } 1964 1965 #if defined(SPLIT_RSS_COUNTING) 1966 void sync_mm_rss(struct mm_struct *mm); 1967 #else 1968 static inline void sync_mm_rss(struct mm_struct *mm) 1969 { 1970 } 1971 #endif 1972 1973 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1974 static inline int pte_special(pte_t pte) 1975 { 1976 return 0; 1977 } 1978 1979 static inline pte_t pte_mkspecial(pte_t pte) 1980 { 1981 return pte; 1982 } 1983 #endif 1984 1985 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1986 static inline int pte_devmap(pte_t pte) 1987 { 1988 return 0; 1989 } 1990 #endif 1991 1992 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1993 1994 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1995 spinlock_t **ptl); 1996 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1997 spinlock_t **ptl) 1998 { 1999 pte_t *ptep; 2000 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2001 return ptep; 2002 } 2003 2004 #ifdef __PAGETABLE_P4D_FOLDED 2005 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2006 unsigned long address) 2007 { 2008 return 0; 2009 } 2010 #else 2011 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2012 #endif 2013 2014 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2015 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2016 unsigned long address) 2017 { 2018 return 0; 2019 } 2020 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2021 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2022 2023 #else 2024 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2025 2026 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2027 { 2028 if (mm_pud_folded(mm)) 2029 return; 2030 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2031 } 2032 2033 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2034 { 2035 if (mm_pud_folded(mm)) 2036 return; 2037 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2038 } 2039 #endif 2040 2041 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2042 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2043 unsigned long address) 2044 { 2045 return 0; 2046 } 2047 2048 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2049 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2050 2051 #else 2052 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2053 2054 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2055 { 2056 if (mm_pmd_folded(mm)) 2057 return; 2058 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2059 } 2060 2061 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2062 { 2063 if (mm_pmd_folded(mm)) 2064 return; 2065 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2066 } 2067 #endif 2068 2069 #ifdef CONFIG_MMU 2070 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2071 { 2072 atomic_long_set(&mm->pgtables_bytes, 0); 2073 } 2074 2075 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2076 { 2077 return atomic_long_read(&mm->pgtables_bytes); 2078 } 2079 2080 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2081 { 2082 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2083 } 2084 2085 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2086 { 2087 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2088 } 2089 #else 2090 2091 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2092 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2093 { 2094 return 0; 2095 } 2096 2097 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2098 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2099 #endif 2100 2101 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2102 int __pte_alloc_kernel(pmd_t *pmd); 2103 2104 #if defined(CONFIG_MMU) 2105 2106 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2107 unsigned long address) 2108 { 2109 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2110 NULL : p4d_offset(pgd, address); 2111 } 2112 2113 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2114 unsigned long address) 2115 { 2116 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2117 NULL : pud_offset(p4d, address); 2118 } 2119 2120 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2121 { 2122 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2123 NULL: pmd_offset(pud, address); 2124 } 2125 #endif /* CONFIG_MMU */ 2126 2127 #if USE_SPLIT_PTE_PTLOCKS 2128 #if ALLOC_SPLIT_PTLOCKS 2129 void __init ptlock_cache_init(void); 2130 extern bool ptlock_alloc(struct page *page); 2131 extern void ptlock_free(struct page *page); 2132 2133 static inline spinlock_t *ptlock_ptr(struct page *page) 2134 { 2135 return page->ptl; 2136 } 2137 #else /* ALLOC_SPLIT_PTLOCKS */ 2138 static inline void ptlock_cache_init(void) 2139 { 2140 } 2141 2142 static inline bool ptlock_alloc(struct page *page) 2143 { 2144 return true; 2145 } 2146 2147 static inline void ptlock_free(struct page *page) 2148 { 2149 } 2150 2151 static inline spinlock_t *ptlock_ptr(struct page *page) 2152 { 2153 return &page->ptl; 2154 } 2155 #endif /* ALLOC_SPLIT_PTLOCKS */ 2156 2157 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2158 { 2159 return ptlock_ptr(pmd_page(*pmd)); 2160 } 2161 2162 static inline bool ptlock_init(struct page *page) 2163 { 2164 /* 2165 * prep_new_page() initialize page->private (and therefore page->ptl) 2166 * with 0. Make sure nobody took it in use in between. 