1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page_ref.h> 28 #include <linux/memremap.h> 29 #include <linux/overflow.h> 30 #include <linux/sizes.h> 31 #include <linux/sched.h> 32 #include <linux/pgtable.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct file_ra_state; 38 struct user_struct; 39 struct writeback_control; 40 struct bdi_writeback; 41 42 void init_mm_internals(void); 43 44 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 45 extern unsigned long max_mapnr; 46 47 static inline void set_max_mapnr(unsigned long limit) 48 { 49 max_mapnr = limit; 50 } 51 #else 52 static inline void set_max_mapnr(unsigned long limit) { } 53 #endif 54 55 extern atomic_long_t _totalram_pages; 56 static inline unsigned long totalram_pages(void) 57 { 58 return (unsigned long)atomic_long_read(&_totalram_pages); 59 } 60 61 static inline void totalram_pages_inc(void) 62 { 63 atomic_long_inc(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_dec(void) 67 { 68 atomic_long_dec(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_add(long count) 72 { 73 atomic_long_add(count, &_totalram_pages); 74 } 75 76 extern void * high_memory; 77 extern int page_cluster; 78 79 #ifdef CONFIG_SYSCTL 80 extern int sysctl_legacy_va_layout; 81 #else 82 #define sysctl_legacy_va_layout 0 83 #endif 84 85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86 extern const int mmap_rnd_bits_min; 87 extern const int mmap_rnd_bits_max; 88 extern int mmap_rnd_bits __read_mostly; 89 #endif 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91 extern const int mmap_rnd_compat_bits_min; 92 extern const int mmap_rnd_compat_bits_max; 93 extern int mmap_rnd_compat_bits __read_mostly; 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 /* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for arcitectures that don't support memory tagging. 105 */ 106 #ifndef untagged_addr 107 #define untagged_addr(addr) (addr) 108 #endif 109 110 #ifndef __pa_symbol 111 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112 #endif 113 114 #ifndef page_to_virt 115 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116 #endif 117 118 #ifndef lm_alias 119 #define lm_alias(x) __va(__pa_symbol(x)) 120 #endif 121 122 /* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129 #ifndef mm_forbids_zeropage 130 #define mm_forbids_zeropage(X) (0) 131 #endif 132 133 /* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139 #if BITS_PER_LONG == 64 140 /* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statments if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147 static inline void __mm_zero_struct_page(struct page *page) 148 { 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; /* fallthrough */ 159 case 72: 160 _pp[8] = 0; /* fallthrough */ 161 case 64: 162 _pp[7] = 0; /* fallthrough */ 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 210 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 211 212 /* to align the pointer to the (next) page boundary */ 213 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 214 215 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 216 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 217 218 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 219 220 /* 221 * Linux kernel virtual memory manager primitives. 222 * The idea being to have a "virtual" mm in the same way 223 * we have a virtual fs - giving a cleaner interface to the 224 * mm details, and allowing different kinds of memory mappings 225 * (from shared memory to executable loading to arbitrary 226 * mmap() functions). 227 */ 228 229 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 230 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 231 void vm_area_free(struct vm_area_struct *); 232 233 #ifndef CONFIG_MMU 234 extern struct rb_root nommu_region_tree; 235 extern struct rw_semaphore nommu_region_sem; 236 237 extern unsigned int kobjsize(const void *objp); 238 #endif 239 240 /* 241 * vm_flags in vm_area_struct, see mm_types.h. 242 * When changing, update also include/trace/events/mmflags.h 243 */ 244 #define VM_NONE 0x00000000 245 246 #define VM_READ 0x00000001 /* currently active flags */ 247 #define VM_WRITE 0x00000002 248 #define VM_EXEC 0x00000004 249 #define VM_SHARED 0x00000008 250 251 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 252 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 253 #define VM_MAYWRITE 0x00000020 254 #define VM_MAYEXEC 0x00000040 255 #define VM_MAYSHARE 0x00000080 256 257 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 258 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 259 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 260 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 261 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 262 263 #define VM_LOCKED 0x00002000 264 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 265 266 /* Used by sys_madvise() */ 267 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 268 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 269 270 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 271 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 272 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 273 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 274 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 275 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 276 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 277 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 278 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 279 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 280 281 #ifdef CONFIG_MEM_SOFT_DIRTY 282 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 283 #else 284 # define VM_SOFTDIRTY 0 285 #endif 286 287 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 288 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 289 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 290 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 291 292 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 293 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 299 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 300 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 301 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 302 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 303 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 304 305 #ifdef CONFIG_ARCH_HAS_PKEYS 306 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 307 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 308 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 309 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 310 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 311 #ifdef CONFIG_PPC 312 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 313 #else 314 # define VM_PKEY_BIT4 0 315 #endif 316 #endif /* CONFIG_ARCH_HAS_PKEYS */ 317 318 #if defined(CONFIG_X86) 319 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 320 #elif defined(CONFIG_PPC) 321 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 322 #elif defined(CONFIG_PARISC) 323 # define VM_GROWSUP VM_ARCH_1 324 #elif defined(CONFIG_IA64) 325 # define VM_GROWSUP VM_ARCH_1 326 #elif defined(CONFIG_SPARC64) 327 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 328 # define VM_ARCH_CLEAR VM_SPARC_ADI 329 #elif defined(CONFIG_ARM64) 330 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 331 # define VM_ARCH_CLEAR VM_ARM64_BTI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #ifndef VM_GROWSUP 337 # define VM_GROWSUP VM_NONE 338 #endif 339 340 /* Bits set in the VMA until the stack is in its final location */ 341 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 342 343 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 344 345 /* Common data flag combinations */ 346 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 347 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 348 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 349 VM_MAYWRITE | VM_MAYEXEC) 350 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 351 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 352 353 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 354 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 355 #endif 356 357 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 358 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 359 #endif 360 361 #ifdef CONFIG_STACK_GROWSUP 362 #define VM_STACK VM_GROWSUP 363 #else 364 #define VM_STACK VM_GROWSDOWN 365 #endif 366 367 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 368 369 /* VMA basic access permission flags */ 370 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 371 372 373 /* 374 * Special vmas that are non-mergable, non-mlock()able. 375 */ 376 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 377 378 /* This mask prevents VMA from being scanned with khugepaged */ 379 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 380 381 /* This mask defines which mm->def_flags a process can inherit its parent */ 382 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 383 384 /* This mask is used to clear all the VMA flags used by mlock */ 385 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 386 387 /* Arch-specific flags to clear when updating VM flags on protection change */ 388 #ifndef VM_ARCH_CLEAR 389 # define VM_ARCH_CLEAR VM_NONE 390 #endif 391 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 392 393 /* 394 * mapping from the currently active vm_flags protection bits (the 395 * low four bits) to a page protection mask.. 396 */ 397 extern pgprot_t protection_map[16]; 398 399 /** 400 * Fault flag definitions. 401 * 402 * @FAULT_FLAG_WRITE: Fault was a write fault. 403 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 404 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 405 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 406 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 407 * @FAULT_FLAG_TRIED: The fault has been tried once. 408 * @FAULT_FLAG_USER: The fault originated in userspace. 409 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 410 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 411 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 412 * 413 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 414 * whether we would allow page faults to retry by specifying these two 415 * fault flags correctly. Currently there can be three legal combinations: 416 * 417 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 418 * this is the first try 419 * 420 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 421 * we've already tried at least once 422 * 423 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 424 * 425 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 426 * be used. Note that page faults can be allowed to retry for multiple times, 427 * in which case we'll have an initial fault with flags (a) then later on 428 * continuous faults with flags (b). We should always try to detect pending 429 * signals before a retry to make sure the continuous page faults can still be 430 * interrupted if necessary. 431 */ 432 #define FAULT_FLAG_WRITE 0x01 433 #define FAULT_FLAG_MKWRITE 0x02 434 #define FAULT_FLAG_ALLOW_RETRY 0x04 435 #define FAULT_FLAG_RETRY_NOWAIT 0x08 436 #define FAULT_FLAG_KILLABLE 0x10 437 #define FAULT_FLAG_TRIED 0x20 438 #define FAULT_FLAG_USER 0x40 439 #define FAULT_FLAG_REMOTE 0x80 440 #define FAULT_FLAG_INSTRUCTION 0x100 441 #define FAULT_FLAG_INTERRUPTIBLE 0x200 442 443 /* 444 * The default fault flags that should be used by most of the 445 * arch-specific page fault handlers. 446 */ 447 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 448 FAULT_FLAG_KILLABLE | \ 449 FAULT_FLAG_INTERRUPTIBLE) 450 451 /** 452 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 453 * 454 * This is mostly used for places where we want to try to avoid taking 455 * the mmap_lock for too long a time when waiting for another condition 456 * to change, in which case we can try to be polite to release the 457 * mmap_lock in the first round to avoid potential starvation of other 458 * processes that would also want the mmap_lock. 459 * 460 * Return: true if the page fault allows retry and this is the first 461 * attempt of the fault handling; false otherwise. 462 */ 463 static inline bool fault_flag_allow_retry_first(unsigned int flags) 464 { 465 return (flags & FAULT_FLAG_ALLOW_RETRY) && 466 (!(flags & FAULT_FLAG_TRIED)); 467 } 468 469 #define FAULT_FLAG_TRACE \ 470 { FAULT_FLAG_WRITE, "WRITE" }, \ 471 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 472 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 473 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 474 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 475 { FAULT_FLAG_TRIED, "TRIED" }, \ 476 { FAULT_FLAG_USER, "USER" }, \ 477 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 478 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 479 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 480 481 /* 482 * vm_fault is filled by the the pagefault handler and passed to the vma's 483 * ->fault function. The vma's ->fault is responsible for returning a bitmask 484 * of VM_FAULT_xxx flags that give details about how the fault was handled. 485 * 486 * MM layer fills up gfp_mask for page allocations but fault handler might 487 * alter it if its implementation requires a different allocation context. 488 * 489 * pgoff should be used in favour of virtual_address, if possible. 490 */ 491 struct vm_fault { 492 struct vm_area_struct *vma; /* Target VMA */ 493 unsigned int flags; /* FAULT_FLAG_xxx flags */ 494 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 495 pgoff_t pgoff; /* Logical page offset based on vma */ 496 unsigned long address; /* Faulting virtual address */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 pte_t orig_pte; /* Value of PTE at the time of fault */ 503 504 struct page *cow_page; /* Page handler may use for COW fault */ 505 struct page *page; /* ->fault handlers should return a 506 * page here, unless VM_FAULT_NOPAGE 507 * is set (which is also implied by 508 * VM_FAULT_ERROR). 509 */ 510 /* These three entries are valid only while holding ptl lock */ 511 pte_t *pte; /* Pointer to pte entry matching 512 * the 'address'. NULL if the page 513 * table hasn't been allocated. 514 */ 515 spinlock_t *ptl; /* Page table lock. 516 * Protects pte page table if 'pte' 517 * is not NULL, otherwise pmd. 518 */ 519 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 520 * vm_ops->map_pages() calls 521 * alloc_set_pte() from atomic context. 522 * do_fault_around() pre-allocates 523 * page table to avoid allocation from 524 * atomic context. 525 */ 526 }; 527 528 /* page entry size for vm->huge_fault() */ 529 enum page_entry_size { 530 PE_SIZE_PTE = 0, 531 PE_SIZE_PMD, 532 PE_SIZE_PUD, 533 }; 534 535 /* 536 * These are the virtual MM functions - opening of an area, closing and 537 * unmapping it (needed to keep files on disk up-to-date etc), pointer 538 * to the functions called when a no-page or a wp-page exception occurs. 539 */ 540 struct vm_operations_struct { 541 void (*open)(struct vm_area_struct * area); 542 void (*close)(struct vm_area_struct * area); 543 int (*split)(struct vm_area_struct * area, unsigned long addr); 544 int (*mremap)(struct vm_area_struct * area); 545 vm_fault_t (*fault)(struct vm_fault *vmf); 546 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 547 enum page_entry_size pe_size); 548 void (*map_pages)(struct vm_fault *vmf, 549 pgoff_t start_pgoff, pgoff_t end_pgoff); 550 unsigned long (*pagesize)(struct vm_area_struct * area); 551 552 /* notification that a previously read-only page is about to become 553 * writable, if an error is returned it will cause a SIGBUS */ 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 555 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 558 559 /* called by access_process_vm when get_user_pages() fails, typically 560 * for use by special VMAs that can switch between memory and hardware 561 */ 562 int (*access)(struct vm_area_struct *vma, unsigned long addr, 563 void *buf, int len, int write); 564 565 /* Called by the /proc/PID/maps code to ask the vma whether it 566 * has a special name. Returning non-NULL will also cause this 567 * vma to be dumped unconditionally. */ 568 const char *(*name)(struct vm_area_struct *vma); 569 570 #ifdef CONFIG_NUMA 571 /* 572 * set_policy() op must add a reference to any non-NULL @new mempolicy 573 * to hold the policy upon return. Caller should pass NULL @new to 574 * remove a policy and fall back to surrounding context--i.e. do not 575 * install a MPOL_DEFAULT policy, nor the task or system default 576 * mempolicy. 577 */ 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 579 580 /* 581 * get_policy() op must add reference [mpol_get()] to any policy at 582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 583 * in mm/mempolicy.c will do this automatically. 584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 585 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 587 * must return NULL--i.e., do not "fallback" to task or system default 588 * policy. 589 */ 590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 591 unsigned long addr); 592 #endif 593 /* 594 * Called by vm_normal_page() for special PTEs to find the 595 * page for @addr. This is useful if the default behavior 596 * (using pte_page()) would not find the correct page. 597 */ 598 struct page *(*find_special_page)(struct vm_area_struct *vma, 599 unsigned long addr); 600 }; 601 602 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 603 { 604 static const struct vm_operations_struct dummy_vm_ops = {}; 605 606 memset(vma, 0, sizeof(*vma)); 607 vma->vm_mm = mm; 608 vma->vm_ops = &dummy_vm_ops; 609 INIT_LIST_HEAD(&vma->anon_vma_chain); 610 } 611 612 static inline void vma_set_anonymous(struct vm_area_struct *vma) 613 { 614 vma->vm_ops = NULL; 615 } 616 617 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 618 { 619 return !vma->vm_ops; 620 } 621 622 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 623 { 624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 625 626 if (!maybe_stack) 627 return false; 628 629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 630 VM_STACK_INCOMPLETE_SETUP) 631 return true; 632 633 return false; 634 } 635 636 static inline bool vma_is_foreign(struct vm_area_struct *vma) 637 { 638 if (!current->mm) 639 return true; 640 641 if (current->mm != vma->vm_mm) 642 return true; 643 644 return false; 645 } 646 647 static inline bool vma_is_accessible(struct vm_area_struct *vma) 648 { 649 return vma->vm_flags & VM_ACCESS_FLAGS; 650 } 651 652 #ifdef CONFIG_SHMEM 653 /* 654 * The vma_is_shmem is not inline because it is used only by slow 655 * paths in userfault. 656 */ 657 bool vma_is_shmem(struct vm_area_struct *vma); 658 #else 659 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 660 #endif 661 662 int vma_is_stack_for_current(struct vm_area_struct *vma); 663 664 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 665 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 666 667 struct mmu_gather; 668 struct inode; 669 670 /* 671 * FIXME: take this include out, include page-flags.h in 672 * files which need it (119 of them) 673 */ 674 #include <linux/page-flags.h> 675 #include <linux/huge_mm.h> 676 677 /* 678 * Methods to modify the page usage count. 