2167 * 2168 * It can happen if arch try to use slab for page table allocation: 2169 * slab code uses page->slab_cache, which share storage with page->ptl. 2170 */ 2171 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2172 if (!ptlock_alloc(page)) 2173 return false; 2174 spin_lock_init(ptlock_ptr(page)); 2175 return true; 2176 } 2177 2178 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2179 /* 2180 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2181 */ 2182 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2183 { 2184 return &mm->page_table_lock; 2185 } 2186 static inline void ptlock_cache_init(void) {} 2187 static inline bool ptlock_init(struct page *page) { return true; } 2188 static inline void ptlock_free(struct page *page) {} 2189 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2190 2191 static inline void pgtable_init(void) 2192 { 2193 ptlock_cache_init(); 2194 pgtable_cache_init(); 2195 } 2196 2197 static inline bool pgtable_pte_page_ctor(struct page *page) 2198 { 2199 if (!ptlock_init(page)) 2200 return false; 2201 __SetPageTable(page); 2202 inc_lruvec_page_state(page, NR_PAGETABLE); 2203 return true; 2204 } 2205 2206 static inline void pgtable_pte_page_dtor(struct page *page) 2207 { 2208 ptlock_free(page); 2209 __ClearPageTable(page); 2210 dec_lruvec_page_state(page, NR_PAGETABLE); 2211 } 2212 2213 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2214 ({ \ 2215 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2216 pte_t *__pte = pte_offset_map(pmd, address); \ 2217 *(ptlp) = __ptl; \ 2218 spin_lock(__ptl); \ 2219 __pte; \ 2220 }) 2221 2222 #define pte_unmap_unlock(pte, ptl) do { \ 2223 spin_unlock(ptl); \ 2224 pte_unmap(pte); \ 2225 } while (0) 2226 2227 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2228 2229 #define pte_alloc_map(mm, pmd, address) \ 2230 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2231 2232 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2233 (pte_alloc(mm, pmd) ? \ 2234 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2235 2236 #define pte_alloc_kernel(pmd, address) \ 2237 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2238 NULL: pte_offset_kernel(pmd, address)) 2239 2240 #if USE_SPLIT_PMD_PTLOCKS 2241 2242 static struct page *pmd_to_page(pmd_t *pmd) 2243 { 2244 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2245 return virt_to_page((void *)((unsigned long) pmd & mask)); 2246 } 2247 2248 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2249 { 2250 return ptlock_ptr(pmd_to_page(pmd)); 2251 } 2252 2253 static inline bool pmd_ptlock_init(struct page *page) 2254 { 2255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2256 page->pmd_huge_pte = NULL; 2257 #endif 2258 return ptlock_init(page); 2259 } 2260 2261 static inline void pmd_ptlock_free(struct page *page) 2262 { 2263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2264 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2265 #endif 2266 ptlock_free(page); 2267 } 2268 2269 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2270 2271 #else 2272 2273 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2274 { 2275 return &mm->page_table_lock; 2276 } 2277 2278 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2279 static inline void pmd_ptlock_free(struct page *page) {} 2280 2281 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2282 2283 #endif 2284 2285 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2286 { 2287 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2288 spin_lock(ptl); 2289 return ptl; 2290 } 2291 2292 static inline bool pgtable_pmd_page_ctor(struct page *page) 2293 { 2294 if (!pmd_ptlock_init(page)) 2295 return false; 2296 __SetPageTable(page); 2297 inc_lruvec_page_state(page, NR_PAGETABLE); 2298 return true; 2299 } 2300 2301 static inline void pgtable_pmd_page_dtor(struct page *page) 2302 { 2303 pmd_ptlock_free(page); 2304 __ClearPageTable(page); 2305 dec_lruvec_page_state(page, NR_PAGETABLE); 2306 } 2307 2308 /* 2309 * No scalability reason to split PUD locks yet, but follow the same pattern 2310 * as the PMD locks to make it easier if we decide to. The VM should not be 2311 * considered ready to switch to split PUD locks yet; there may be places 2312 * which need to be converted from page_table_lock. 2313 */ 2314 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2315 { 2316 return &mm->page_table_lock; 2317 } 2318 2319 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2320 { 2321 spinlock_t *ptl = pud_lockptr(mm, pud); 2322 2323 spin_lock(ptl); 2324 return ptl; 2325 } 2326 2327 extern void __init pagecache_init(void); 2328 extern void __init free_area_init_memoryless_node(int nid); 2329 extern void free_initmem(void); 2330 2331 /* 2332 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2333 * into the buddy system. The freed pages will be poisoned with pattern 2334 * "poison" if it's within range [0, UCHAR_MAX]. 