679 * 680 * What counts for a page usage: 681 * - cache mapping (page->mapping) 682 * - private data (page->private) 683 * - page mapped in a task's page tables, each mapping 684 * is counted separately 685 * 686 * Also, many kernel routines increase the page count before a critical 687 * routine so they can be sure the page doesn't go away from under them. 688 */ 689 690 /* 691 * Drop a ref, return true if the refcount fell to zero (the page has no users) 692 */ 693 static inline int put_page_testzero(struct page *page) 694 { 695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 696 return page_ref_dec_and_test(page); 697 } 698 699 /* 700 * Try to grab a ref unless the page has a refcount of zero, return false if 701 * that is the case. 702 * This can be called when MMU is off so it must not access 703 * any of the virtual mappings. 704 */ 705 static inline int get_page_unless_zero(struct page *page) 706 { 707 return page_ref_add_unless(page, 1, 0); 708 } 709 710 extern int page_is_ram(unsigned long pfn); 711 712 enum { 713 REGION_INTERSECTS, 714 REGION_DISJOINT, 715 REGION_MIXED, 716 }; 717 718 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 719 unsigned long desc); 720 721 /* Support for virtually mapped pages */ 722 struct page *vmalloc_to_page(const void *addr); 723 unsigned long vmalloc_to_pfn(const void *addr); 724 725 /* 726 * Determine if an address is within the vmalloc range 727 * 728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 729 * is no special casing required. 730 */ 731 732 #ifndef is_ioremap_addr 733 #define is_ioremap_addr(x) is_vmalloc_addr(x) 734 #endif 735 736 #ifdef CONFIG_MMU 737 extern bool is_vmalloc_addr(const void *x); 738 extern int is_vmalloc_or_module_addr(const void *x); 739 #else 740 static inline bool is_vmalloc_addr(const void *x) 741 { 742 return false; 743 } 744 static inline int is_vmalloc_or_module_addr(const void *x) 745 { 746 return 0; 747 } 748 #endif 749 750 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 751 static inline void *kvmalloc(size_t size, gfp_t flags) 752 { 753 return kvmalloc_node(size, flags, NUMA_NO_NODE); 754 } 755 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 756 { 757 return kvmalloc_node(size, flags | __GFP_ZERO, node); 758 } 759 static inline void *kvzalloc(size_t size, gfp_t flags) 760 { 761 return kvmalloc(size, flags | __GFP_ZERO); 762 } 763 764 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 765 { 766 size_t bytes; 767 768 if (unlikely(check_mul_overflow(n, size, &bytes))) 769 return NULL; 770 771 return kvmalloc(bytes, flags); 772 } 773 774 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 775 { 776 return kvmalloc_array(n, size, flags | __GFP_ZERO); 777 } 778 779 extern void kvfree(const void *addr); 780 extern void kvfree_sensitive(const void *addr, size_t len); 781 782 static inline int head_mapcount(struct page *head) 783 { 784 return atomic_read(compound_mapcount_ptr(head)) + 1; 785 } 786 787 /* 788 * Mapcount of compound page as a whole, does not include mapped sub-pages. 789 * 790 * Must be called only for compound pages or any their tail sub-pages. 791 */ 792 static inline int compound_mapcount(struct page *page) 793 { 794 VM_BUG_ON_PAGE(!PageCompound(page), page); 795 page = compound_head(page); 796 return head_mapcount(page); 797 } 798 799 /* 800 * The atomic page->_mapcount, starts from -1: so that transitions 801 * both from it and to it can be tracked, using atomic_inc_and_test 802 * and atomic_add_negative(-1). 803 */ 804 static inline void page_mapcount_reset(struct page *page) 805 { 806 atomic_set(&(page)->_mapcount, -1); 807 } 808 809 int __page_mapcount(struct page *page); 810 811 /* 812 * Mapcount of 0-order page; when compound sub-page, includes 813 * compound_mapcount(). 814 * 815 * Result is undefined for pages which cannot be mapped into userspace. 816 * For example SLAB or special types of pages. See function page_has_type(). 817 * They use this place in struct page differently. 818 */ 819 static inline int page_mapcount(struct page *page) 820 { 821 if (unlikely(PageCompound(page))) 822 return __page_mapcount(page); 823 return atomic_read(&page->_mapcount) + 1; 824 } 825 826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 827 int total_mapcount(struct page *page); 828 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 829 #else 830 static inline int total_mapcount(struct page *page) 831 { 832 return page_mapcount(page); 833 } 834 static inline int page_trans_huge_mapcount(struct page *page, 835 int *total_mapcount) 836 { 837 int mapcount = page_mapcount(page); 838 if (total_mapcount) 839 *total_mapcount = mapcount; 840 return mapcount; 841 } 842 #endif 843 844 static inline struct page *virt_to_head_page(const void *x) 845 { 846 struct page *page = virt_to_page(x); 847 848 return compound_head(page); 849 } 850 851 void __put_page(struct page *page); 852 853 void put_pages_list(struct list_head *pages); 854 855 void split_page(struct page *page, unsigned int order); 856 857 /* 858 * Compound pages have a destructor function. Provide a 859 * prototype for that function and accessor functions. 860 * These are _only_ valid on the head of a compound page. 861 */ 862 typedef void compound_page_dtor(struct page *); 863 864 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 865 enum compound_dtor_id { 866 NULL_COMPOUND_DTOR, 867 COMPOUND_PAGE_DTOR, 868 #ifdef CONFIG_HUGETLB_PAGE 869 HUGETLB_PAGE_DTOR, 870 #endif 871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 872 TRANSHUGE_PAGE_DTOR, 873 #endif 874 NR_COMPOUND_DTORS, 875 }; 876 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 877 878 static inline void set_compound_page_dtor(struct page *page, 879 enum compound_dtor_id compound_dtor) 880 { 881 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 882 page[1].compound_dtor = compound_dtor; 883 } 884 885 static inline void destroy_compound_page(struct page *page) 886 { 887 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 888 compound_page_dtors[page[1].compound_dtor](page); 889 } 890 891 static inline unsigned int compound_order(struct page *page) 892 { 893 if (!PageHead(page)) 894 return 0; 895 return page[1].compound_order; 896 } 897 898 static inline bool hpage_pincount_available(struct page *page) 899 { 900 /* 901 * Can the page->hpage_pinned_refcount field be used? That field is in 902 * the 3rd page of the compound page, so the smallest (2-page) compound 903 * pages cannot support it. 904 */ 905 page = compound_head(page); 906 return PageCompound(page) && compound_order(page) > 1; 907 } 908 909 static inline int head_pincount(struct page *head) 910 { 911 return atomic_read(compound_pincount_ptr(head)); 912 } 913 914 static inline int compound_pincount(struct page *page) 915 { 916 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 917 page = compound_head(page); 918 return head_pincount(page); 919 } 920 921 static inline void set_compound_order(struct page *page, unsigned int order) 922 { 923 page[1].compound_order = order; 924 } 925 926 /* Returns the number of pages in this potentially compound page. */ 927 static inline unsigned long compound_nr(struct page *page) 928 { 929 return 1UL << compound_order(page); 930 } 931 932 /* Returns the number of bytes in this potentially compound page. */ 933 static inline unsigned long page_size(struct page *page) 934 { 935 return PAGE_SIZE << compound_order(page); 936 } 937 938 /* Returns the number of bits needed for the number of bytes in a page */ 939 static inline unsigned int page_shift(struct page *page) 940 { 941 return PAGE_SHIFT + compound_order(page); 942 } 943 944 void free_compound_page(struct page *page); 945 946 #ifdef CONFIG_MMU 947 /* 948 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 949 * servicing faults for write access. In the normal case, do always want 950 * pte_mkwrite. But get_user_pages can cause write faults for mappings 951 * that do not have writing enabled, when used by access_process_vm. 952 */ 953 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 954 { 955 if (likely(vma->vm_flags & VM_WRITE)) 956 pte = pte_mkwrite(pte); 957 return pte; 958 } 959 960 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 961 vm_fault_t finish_fault(struct vm_fault *vmf); 962 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 963 #endif 964 965 /* 966 * Multiple processes may "see" the same page. E.g. for untouched 967 * mappings of /dev/null, all processes see the same page full of 968 * zeroes, and text pages of executables and shared libraries have 969 * only one copy in memory, at most, normally. 970 * 971 * For the non-reserved pages, page_count(page) denotes a reference count. 972 * page_count() == 0 means the page is free. page->lru is then used for 973 * freelist management in the buddy allocator. 974 * page_count() > 0 means the page has been allocated. 975 * 976 * Pages are allocated by the slab allocator in order to provide memory 977 * to kmalloc and kmem_cache_alloc. In this case, the management of the 978 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 979 * unless a particular usage is carefully commented. (the responsibility of 980 * freeing the kmalloc memory is the caller's, of course). 981 * 982 * A page may be used by anyone else who does a __get_free_page(). 983 * In this case, page_count still tracks the references, and should only 984 * be used through the normal accessor functions. The top bits of page->flags 985 * and page->virtual store page management information, but all other fields 986 * are unused and could be used privately, carefully. The management of this 987 * page is the responsibility of the one who allocated it, and those who have 988 * subsequently been given references to it. 989 * 990 * The other pages (we may call them "pagecache pages") are completely 991 * managed by the Linux memory manager: I/O, buffers, swapping etc. 992 * The following discussion applies only to them. 993 * 994 * A pagecache page contains an opaque `private' member, which belongs to the 995 * page's address_space. Usually, this is the address of a circular list of 996 * the page's disk buffers. PG_private must be set to tell the VM to call 997 * into the filesystem to release these pages. 998 * 999 * A page may belong to an inode's memory mapping. In this case, page->mapping 1000 * is the pointer to the inode, and page->index is the file offset of the page, 1001 * in units of PAGE_SIZE. 1002 * 1003 * If pagecache pages are not associated with an inode, they are said to be 1004 * anonymous pages. These may become associated with the swapcache, and in that 1005 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1006 * 1007 * In either case (swapcache or inode backed), the pagecache itself holds one 1008 * reference to the page. Setting PG_private should also increment the 1009 * refcount. The each user mapping also has a reference to the page. 1010 * 1011 * The pagecache pages are stored in a per-mapping radix tree, which is 1012 * rooted at mapping->i_pages, and indexed by offset. 1013 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1014 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1015 * 1016 * All pagecache pages may be subject to I/O: 1017 * - inode pages may need to be read from disk, 1018 * - inode pages which have been modified and are MAP_SHARED may need 1019 * to be written back to the inode on disk, 1020 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1021 * modified may need to be swapped out to swap space and (later) to be read 1022 * back into memory. 1023 */ 1024 1025 /* 1026 * The zone field is never updated after free_area_init_core() 1027 * sets it, so none of the operations on it need to be atomic. 1028 */ 1029 1030 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1031 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1032 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1033 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1034 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1035 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1036 1037 /* 1038 * Define the bit shifts to access each section. For non-existent 1039 * sections we define the shift as 0; that plus a 0 mask ensures 1040 * the compiler will optimise away reference to them. 1041 */ 1042 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1043 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1044 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1045 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1046 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1047 1048 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1049 #ifdef NODE_NOT_IN_PAGE_FLAGS 1050 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1051 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1052 SECTIONS_PGOFF : ZONES_PGOFF) 1053 #else 1054 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1055 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1056 NODES_PGOFF : ZONES_PGOFF) 1057 #endif 1058 1059 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1060 1061 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1062 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1063 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1064 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1065 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1066 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1067 1068 static inline enum zone_type page_zonenum(const struct page *page) 1069 { 1070 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1071 } 1072 1073 #ifdef CONFIG_ZONE_DEVICE 1074 static inline bool is_zone_device_page(const struct page *page) 1075 { 1076 return page_zonenum(page) == ZONE_DEVICE; 1077 } 1078 extern void memmap_init_zone_device(struct zone *, unsigned long, 1079 unsigned long, struct dev_pagemap *); 1080 #else 1081 static inline bool is_zone_device_page(const struct page *page) 1082 { 1083 return false; 1084 } 1085 #endif 1086 1087 #ifdef CONFIG_DEV_PAGEMAP_OPS 1088 void free_devmap_managed_page(struct page *page); 1089 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1090 1091 static inline bool page_is_devmap_managed(struct page *page) 1092 { 1093 if (!static_branch_unlikely(&devmap_managed_key)) 1094 return false; 1095 if (!is_zone_device_page(page)) 1096 return false; 1097 switch (page->pgmap->type) { 1098 case MEMORY_DEVICE_PRIVATE: 1099 case MEMORY_DEVICE_FS_DAX: 1100 return true; 1101 default: 1102 break; 1103 } 1104 return false; 1105 } 1106 1107 void put_devmap_managed_page(struct page *page); 1108 1109 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1110 static inline bool page_is_devmap_managed(struct page *page) 1111 { 1112 return false; 1113 } 1114 1115 static inline void put_devmap_managed_page(struct page *page) 1116 { 1117 } 1118 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1119 1120 static inline bool is_device_private_page(const struct page *page) 1121 { 1122 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1123 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1124 is_zone_device_page(page) && 1125 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1126 } 1127 1128 static inline bool is_pci_p2pdma_page(const struct page *page) 1129 { 1130 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1131 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1132 is_zone_device_page(page) && 1133 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1134 } 1135 1136 /* 127: arbitrary random number, small enough to assemble well */ 1137 #define page_ref_zero_or_close_to_overflow(page) \ 1138 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1139 1140 static inline void get_page(struct page *page) 1141 { 1142 page = compound_head(page); 1143 /* 1144 * Getting a normal page or the head of a compound page 1145 * requires to already have an elevated page->_refcount. 1146 */ 1147 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1148 page_ref_inc(page); 1149 } 1150 1151 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1152 1153 static inline __must_check bool try_get_page(struct page *page) 1154 { 1155 page = compound_head(page); 1156 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1157 return false; 1158 page_ref_inc(page); 1159 return true; 1160 } 1161 1162 static inline void put_page(struct page *page) 1163 { 1164 page = compound_head(page); 1165 1166 /* 1167 * For devmap managed pages we need to catch refcount transition from 1168 * 2 to 1, when refcount reach one it means the page is free and we 1169 * need to inform the device driver through callback. See 1170 * include/linux/memremap.h and HMM for details. 1171 */ 1172 if (page_is_devmap_managed(page)) { 1173 put_devmap_managed_page(page); 1174 return; 1175 } 1176 1177 if (put_page_testzero(page)) 1178 __put_page(page); 1179 } 1180 1181 /* 1182 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1183 * the page's refcount so that two separate items are tracked: the original page 1184 * reference count, and also a new count of how many pin_user_pages() calls were 1185 * made against the page. ("gup-pinned" is another term for the latter). 1186 * 1187 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1188 * distinct from normal pages. As such, the unpin_user_page() call (and its 1189 * variants) must be used in order to release gup-pinned pages. 1190 * 1191 * Choice of value: 1192 * 1193 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1194 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1195 * simpler, due to the fact that adding an even power of two to the page 1196 * refcount has the effect of using only the upper N bits, for the code that 1197 * counts up using the bias value. This means that the lower bits are left for 1198 * the exclusive use of the original code that increments and decrements by one 1199 * (or at least, by much smaller values than the bias value). 1200 * 1201 * Of course, once the lower bits overflow into the upper bits (and this is 1202 * OK, because subtraction recovers the original values), then visual inspection 1203 * no longer suffices to directly view the separate counts. However, for normal 1204 * applications that don't have huge page reference counts, this won't be an 1205 * issue. 1206 * 1207 * Locking: the lockless algorithm described in page_cache_get_speculative() 1208 * and page_cache_gup_pin_speculative() provides safe operation for 1209 * get_user_pages and page_mkclean and other calls that race to set up page 1210 * table entries. 1211 */ 1212 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1213 1214 void unpin_user_page(struct page *page); 1215 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1216 bool make_dirty); 1217 void unpin_user_pages(struct page **pages, unsigned long npages); 1218 1219 /** 1220 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1221 * 1222 * This function checks if a page has been pinned via a call to 1223 * pin_user_pages*(). 