2335 * Return pages freed into the buddy system. 2336 */ 2337 extern unsigned long free_reserved_area(void *start, void *end, 2338 int poison, const char *s); 2339 2340 #ifdef CONFIG_HIGHMEM 2341 /* 2342 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2343 * and totalram_pages. 2344 */ 2345 extern void free_highmem_page(struct page *page); 2346 #endif 2347 2348 extern void adjust_managed_page_count(struct page *page, long count); 2349 extern void mem_init_print_info(const char *str); 2350 2351 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2352 2353 /* Free the reserved page into the buddy system, so it gets managed. */ 2354 static inline void __free_reserved_page(struct page *page) 2355 { 2356 ClearPageReserved(page); 2357 init_page_count(page); 2358 __free_page(page); 2359 } 2360 2361 static inline void free_reserved_page(struct page *page) 2362 { 2363 __free_reserved_page(page); 2364 adjust_managed_page_count(page, 1); 2365 } 2366 2367 static inline void mark_page_reserved(struct page *page) 2368 { 2369 SetPageReserved(page); 2370 adjust_managed_page_count(page, -1); 2371 } 2372 2373 /* 2374 * Default method to free all the __init memory into the buddy system. 2375 * The freed pages will be poisoned with pattern "poison" if it's within 2376 * range [0, UCHAR_MAX]. 2377 * Return pages freed into the buddy system. 2378 */ 2379 static inline unsigned long free_initmem_default(int poison) 2380 { 2381 extern char __init_begin[], __init_end[]; 2382 2383 return free_reserved_area(&__init_begin, &__init_end, 2384 poison, "unused kernel"); 2385 } 2386 2387 static inline unsigned long get_num_physpages(void) 2388 { 2389 int nid; 2390 unsigned long phys_pages = 0; 2391 2392 for_each_online_node(nid) 2393 phys_pages += node_present_pages(nid); 2394 2395 return phys_pages; 2396 } 2397 2398 /* 2399 * Using memblock node mappings, an architecture may initialise its 2400 * zones, allocate the backing mem_map and account for memory holes in an 2401 * architecture independent manner. 2402 * 2403 * An architecture is expected to register range of page frames backed by 2404 * physical memory with memblock_add[_node]() before calling 2405 * free_area_init() passing in the PFN each zone ends at. At a basic 2406 * usage, an architecture is expected to do something like 2407 * 2408 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2409 * max_highmem_pfn}; 2410 * for_each_valid_physical_page_range() 2411 * memblock_add_node(base, size, nid) 2412 * free_area_init(max_zone_pfns); 2413 */ 2414 void free_area_init(unsigned long *max_zone_pfn); 2415 unsigned long node_map_pfn_alignment(void); 2416 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2417 unsigned long end_pfn); 2418 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2419 unsigned long end_pfn); 2420 extern void get_pfn_range_for_nid(unsigned int nid, 2421 unsigned long *start_pfn, unsigned long *end_pfn); 2422 extern unsigned long find_min_pfn_with_active_regions(void); 2423 2424 #ifndef CONFIG_NEED_MULTIPLE_NODES 2425 static inline int early_pfn_to_nid(unsigned long pfn) 2426 { 2427 return 0; 2428 } 2429 #else 2430 /* please see mm/page_alloc.c */ 2431 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2432 #endif 2433 2434 extern void set_dma_reserve(unsigned long new_dma_reserve); 2435 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2436 enum meminit_context, struct vmem_altmap *, int migratetype); 2437 extern void setup_per_zone_wmarks(void); 2438 extern int __meminit init_per_zone_wmark_min(void); 2439 extern void mem_init(void); 2440 extern void __init mmap_init(void); 2441 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2442 extern long si_mem_available(void); 2443 extern void si_meminfo(struct sysinfo * val); 2444 extern void si_meminfo_node(struct sysinfo *val, int nid); 2445 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2446 extern unsigned long arch_reserved_kernel_pages(void); 2447 #endif 2448 2449 extern __printf(3, 4) 2450 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2451 2452 extern void setup_per_cpu_pageset(void); 2453 2454 /* page_alloc.c */ 2455 extern int min_free_kbytes; 2456 extern int watermark_boost_factor; 2457 extern int watermark_scale_factor; 2458 extern bool arch_has_descending_max_zone_pfns(void); 2459 2460 /* nommu.c */ 2461 extern atomic_long_t mmap_pages_allocated; 2462 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2463 2464 /* interval_tree.c */ 2465 void vma_interval_tree_insert(struct vm_area_struct *node, 2466 struct rb_root_cached *root); 2467 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2468 struct vm_area_struct *prev, 2469 struct rb_root_cached *root); 2470 void vma_interval_tree_remove(struct vm_area_struct *node, 2471 struct rb_root_cached *root); 2472 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2473 unsigned long start, unsigned long last); 2474 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2475 unsigned long start, unsigned long last); 2476 2477 #define