1224 * 1225 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1226 * because it means "definitely not pinned for DMA", but true means "probably 1227 * pinned for DMA, but possibly a false positive due to having at least 1228 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1229 * 1230 * False positives are OK, because: a) it's unlikely for a page to get that many 1231 * refcounts, and b) all the callers of this routine are expected to be able to 1232 * deal gracefully with a false positive. 1233 * 1234 * For huge pages, the result will be exactly correct. That's because we have 1235 * more tracking data available: the 3rd struct page in the compound page is 1236 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1237 * scheme). 1238 * 1239 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1240 * 1241 * @page: pointer to page to be queried. 1242 * @Return: True, if it is likely that the page has been "dma-pinned". 1243 * False, if the page is definitely not dma-pinned. 1244 */ 1245 static inline bool page_maybe_dma_pinned(struct page *page) 1246 { 1247 if (hpage_pincount_available(page)) 1248 return compound_pincount(page) > 0; 1249 1250 /* 1251 * page_ref_count() is signed. If that refcount overflows, then 1252 * page_ref_count() returns a negative value, and callers will avoid 1253 * further incrementing the refcount. 1254 * 1255 * Here, for that overflow case, use the signed bit to count a little 1256 * bit higher via unsigned math, and thus still get an accurate result. 1257 */ 1258 return ((unsigned int)page_ref_count(compound_head(page))) >= 1259 GUP_PIN_COUNTING_BIAS; 1260 } 1261 1262 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1263 #define SECTION_IN_PAGE_FLAGS 1264 #endif 1265 1266 /* 1267 * The identification function is mainly used by the buddy allocator for 1268 * determining if two pages could be buddies. We are not really identifying 1269 * the zone since we could be using the section number id if we do not have 1270 * node id available in page flags. 1271 * We only guarantee that it will return the same value for two combinable 1272 * pages in a zone. 1273 */ 1274 static inline int page_zone_id(struct page *page) 1275 { 1276 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1277 } 1278 1279 #ifdef NODE_NOT_IN_PAGE_FLAGS 1280 extern int page_to_nid(const struct page *page); 1281 #else 1282 static inline int page_to_nid(const struct page *page) 1283 { 1284 struct page *p = (struct page *)page; 1285 1286 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1287 } 1288 #endif 1289 1290 #ifdef CONFIG_NUMA_BALANCING 1291 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1292 { 1293 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1294 } 1295 1296 static inline int cpupid_to_pid(int cpupid) 1297 { 1298 return cpupid & LAST__PID_MASK; 1299 } 1300 1301 static inline int cpupid_to_cpu(int cpupid) 1302 { 1303 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1304 } 1305 1306 static inline int cpupid_to_nid(int cpupid) 1307 { 1308 return cpu_to_node(cpupid_to_cpu(cpupid)); 1309 } 1310 1311 static inline bool cpupid_pid_unset(int cpupid) 1312 { 1313 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1314 } 1315 1316 static inline bool cpupid_cpu_unset(int cpupid) 1317 { 1318 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1319 } 1320 1321 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1322 { 1323 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1324 } 1325 1326 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1327 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1328 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1329 { 1330 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1331 } 1332 1333 static inline int page_cpupid_last(struct page *page) 1334 { 1335 return page->_last_cpupid; 1336 } 1337 static inline void page_cpupid_reset_last(struct page *page) 1338 { 1339 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1340 } 1341 #else 1342 static inline int page_cpupid_last(struct page *page) 1343 { 1344 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1345 } 1346 1347 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1348 1349 static inline void page_cpupid_reset_last(struct page *page) 1350 { 1351 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1352 } 1353 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1354 #else /* !CONFIG_NUMA_BALANCING */ 1355 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1356 { 1357 return page_to_nid(page); /* XXX */ 1358 } 1359 1360 static inline int page_cpupid_last(struct page *page) 1361 { 1362 return page_to_nid(page); /* XXX */ 1363 } 1364 1365 static inline int cpupid_to_nid(int cpupid) 1366 { 1367 return -1; 1368 } 1369 1370 static inline int cpupid_to_pid(int cpupid) 1371 { 1372 return -1; 1373 } 1374 1375 static inline int cpupid_to_cpu(int cpupid) 1376 { 1377 return -1; 1378 } 1379 1380 static inline int cpu_pid_to_cpupid(int nid, int pid) 1381 { 1382 return -1; 1383 } 1384 1385 static inline bool cpupid_pid_unset(int cpupid) 1386 { 1387 return true; 1388 } 1389 1390 static inline void page_cpupid_reset_last(struct page *page) 1391 { 1392 } 1393 1394 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1395 { 1396 return false; 1397 } 1398 #endif /* CONFIG_NUMA_BALANCING */ 1399 1400 #ifdef CONFIG_KASAN_SW_TAGS 1401 static inline u8 page_kasan_tag(const struct page *page) 1402 { 1403 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1404 } 1405 1406 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1407 { 1408 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1409 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1410 } 1411 1412 static inline void page_kasan_tag_reset(struct page *page) 1413 { 1414 page_kasan_tag_set(page, 0xff); 1415 } 1416 #else 1417 static inline u8 page_kasan_tag(const struct page *page) 1418 { 1419 return 0xff; 1420 } 1421 1422 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1423 static inline void page_kasan_tag_reset(struct page *page) { } 1424 #endif 1425 1426 static inline struct zone *page_zone(const struct page *page) 1427 { 1428 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1429 } 1430 1431 static inline pg_data_t *page_pgdat(const struct page *page) 1432 { 1433 return NODE_DATA(page_to_nid(page)); 1434 } 1435 1436 #ifdef SECTION_IN_PAGE_FLAGS 1437 static inline void set_page_section(struct page *page, unsigned long section) 1438 { 1439 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1440 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1441 } 1442 1443 static inline unsigned long page_to_section(const struct page *page) 1444 { 1445 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1446 } 1447 #endif 1448 1449 static inline void set_page_zone(struct page *page, enum zone_type zone) 1450 { 1451 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1452 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1453 } 1454 1455 static inline void set_page_node(struct page *page, unsigned long node) 1456 { 1457 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1458 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1459 } 1460 1461 static inline void set_page_links(struct page *page, enum zone_type zone, 1462 unsigned long node, unsigned long pfn) 1463 { 1464 set_page_zone(page, zone); 1465 set_page_node(page, node); 1466 #ifdef SECTION_IN_PAGE_FLAGS 1467 set_page_section(page, pfn_to_section_nr(pfn)); 1468 #endif 1469 } 1470 1471 #ifdef CONFIG_MEMCG 1472 static inline struct mem_cgroup *page_memcg(struct page *page) 1473 { 1474 return page->mem_cgroup; 1475 } 1476 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1477 { 1478 WARN_ON_ONCE(!rcu_read_lock_held()); 1479 return READ_ONCE(page->mem_cgroup); 1480 } 1481 #else 1482 static inline struct mem_cgroup *page_memcg(struct page *page) 1483 { 1484 return NULL; 1485 } 1486 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1487 { 1488 WARN_ON_ONCE(!rcu_read_lock_held()); 1489 return NULL; 1490 } 1491 #endif 1492 1493 /* 1494 * Some inline functions in vmstat.h depend on page_zone() 1495 */ 1496 #include <linux/vmstat.h> 1497 1498 static __always_inline void *lowmem_page_address(const struct page *page) 1499 { 1500 return page_to_virt(page); 1501 } 1502 1503 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1504 #define HASHED_PAGE_VIRTUAL 1505 #endif 1506 1507 #if defined(WANT_PAGE_VIRTUAL) 1508 static inline void *page_address(const struct page *page) 1509 { 1510 return page->virtual; 1511 } 1512 static inline void set_page_address(struct page *page, void *address) 1513 { 1514 page->virtual = address; 1515 } 1516 #define page_address_init() do { } while(0) 1517 #endif 1518 1519 #if defined(HASHED_PAGE_VIRTUAL) 1520 void *page_address(const struct page *page); 1521 void set_page_address(struct page *page, void *virtual); 1522 void page_address_init(void); 1523 #endif 1524 1525 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1526 #define page_address(page) lowmem_page_address(page) 1527 #define set_page_address(page, address) do { } while(0) 1528 #define page_address_init() do { } while(0) 1529 #endif 1530 1531 extern void *page_rmapping(struct page *page); 1532 extern struct anon_vma *page_anon_vma(struct page *page); 1533 extern struct address_space *page_mapping(struct page *page); 1534 1535 extern struct address_space *__page_file_mapping(struct page *); 1536 1537 static inline 1538 struct address_space *page_file_mapping(struct page *page) 1539 { 1540 if (unlikely(PageSwapCache(page))) 1541 return __page_file_mapping(page); 1542 1543 return page->mapping; 1544 } 1545 1546 extern pgoff_t __page_file_index(struct page *page); 1547 1548 /* 1549 * Return the pagecache index of the passed page. Regular pagecache pages 1550 * use ->index whereas swapcache pages use swp_offset(->private) 1551 */ 1552 static inline pgoff_t page_index(struct page *page) 1553 { 1554 if (unlikely(PageSwapCache(page))) 1555 return __page_file_index(page); 1556 return page->index; 1557 } 1558 1559 bool page_mapped(struct page *page); 1560 struct address_space *page_mapping(struct page *page); 1561 struct address_space *page_mapping_file(struct page *page); 1562 1563 /* 1564 * Return true only if the page has been allocated with 1565 * ALLOC_NO_WATERMARKS and the low watermark was not 1566 * met implying that the system is under some pressure. 1567 */ 1568 static inline bool page_is_pfmemalloc(struct page *page) 1569 { 1570 /* 1571 * Page index cannot be this large so this must be 1572 * a pfmemalloc page. 1573 */ 1574 return page->index == -1UL; 1575 } 1576 1577 /* 1578 * Only to be called by the page allocator on a freshly allocated 1579 * page. 1580 */ 1581 static inline void set_page_pfmemalloc(struct page *page) 1582 { 1583 page->index = -1UL; 1584 } 1585 1586 static inline void clear_page_pfmemalloc(struct page *page) 1587 { 1588 page->index = 0; 1589 } 1590 1591 /* 1592 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1593 */ 1594 extern void pagefault_out_of_memory(void); 1595 1596 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1597 1598 /* 1599 * Flags passed to show_mem() and show_free_areas() to suppress output in 1600 * various contexts. 1601 */ 1602 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1603 1604 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1605 1606 #ifdef CONFIG_MMU 1607 extern bool can_do_mlock(void); 1608 #else 1609 static inline bool can_do_mlock(void) { return false; } 1610 #endif 1611 extern int user_shm_lock(size_t, struct user_struct *); 1612 extern void user_shm_unlock(size_t, struct user_struct *); 1613 1614 /* 1615 * Parameter block passed down to zap_pte_range in exceptional cases. 1616 */ 1617 struct zap_details { 1618 struct address_space *check_mapping; /* Check page->mapping if set */ 1619 pgoff_t first_index; /* Lowest page->index to unmap */ 1620 pgoff_t last_index; /* Highest page->index to unmap */ 1621 }; 1622 1623 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1624 pte_t pte); 1625 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1626 pmd_t pmd); 1627 1628 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1629 unsigned long size); 1630 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1631 unsigned long size); 1632 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1633 unsigned long start, unsigned long end); 1634 1635 struct mmu_notifier_range; 1636 1637 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1638 unsigned long end, unsigned long floor, unsigned long ceiling); 1639 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1640 struct vm_area_struct *vma); 1641 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1642 struct mmu_notifier_range *range, 1643 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1644 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1645 unsigned long *pfn); 1646 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1647 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1648 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1649 void *buf, int len, int write); 1650 1651 extern void truncate_pagecache(struct inode *inode, loff_t new); 1652 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1653 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1654 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1655 int truncate_inode_page(struct address_space *mapping, struct page *page); 1656 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1657 int invalidate_inode_page(struct page *page); 1658 1659 #ifdef CONFIG_MMU 1660 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1661 unsigned long address, unsigned int flags); 1662 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1663 unsigned long address, unsigned int fault_flags, 1664 bool *unlocked); 1665 void unmap_mapping_pages(struct address_space *mapping, 1666 pgoff_t start, pgoff_t nr, bool even_cows); 1667 void unmap_mapping_range(struct address_space *mapping, 1668 loff_t const holebegin, loff_t const holelen, int even_cows); 1669 #else 1670 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1671 unsigned long address, unsigned int flags) 1672 { 1673 /* should never happen if there's no MMU */ 1674 BUG(); 1675 return VM_FAULT_SIGBUS; 1676 } 1677 static inline int fixup_user_fault(struct task_struct *tsk, 1678 struct mm_struct *mm, unsigned long address, 1679 unsigned int fault_flags, bool *unlocked) 1680 { 1681 /* should never happen if there's no MMU */ 1682 BUG(); 1683 return -EFAULT; 1684 } 1685 static inline void unmap_mapping_pages(struct address_space *mapping, 1686 pgoff_t start, pgoff_t nr, bool even_cows) { } 1687 static inline void unmap_mapping_range(struct address_space *mapping, 1688 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1689 #endif 1690 1691 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1692 loff_t const holebegin, loff_t const holelen) 1693 { 1694 unmap_mapping_range(mapping, holebegin, holelen, 0); 1695 } 1696 1697 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1698 void *buf, int len, unsigned int gup_flags); 1699 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1700 void *buf, int len, unsigned int gup_flags); 1701 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1702 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1703 1704 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1705 unsigned long start, unsigned long nr_pages, 1706 unsigned int gup_flags, struct page **pages, 1707 struct vm_area_struct **vmas, int *locked); 1708 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1709 unsigned long start, unsigned long nr_pages, 1710 unsigned int gup_flags, struct page **pages, 1711 struct vm_area_struct **vmas, int *locked); 1712 long get_user_pages(unsigned long start, unsigned long nr_pages, 1713 unsigned int gup_flags, struct page **pages, 1714 struct vm_area_struct **vmas); 1715 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1716 unsigned int gup_flags, struct page **pages, 1717 struct vm_area_struct **vmas); 1718 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1719 unsigned int gup_flags, struct page **pages, int *locked); 1720 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1721 unsigned int gup_flags, struct page **pages, int *locked); 1722 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1723 struct page **pages, unsigned int gup_flags); 1724 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1725 struct page **pages, unsigned int gup_flags); 1726 1727 int get_user_pages_fast(unsigned long start, int nr_pages, 1728 unsigned int gup_flags, struct page **pages); 1729 int pin_user_pages_fast(unsigned long start, int nr_pages, 1730 unsigned int gup_flags, struct page **pages); 1731 1732 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1733 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1734 struct task_struct *task, bool bypass_rlim); 1735 1736 /* Container for pinned pfns / pages */ 1737 struct frame_vector { 1738 unsigned int nr_allocated; /* Number of frames we have space for */ 1739 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1740 bool got_ref; /* Did we pin pages by getting page ref? */ 1741 bool is_pfns; /* Does array contain pages or pfns? */ 1742 void *ptrs[]; /* Array of pinned pfns / pages. Use 1743 * pfns_vector_pages() or pfns_vector_pfns() 1744 * for access */ 1745 }; 1746 1747 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1748 void frame_vector_destroy(struct frame_vector *vec); 1749 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1750 unsigned int gup_flags, struct frame_vector *vec); 1751 void put_vaddr_frames(struct frame_vector *vec); 1752 int frame_vector_to_pages(struct frame_vector *vec); 1753 void frame_vector_to_pfns(struct frame_vector *vec); 1754 1755 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1756 { 1757 return vec->nr_frames; 1758 } 1759 1760 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1761 { 1762 if (vec->is_pfns) { 1763 int err = frame_vector_to_pages(vec); 1764 1765 if (err) 1766 return ERR_PTR(err); 1767 } 1768 return (struct page **)(vec->ptrs); 1769 } 1770 1771 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1772 { 1773 if (!vec->is_pfns) 1774 frame_vector_to_pfns(vec); 1775 return (unsigned long *)(vec->ptrs); 1776 } 1777 1778 struct kvec; 1779 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1780 struct page **pages); 1781 int get_kernel_page(unsigned long start, int write, struct page **pages); 1782 struct page *get_dump_page(unsigned long addr); 1783 1784 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1785 extern void do_invalidatepage(struct page *page, unsigned int offset, 1786 unsigned int length); 1787 1788 void __set_page_dirty(struct page *, struct address_space *, int warn); 1789 int __set_page_dirty_nobuffers(struct page *page); 1790 int __set_page_dirty_no_writeback(struct page *page); 1791 int redirty_page_for_writepage(struct writeback_control *wbc, 1792 struct page *page); 1793 void account_page_dirtied(struct page *page, struct address_space *mapping); 1794 void account_page_cleaned(struct page *page, struct address_space *mapping, 1795 struct bdi_writeback *wb); 1796 