vma_interval_tree_foreach(vma, root, start, last) \ 2478 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2479 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2480 2481 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2482 struct rb_root_cached *root); 2483 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2484 struct rb_root_cached *root); 2485 struct anon_vma_chain * 2486 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2487 unsigned long start, unsigned long last); 2488 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2489 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2490 #ifdef CONFIG_DEBUG_VM_RB 2491 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2492 #endif 2493 2494 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2495 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2496 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2497 2498 /* mmap.c */ 2499 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2500 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2501 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2502 struct vm_area_struct *expand); 2503 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2505 { 2506 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2507 } 2508 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2509 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2510 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2511 struct mempolicy *, struct vm_userfaultfd_ctx); 2512 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2513 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2514 unsigned long addr, int new_below); 2515 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2516 unsigned long addr, int new_below); 2517 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2518 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2519 struct rb_node **, struct rb_node *); 2520 extern void unlink_file_vma(struct vm_area_struct *); 2521 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2522 unsigned long addr, unsigned long len, pgoff_t pgoff, 2523 bool *need_rmap_locks); 2524 extern void exit_mmap(struct mm_struct *); 2525 2526 static inline int check_data_rlimit(unsigned long rlim, 2527 unsigned long new, 2528 unsigned long start, 2529 unsigned long end_data, 2530 unsigned long start_data) 2531 { 2532 if (rlim < RLIM_INFINITY) { 2533 if (((new - start) + (end_data - start_data)) > rlim) 2534 return -ENOSPC; 2535 } 2536 2537 return 0; 2538 } 2539 2540 extern int mm_take_all_locks(struct mm_struct *mm); 2541 extern void mm_drop_all_locks(struct mm_struct *mm); 2542 2543 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2544 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2545 extern struct file *get_task_exe_file(struct task_struct *task); 2546 2547 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2548 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2549 2550 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2551 const struct vm_special_mapping *sm); 2552 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2553 unsigned long addr, unsigned long len, 2554 unsigned long flags, 2555 const struct vm_special_mapping *spec); 2556 /* This is an obsolete alternative to _install_special_mapping. */ 2557 extern int install_special_mapping(struct mm_struct *mm, 2558 unsigned long addr, unsigned long len, 2559 unsigned long flags, struct page **pages); 2560 2561 unsigned long randomize_stack_top(unsigned long stack_top); 2562 2563 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2564 2565 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2566 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2567 struct list_head *uf); 2568 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2569 unsigned long len, unsigned long prot, unsigned long flags, 2570 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2571 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2572 struct list_head *uf, bool downgrade); 2573 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2574 struct list_head *uf); 2575 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2576 2577 #ifdef CONFIG_MMU 2578 extern int __mm_populate(unsigned long addr, unsigned long len, 2579 int ignore_errors); 2580 static inline void mm_populate(unsigned long addr, unsigned long len) 2581 { 2582 /* Ignore errors */ 2583 (void) __mm_populate(addr, len, 1); 2584 } 2585 #else 2586 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2587 #endif 2588 2589 /* These take the mm semaphore themselves */ 2590 extern int __must_check vm_brk(unsigned long, unsigned long); 2591 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2592 extern int vm_munmap(unsigned long, size_t); 2593 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2594 unsigned long, unsigned long, 2595 unsigned long, unsigned long); 2596 2597 struct vm_unmapped_area_info { 2598 #define VM_UNMAPPED_AREA_TOPDOWN 1 2599 unsigned long flags; 2600 unsigned long length; 2601 unsigned long low_limit; 2602 unsigned long high_limit; 2603 unsigned long align_mask; 2604 unsigned long align_offset; 2605 }; 2606 2607 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2608 2609 /* truncate.c */ 2610 extern void truncate_inode_pages(struct address_space *, loff_t); 2611 extern void truncate_inode_pages_range(struct address_space *, 2612 loff_t lstart, loff_t lend); 2613 extern void truncate_inode_pages_final(struct address_space *); 2614 2615 /* generic vm_area_ops exported for stackable file systems */ 2616 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2617 extern void filemap_map_pages(struct vm_fault *vmf, 2618 pgoff_t start_pgoff, pgoff_t end_pgoff); 2619 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2620 2621 /* mm/page-writeback.c */ 2622 int __must_check write_one_page(struct page *page); 2623 void task_dirty_inc(struct task_struct *tsk); 2624 2625 extern unsigned long stack_guard_gap; 2626 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2627 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2628 2629 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2630 extern int expand_downwards(struct vm_area_struct *vma, 2631 unsigned long address); 2632 #if VM_GROWSUP 2633 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2634 #else 2635 #define expand_upwards(vma, address) (0) 2636 #endif 2637 2638 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2639 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2640 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2641 struct vm_area_struct **pprev); 2642 2643 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2644 NULL if none. Assume start_addr < end_addr. */ 2645 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2646 { 2647 struct vm_area_struct * vma = find_vma(mm,start_addr); 2648 2649 if (vma && end_addr <= vma->vm_start) 2650 vma = NULL; 2651 return vma; 2652 } 2653 2654 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2655 { 2656 unsigned long vm_start = vma->vm_start; 2657 2658 if (vma->vm_flags & VM_GROWSDOWN) { 2659 vm_start -= stack_guard_gap; 2660 if (vm_start > vma->vm_start) 2661 vm_start = 0; 2662 } 2663 return vm_start; 2664 } 2665 2666 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2667 { 2668 unsigned long vm_end = vma->vm_end; 2669 2670 if (vma->vm_flags & VM_GROWSUP) { 2671 vm_end += stack_guard_gap; 2672 if (vm_end < vma->vm_end) 2673 vm_end = -PAGE_SIZE; 2674 } 2675 return vm_end; 2676 } 2677 2678 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2679 { 2680 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2681 } 2682 2683 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2684 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2685 unsigned long vm_start, unsigned long vm_end) 2686 { 2687 struct vm_area_struct *vma = find_vma(mm, vm_start); 2688 2689 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2690 vma = NULL; 2691 2692 return vma; 2693 } 2694 2695 static inline bool range_in_vma(struct vm_area_struct *vma, 2696 unsigned long start, unsigned long end) 2697 { 2698 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2699 } 2700 2701 #ifdef CONFIG_MMU 2702 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2703 void vma_set_page_prot(struct vm_area_struct *vma); 2704 #else 2705 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2706 { 2707 return __pgprot(0); 2708 } 2709 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2710 { 2711 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2712 } 2713 #endif 2714 2715 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2716 2717 #ifdef CONFIG_NUMA_BALANCING 2718 unsigned long change_prot_numa(struct vm_area_struct *vma, 2719 unsigned long start, unsigned long end); 2720 #endif 2721 2722 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2723 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2724 unsigned long pfn, unsigned long size, pgprot_t); 2725 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2726 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2727 struct page **pages, unsigned long *num); 2728 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2729 unsigned long num); 2730 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2731 unsigned long num); 2732 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2733 unsigned long pfn); 2734 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2735 unsigned long pfn, pgprot_t pgprot); 2736 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2737 pfn_t pfn); 2738 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2739 pfn_t pfn, pgprot_t pgprot); 2740 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2741 unsigned long addr, pfn_t pfn); 2742 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2743 2744 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2745 unsigned long addr, struct page *page) 2746 { 2747 int err = vm_insert_page(vma, addr, page); 2748 2749 if (err == -ENOMEM) 2750 return VM_FAULT_OOM; 2751 if (err < 0 && err != -EBUSY) 2752 return VM_FAULT_SIGBUS; 2753 2754 return VM_FAULT_NOPAGE; 2755 } 2756 2757 #ifndef io_remap_pfn_range 2758 