int set_page_dirty(struct page *page); 1797 int set_page_dirty_lock(struct page *page); 1798 void __cancel_dirty_page(struct page *page); 1799 static inline void cancel_dirty_page(struct page *page) 1800 { 1801 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1802 if (PageDirty(page)) 1803 __cancel_dirty_page(page); 1804 } 1805 int clear_page_dirty_for_io(struct page *page); 1806 1807 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1808 1809 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1810 unsigned long old_addr, struct vm_area_struct *new_vma, 1811 unsigned long new_addr, unsigned long len, 1812 bool need_rmap_locks); 1813 1814 /* 1815 * Flags used by change_protection(). For now we make it a bitmap so 1816 * that we can pass in multiple flags just like parameters. However 1817 * for now all the callers are only use one of the flags at the same 1818 * time. 1819 */ 1820 /* Whether we should allow dirty bit accounting */ 1821 #define MM_CP_DIRTY_ACCT (1UL << 0) 1822 /* Whether this protection change is for NUMA hints */ 1823 #define MM_CP_PROT_NUMA (1UL << 1) 1824 /* Whether this change is for write protecting */ 1825 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1826 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1827 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1828 MM_CP_UFFD_WP_RESOLVE) 1829 1830 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1831 unsigned long end, pgprot_t newprot, 1832 unsigned long cp_flags); 1833 extern int mprotect_fixup(struct vm_area_struct *vma, 1834 struct vm_area_struct **pprev, unsigned long start, 1835 unsigned long end, unsigned long newflags); 1836 1837 /* 1838 * doesn't attempt to fault and will return short. 1839 */ 1840 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1841 unsigned int gup_flags, struct page **pages); 1842 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1843 unsigned int gup_flags, struct page **pages); 1844 1845 static inline bool get_user_page_fast_only(unsigned long addr, 1846 unsigned int gup_flags, struct page **pagep) 1847 { 1848 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1849 } 1850 /* 1851 * per-process(per-mm_struct) statistics. 1852 */ 1853 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1854 { 1855 long val = atomic_long_read(&mm->rss_stat.count[member]); 1856 1857 #ifdef SPLIT_RSS_COUNTING 1858 /* 1859 * counter is updated in asynchronous manner and may go to minus. 1860 * But it's never be expected number for users. 1861 */ 1862 if (val < 0) 1863 val = 0; 1864 #endif 1865 return (unsigned long)val; 1866 } 1867 1868 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1869 1870 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1871 { 1872 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1873 1874 mm_trace_rss_stat(mm, member, count); 1875 } 1876 1877 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1878 { 1879 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1880 1881 mm_trace_rss_stat(mm, member, count); 1882 } 1883 1884 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1885 { 1886 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1887 1888 mm_trace_rss_stat(mm, member, count); 1889 } 1890 1891 /* Optimized variant when page is already known not to be PageAnon */ 1892 static inline int mm_counter_file(struct page *page) 1893 { 1894 if (PageSwapBacked(page)) 1895 return MM_SHMEMPAGES; 1896 return MM_FILEPAGES; 1897 } 1898 1899 static inline int mm_counter(struct page *page) 1900 { 1901 if (PageAnon(page)) 1902 return MM_ANONPAGES; 1903 return mm_counter_file(page); 1904 } 1905 1906 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1907 { 1908 return get_mm_counter(mm, MM_FILEPAGES) + 1909 get_mm_counter(mm, MM_ANONPAGES) + 1910 get_mm_counter(mm, MM_SHMEMPAGES); 1911 } 1912 1913 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1914 { 1915 return max(mm->hiwater_rss, get_mm_rss(mm)); 1916 } 1917 1918 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1919 { 1920 return max(mm->hiwater_vm, mm->total_vm); 1921 } 1922 1923 static inline void update_hiwater_rss(struct mm_struct *mm) 1924 { 1925 unsigned long _rss = get_mm_rss(mm); 1926 1927 if ((mm)->hiwater_rss < _rss) 1928 (mm)->hiwater_rss = _rss; 1929 } 1930 1931 static inline void update_hiwater_vm(struct mm_struct *mm) 1932 { 1933 if (mm->hiwater_vm < mm->total_vm) 1934 mm->hiwater_vm = mm->total_vm; 1935 } 1936 1937 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1938 { 1939 mm->hiwater_rss = get_mm_rss(mm); 1940 } 1941 1942 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1943 struct mm_struct *mm) 1944 { 1945 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1946 1947 if (*maxrss < hiwater_rss) 1948 *maxrss = hiwater_rss; 1949 } 1950 1951 #if defined(SPLIT_RSS_COUNTING) 1952 void sync_mm_rss(struct mm_struct *mm); 1953 #else 1954 static inline void sync_mm_rss(struct mm_struct *mm) 1955 { 1956 } 1957 #endif 1958 1959 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1960 static inline int pte_special(pte_t pte) 1961 { 1962 return 0; 1963 } 1964 1965 static inline pte_t pte_mkspecial(pte_t pte) 1966 { 1967 return pte; 1968 } 1969 #endif 1970 1971 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1972 static inline int pte_devmap(pte_t pte) 1973 { 1974 return 0; 1975 } 1976 #endif 1977 1978 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1979 1980 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1981 spinlock_t **ptl); 1982 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1983 spinlock_t **ptl) 1984 { 1985 pte_t *ptep; 1986 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1987 return ptep; 1988 } 1989 1990 #ifdef __PAGETABLE_P4D_FOLDED 1991 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1992 unsigned long address) 1993 { 1994 return 0; 1995 } 1996 #else 1997 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1998 #endif 1999 2000 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2001 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2002 unsigned long address) 2003 { 2004 return 0; 2005 } 2006 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2007 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2008 2009 #else 2010 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2011 2012 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2013 { 2014 if (mm_pud_folded(mm)) 2015 return; 2016 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2017 } 2018 2019 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2020 { 2021 if (mm_pud_folded(mm)) 2022 return; 2023 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2024 } 2025 #endif 2026 2027 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2028 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2029 unsigned long address) 2030 { 2031 return 0; 2032 } 2033 2034 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2035 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2036 2037 #else 2038 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2039 2040 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2041 { 2042 if (mm_pmd_folded(mm)) 2043 return; 2044 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2045 } 2046 2047 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2048 { 2049 if (mm_pmd_folded(mm)) 2050 return; 2051 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2052 } 2053 #endif 2054 2055 #ifdef CONFIG_MMU 2056 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2057 { 2058 atomic_long_set(&mm->pgtables_bytes, 0); 2059 } 2060 2061 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2062 { 2063 return atomic_long_read(&mm->pgtables_bytes); 2064 } 2065 2066 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2067 { 2068 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2069 } 2070 2071 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2072 { 2073 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2074 } 2075 #else 2076 2077 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2078 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2079 { 2080 return 0; 2081 } 2082 2083 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2084 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2085 #endif 2086 2087 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2088 int __pte_alloc_kernel(pmd_t *pmd); 2089 2090 #if defined(CONFIG_MMU) 2091 2092 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2093 unsigned long address) 2094 { 2095 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2096 NULL : p4d_offset(pgd, address); 2097 } 2098 2099 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2100 unsigned long address) 2101 { 2102 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2103 NULL : pud_offset(p4d, address); 2104 } 2105 2106 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, 2107 unsigned long address, 2108 pgtbl_mod_mask *mod_mask) 2109 2110 { 2111 if (unlikely(pgd_none(*pgd))) { 2112 if (__p4d_alloc(mm, pgd, address)) 2113 return NULL; 2114 *mod_mask |= PGTBL_PGD_MODIFIED; 2115 } 2116 2117 return p4d_offset(pgd, address); 2118 } 2119 2120 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, 2121 unsigned long address, 2122 pgtbl_mod_mask *mod_mask) 2123 { 2124 if (unlikely(p4d_none(*p4d))) { 2125 if (__pud_alloc(mm, p4d, address)) 2126 return NULL; 2127 *mod_mask |= PGTBL_P4D_MODIFIED; 2128 } 2129 2130 return pud_offset(p4d, address); 2131 } 2132 2133 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2134 { 2135 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2136 NULL: pmd_offset(pud, address); 2137 } 2138 2139 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, 2140 unsigned long address, 2141 pgtbl_mod_mask *mod_mask) 2142 { 2143 if (unlikely(pud_none(*pud))) { 2144 if (__pmd_alloc(mm, pud, address)) 2145 return NULL; 2146 *mod_mask |= PGTBL_PUD_MODIFIED; 2147 } 2148 2149 return pmd_offset(pud, address); 2150 } 2151 #endif /* CONFIG_MMU */ 2152 2153 #if USE_SPLIT_PTE_PTLOCKS 2154 #if ALLOC_SPLIT_PTLOCKS 2155 void __init ptlock_cache_init(void); 2156 extern bool ptlock_alloc(struct page *page); 2157 extern void ptlock_free(struct page *page); 2158 2159 static inline spinlock_t *ptlock_ptr(struct page *page) 2160 { 2161 return page->ptl; 2162 } 2163 #else /* ALLOC_SPLIT_PTLOCKS */ 2164 static inline void ptlock_cache_init(void) 2165 { 2166 } 2167 2168 static inline bool ptlock_alloc(struct page *page) 2169 { 2170 return true; 2171 } 2172 2173 static inline void ptlock_free(struct page *page) 2174 { 2175 } 2176 2177 static inline spinlock_t *ptlock_ptr(struct page *page) 2178 { 2179 return &page->ptl; 2180 } 2181 #endif /* ALLOC_SPLIT_PTLOCKS */ 2182 2183 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2184 { 2185 return ptlock_ptr(pmd_page(*pmd)); 2186 } 2187 2188 static inline bool ptlock_init(struct page *page) 2189 { 2190 /* 2191 * prep_new_page() initialize page->private (and therefore page->ptl) 2192 * with 0. Make sure nobody took it in use in between. 