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2759 unsigned long addr, unsigned long pfn, 2760 unsigned long size, pgprot_t prot) 2761 { 2762 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2763 } 2764 #endif 2765 2766 static inline vm_fault_t vmf_error(int err) 2767 { 2768 if (err == -ENOMEM) 2769 return VM_FAULT_OOM; 2770 return VM_FAULT_SIGBUS; 2771 } 2772 2773 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2774 unsigned int foll_flags); 2775 2776 #define FOLL_WRITE 0x01 /* check pte is writable */ 2777 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2778 #define FOLL_GET 0x04 /* do get_page on page */ 2779 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2780 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2781 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2782 * and return without waiting upon it */ 2783 #define FOLL_POPULATE 0x40 /* fault in page */ 2784 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2785 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2786 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2787 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2788 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2789 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2790 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2791 #define FOLL_COW 0x4000 /* internal GUP flag */ 2792 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2793 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2794 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2795 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2796 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2797 2798 /* 2799 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2800 * other. Here is what they mean, and how to use them: 2801 * 2802 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2803 * period _often_ under userspace control. This is in contrast to 2804 * iov_iter_get_pages(), whose usages are transient. 2805 * 2806 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2807 * lifetime enforced by the filesystem and we need guarantees that longterm 2808 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2809 * the filesystem. Ideas for this coordination include revoking the longterm 2810 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2811 * added after the problem with filesystems was found FS DAX VMAs are 2812 * specifically failed. Filesystem pages are still subject to bugs and use of 2813 * FOLL_LONGTERM should be avoided on those pages. 2814 * 2815 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2816 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2817 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2818 * is due to an incompatibility with the FS DAX check and 2819 * FAULT_FLAG_ALLOW_RETRY. 2820 * 2821 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2822 * that region. And so, CMA attempts to migrate the page before pinning, when 2823 * FOLL_LONGTERM is specified. 2824 * 2825 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2826 * but an additional pin counting system) will be invoked. This is intended for 2827 * anything that gets a page reference and then touches page data (for example, 2828 * Direct IO). This lets the filesystem know that some non-file-system entity is 2829 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2830 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2831 * a call to unpin_user_page(). 2832 * 2833 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2834 * and separate refcounting mechanisms, however, and that means that each has 2835 * its own acquire and release mechanisms: 2836 * 2837 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2838 * 2839 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2840 * 2841 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2842 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2843 * calls applied to them, and that's perfectly OK. This is a constraint on the 2844 * callers, not on the pages.) 2845 * 2846 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2847 * directly by the caller. That's in order to help avoid mismatches when 2848 * releasing pages: get_user_pages*() pages must be released via put_page(), 2849 * while pin_user_pages*() pages must be released via unpin_user_page(). 2850 * 2851 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2852 */ 2853 2854 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2855 { 2856 if (vm_fault & VM_FAULT_OOM) 2857 return -ENOMEM; 2858 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2859 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2860 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2861 return -EFAULT; 2862 return 0; 2863 } 2864 2865 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2866 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2867 unsigned long size, pte_fn_t fn, void *data); 2868 extern int apply_to_existing_page_range(struct mm_struct *mm, 2869 unsigned long address, unsigned long size, 2870 pte_fn_t fn, void *data); 2871 2872 extern void init_mem_debugging_and_hardening(void); 2873 #ifdef CONFIG_PAGE_POISONING 2874 extern void __kernel_poison_pages(struct page *page, int numpages); 2875 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2876 extern bool _page_poisoning_enabled_early; 2877 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2878 static inline bool page_poisoning_enabled(void) 2879 { 2880 return _page_poisoning_enabled_early; 2881 } 2882 /* 2883 * For use in fast paths after init_mem_debugging() has run, or when a 2884 * false negative result is not harmful when called too early. 2885 */ 2886 static inline bool page_poisoning_enabled_static(void) 2887 { 2888 return static_branch_unlikely(&_page_poisoning_enabled); 2889 } 2890 static inline void kernel_poison_pages(struct page *page, int numpages) 2891 { 2892 if (page_poisoning_enabled_static()) 2893 __kernel_poison_pages(page, numpages); 2894 } 2895 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2896 { 2897 if (page_poisoning_enabled_static()) 2898 __kernel_unpoison_pages(page, numpages); 2899 } 2900 #else 2901 static inline bool page_poisoning_enabled(void) { return false; } 2902 static inline bool page_poisoning_enabled_static(void) { return false; } 2903 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2904 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2905 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2906 #endif 2907 2908 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2909 static inline bool want_init_on_alloc(gfp_t flags) 2910 { 2911 if (static_branch_unlikely(&init_on_alloc)) 2912 return true; 2913 return flags & __GFP_ZERO; 2914 } 2915 2916 DECLARE_STATIC_KEY_FALSE(init_on_free); 2917 static inline bool want_init_on_free(void) 2918 { 2919 return static_branch_unlikely(&init_on_free); 2920 } 2921 2922 extern bool _debug_pagealloc_enabled_early; 2923 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2924 2925 static inline bool debug_pagealloc_enabled(void) 2926 { 2927 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2928 _debug_pagealloc_enabled_early; 2929 } 2930 2931 /* 2932 * For use in fast paths after init_debug_pagealloc() has run, or when a 2933 * false negative result is not harmful when called too early. 2934 */ 2935 static inline bool debug_pagealloc_enabled_static(void) 2936 { 2937 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2938 return false; 2939 2940 return static_branch_unlikely(&_debug_pagealloc_enabled); 2941 } 2942 2943 #ifdef CONFIG_DEBUG_PAGEALLOC 2944 /* 2945 * To support DEBUG_PAGEALLOC architecture must ensure that 2946 * __kernel_map_pages() never fails 2947 */ 2948 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2949 2950 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2951 { 2952 if (debug_pagealloc_enabled_static()) 2953 __kernel_map_pages(page, numpages, 1); 2954 } 2955 2956 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2957 { 2958 if (debug_pagealloc_enabled_static()) 2959 __kernel_map_pages(page, numpages, 0); 2960 } 2961 #else /* CONFIG_DEBUG_PAGEALLOC */ 2962 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2963 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2964 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2965 2966 #ifdef __HAVE_ARCH_GATE_AREA 2967 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2968 extern int in_gate_area_no_mm(unsigned long addr); 2969 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2970 #else 2971 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2972 { 2973 return NULL; 2974 } 2975 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2976 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2977 { 2978 return 0; 2979 } 2980 #endif /* __HAVE_ARCH_GATE_AREA */ 2981 2982 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2983 2984 #ifdef CONFIG_SYSCTL 2985 extern int sysctl_drop_caches; 2986 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2987 loff_t *); 2988 #endif 2989 2990 void drop_slab(void); 2991 void drop_slab_node(int nid); 2992 2993 #ifndef CONFIG_MMU 2994 #define randomize_va_space 0 2995 #else 2996 extern int randomize_va_space; 2997 #endif 2998 2999 const char * arch_vma_name(struct vm_area_struct *vma); 3000 #ifdef CONFIG_MMU 3001 void print_vma_addr(char *prefix, unsigned long rip); 3002 #else 3003 static inline void print_vma_addr(char *prefix, unsigned long rip) 3004 { 3005 } 3006 #endif 3007 3008 void *sparse_buffer_alloc(unsigned long size); 3009 struct page * __populate_section_memmap(unsigned long pfn, 3010 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3011 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3012 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3013 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3014 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3015 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3016 struct vmem_altmap *altmap); 3017 void *vmemmap_alloc_block(unsigned long size, int node); 3018 struct vmem_altmap; 3019 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3020 struct vmem_altmap *altmap); 3021 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3022 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3023 int node, struct vmem_altmap *altmap); 3024 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3025 struct vmem_altmap *altmap); 3026 void vmemmap_populate_print_last(void); 3027 #ifdef CONFIG_MEMORY_HOTPLUG 3028 void vmemmap_free(unsigned long start, unsigned long end, 3029 struct vmem_altmap *altmap); 3030 #endif 3031 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3032 unsigned long nr_pages); 3033 3034 enum mf_flags { 3035 MF_COUNT_INCREASED = 1 << 0, 3036 MF_ACTION_REQUIRED = 1 << 1, 3037 MF_MUST_KILL = 1 << 2, 3038 MF_SOFT_OFFLINE = 1 << 3, 3039 }; 3040 extern int memory_failure(unsigned long pfn, int flags); 3041 extern void memory_failure_queue(unsigned long pfn, int flags); 3042 extern void memory_failure_queue_kick(int cpu); 3043 extern int unpoison_memory(unsigned long pfn); 3044 extern int sysctl_memory_failure_early_kill; 3045 extern int sysctl_memory_failure_recovery; 3046 extern void shake_page(struct page *p, int access); 3047 extern atomic_long_t num_poisoned_pages __read_mostly; 3048 extern int soft_offline_page(unsigned long pfn, int flags); 3049 3050 3051 /* 3052 * Error handlers for various types of pages. 3053 */ 3054 enum mf_result { 3055 MF_IGNORED, /* Error: cannot be handled */ 3056 MF_FAILED, /* Error: handling failed */ 3057 MF_DELAYED, /* Will be handled later */ 3058 MF_RECOVERED, /* Successfully recovered */ 3059 }; 3060 3061 enum mf_action_page_type { 3062 MF_MSG_KERNEL, 3063 MF_MSG_KERNEL_HIGH_ORDER, 3064 MF_MSG_SLAB, 3065 MF_MSG_DIFFERENT_COMPOUND, 3066 MF_MSG_POISONED_HUGE, 3067 MF_MSG_HUGE, 3068 MF_MSG_FREE_HUGE, 3069 MF_MSG_NON_PMD_HUGE, 3070 MF_MSG_UNMAP_FAILED, 3071 MF_MSG_DIRTY_SWAPCACHE, 3072 MF_MSG_CLEAN_SWAPCACHE, 3073 MF_MSG_DIRTY_MLOCKED_LRU, 3074 MF_MSG_CLEAN_MLOCKED_LRU, 3075 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3076 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3077 MF_MSG_DIRTY_LRU, 3078 MF_MSG_CLEAN_LRU, 3079 MF_MSG_TRUNCATED_LRU, 3080 MF_MSG_BUDDY, 3081 MF_MSG_BUDDY_2ND, 3082 MF_MSG_DAX, 3083 MF_MSG_UNSPLIT_THP, 3084 MF_MSG_UNKNOWN, 3085 }; 3086 3087 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3088 extern void clear_huge_page(struct page *page, 3089 unsigned long addr_hint, 3090 unsigned int pages_per_huge_page); 3091 extern void copy_user_huge_page(struct page *dst, struct page *src, 3092 unsigned long addr_hint, 3093 struct vm_area_struct *vma, 3094 unsigned int pages_per_huge_page); 3095 extern long copy_huge_page_from_user(struct page *dst_page, 3096 const void __user *usr_src, 3097 unsigned int pages_per_huge_page, 3098 bool allow_pagefault); 3099 3100 /** 3101 * vma_is_special_huge - Are transhuge page-table entries considered special? 3102 * @vma: Pointer to the struct vm_area_struct to consider 3103 * 3104 * Whether transhuge page-table entries are considered "special" following 3105 * the definition in vm_normal_page(). 3106 * 3107 * Return: true if transhuge page-table entries should be considered special, 3108 * false otherwise. 3109 */ 3110 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3111 { 3112 return vma_is_dax(vma) || (vma->vm_file && 3113 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3114 } 3115 3116 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3117 3118 #ifdef CONFIG_DEBUG_PAGEALLOC 3119 extern unsigned int _debug_guardpage_minorder; 3120 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3121 3122 static inline unsigned int debug_guardpage_minorder(void) 3123 { 3124 return _debug_guardpage_minorder; 3125 } 3126 3127 static inline bool debug_guardpage_enabled(void) 3128 { 3129 return static_branch_unlikely(&_debug_guardpage_enabled); 3130 } 3131 3132 static inline bool page_is_guard(struct page *page) 3133 { 3134 if (!debug_guardpage_enabled()) 3135 return false; 3136 3137 return PageGuard(page); 3138 } 3139 #else 3140 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3141 static inline bool debug_guardpage_enabled(void) { return false; } 3142 static inline bool page_is_guard(struct page *page) { return false; } 3143 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3144 3145 #if MAX_NUMNODES > 1 3146 void __init setup_nr_node_ids(void); 3147 #else 3148 static inline void setup_nr_node_ids(void) {} 3149 #endif 3150 3151 extern int memcmp_pages(struct page *page1, struct page *page2); 3152 3153 static inline int pages_identical(struct page *page1, struct page *page2) 3154 { 3155 return !memcmp_pages(page1, page2); 3156 } 3157 3158 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3159 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3160 pgoff_t first_index, pgoff_t nr, 3161 pgoff_t bitmap_pgoff, 3162 unsigned long *bitmap, 3163 pgoff_t *start, 3164 pgoff_t *end); 3165 3166 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3167 pgoff_t first_index, pgoff_t nr); 3168 #endif 3169 3170 extern int sysctl_nr_trim_pages; 3171 3172 #endif /* __KERNEL__ */ 3173 #endif /* _LINUX_MM_H */ 3174