2193 * 2194 * It can happen if arch try to use slab for page table allocation: 2195 * slab code uses page->slab_cache, which share storage with page->ptl. 2196 */ 2197 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2198 if (!ptlock_alloc(page)) 2199 return false; 2200 spin_lock_init(ptlock_ptr(page)); 2201 return true; 2202 } 2203 2204 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2205 /* 2206 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2207 */ 2208 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2209 { 2210 return &mm->page_table_lock; 2211 } 2212 static inline void ptlock_cache_init(void) {} 2213 static inline bool ptlock_init(struct page *page) { return true; } 2214 static inline void ptlock_free(struct page *page) {} 2215 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2216 2217 static inline void pgtable_init(void) 2218 { 2219 ptlock_cache_init(); 2220 pgtable_cache_init(); 2221 } 2222 2223 static inline bool pgtable_pte_page_ctor(struct page *page) 2224 { 2225 if (!ptlock_init(page)) 2226 return false; 2227 __SetPageTable(page); 2228 inc_zone_page_state(page, NR_PAGETABLE); 2229 return true; 2230 } 2231 2232 static inline void pgtable_pte_page_dtor(struct page *page) 2233 { 2234 ptlock_free(page); 2235 __ClearPageTable(page); 2236 dec_zone_page_state(page, NR_PAGETABLE); 2237 } 2238 2239 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2240 ({ \ 2241 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2242 pte_t *__pte = pte_offset_map(pmd, address); \ 2243 *(ptlp) = __ptl; \ 2244 spin_lock(__ptl); \ 2245 __pte; \ 2246 }) 2247 2248 #define pte_unmap_unlock(pte, ptl) do { \ 2249 spin_unlock(ptl); \ 2250 pte_unmap(pte); \ 2251 } while (0) 2252 2253 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2254 2255 #define pte_alloc_map(mm, pmd, address) \ 2256 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2257 2258 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2259 (pte_alloc(mm, pmd) ? \ 2260 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2261 2262 #define pte_alloc_kernel(pmd, address) \ 2263 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2264 NULL: pte_offset_kernel(pmd, address)) 2265 2266 #define pte_alloc_kernel_track(pmd, address, mask) \ 2267 ((unlikely(pmd_none(*(pmd))) && \ 2268 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ 2269 NULL: pte_offset_kernel(pmd, address)) 2270 2271 #if USE_SPLIT_PMD_PTLOCKS 2272 2273 static struct page *pmd_to_page(pmd_t *pmd) 2274 { 2275 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2276 return virt_to_page((void *)((unsigned long) pmd & mask)); 2277 } 2278 2279 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2280 { 2281 return ptlock_ptr(pmd_to_page(pmd)); 2282 } 2283 2284 static inline bool pgtable_pmd_page_ctor(struct page *page) 2285 { 2286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2287 page->pmd_huge_pte = NULL; 2288 #endif 2289 return ptlock_init(page); 2290 } 2291 2292 static inline void pgtable_pmd_page_dtor(struct page *page) 2293 { 2294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2295 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2296 #endif 2297 ptlock_free(page); 2298 } 2299 2300 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2301 2302 #else 2303 2304 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2305 { 2306 return &mm->page_table_lock; 2307 } 2308 2309 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2310 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2311 2312 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2313 2314 #endif 2315 2316 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2317 { 2318 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2319 spin_lock(ptl); 2320 return ptl; 2321 } 2322 2323 /* 2324 * No scalability reason to split PUD locks yet, but follow the same pattern 2325 * as the PMD locks to make it easier if we decide to. The VM should not be 2326 * considered ready to switch to split PUD locks yet; there may be places 2327 * which need to be converted from page_table_lock. 2328 */ 2329 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2330 { 2331 return &mm->page_table_lock; 2332 } 2333 2334 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2335 { 2336 spinlock_t *ptl = pud_lockptr(mm, pud); 2337 2338 spin_lock(ptl); 2339 return ptl; 2340 } 2341 2342 extern void __init pagecache_init(void); 2343 extern void __init free_area_init_memoryless_node(int nid); 2344 extern void free_initmem(void); 2345 2346 /* 2347 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2348 * into the buddy system. The freed pages will be poisoned with pattern 2349 * "poison" if it's within range [0, UCHAR_MAX]. 2350 * Return pages freed into the buddy system. 2351 */ 2352 extern unsigned long free_reserved_area(void *start, void *end, 2353 int poison, const char *s); 2354 2355 #ifdef CONFIG_HIGHMEM 2356 /* 2357 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2358 * and totalram_pages. 2359 */ 2360 extern void free_highmem_page(struct page *page); 2361 #endif 2362 2363 extern void adjust_managed_page_count(struct page *page, long count); 2364 extern void mem_init_print_info(const char *str); 2365 2366 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2367 2368 /* Free the reserved page into the buddy system, so it gets managed. */ 2369 static inline void __free_reserved_page(struct page *page) 2370 { 2371 ClearPageReserved(page); 2372 init_page_count(page); 2373 __free_page(page); 2374 } 2375 2376 static inline void free_reserved_page(struct page *page) 2377 { 2378 __free_reserved_page(page); 2379 adjust_managed_page_count(page, 1); 2380 } 2381 2382 static inline void mark_page_reserved(struct page *page) 2383 { 2384 SetPageReserved(page); 2385 adjust_managed_page_count(page, -1); 2386 } 2387 2388 /* 2389 * Default method to free all the __init memory into the buddy system. 2390 * The freed pages will be poisoned with pattern "poison" if it's within 2391 * range [0, UCHAR_MAX]. 2392 * Return pages freed into the buddy system. 2393 */ 2394 static inline unsigned long free_initmem_default(int poison) 2395 { 2396 extern char __init_begin[], __init_end[]; 2397 2398 return free_reserved_area(&__init_begin, &__init_end, 2399 poison, "unused kernel"); 2400 } 2401 2402 static inline unsigned long get_num_physpages(void) 2403 { 2404 int nid; 2405 unsigned long phys_pages = 0; 2406 2407 for_each_online_node(nid) 2408 phys_pages += node_present_pages(nid); 2409 2410 return phys_pages; 2411 } 2412 2413 /* 2414 * Using memblock node mappings, an architecture may initialise its 2415 * zones, allocate the backing mem_map and account for memory holes in an 2416 * architecture independent manner. 2417 * 2418 * An architecture is expected to register range of page frames backed by 2419 * physical memory with memblock_add[_node]() before calling 2420 * free_area_init() passing in the PFN each zone ends at. At a basic 2421 * usage, an architecture is expected to do something like 2422 * 2423 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2424 * max_highmem_pfn}; 2425 * for_each_valid_physical_page_range() 2426 * memblock_add_node(base, size, nid) 2427 * free_area_init(max_zone_pfns); 2428 * 2429 * sparse_memory_present_with_active_regions() calls memory_present() for 2430 * each range when SPARSEMEM is enabled. 2431 */ 2432 void free_area_init(unsigned long *max_zone_pfn); 2433 unsigned long node_map_pfn_alignment(void); 2434 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2435 unsigned long end_pfn); 2436 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2437 unsigned long end_pfn); 2438 extern void get_pfn_range_for_nid(unsigned int nid, 2439 unsigned long *start_pfn, unsigned long *end_pfn); 2440 extern unsigned long find_min_pfn_with_active_regions(void); 2441 extern void sparse_memory_present_with_active_regions(int nid); 2442 2443 #ifndef CONFIG_NEED_MULTIPLE_NODES 2444 static inline int early_pfn_to_nid(unsigned long pfn) 2445 { 2446 return 0; 2447 } 2448 #else 2449 /* please see mm/page_alloc.c */ 2450 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2451 /* there is a per-arch backend function. */ 2452 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2453 struct mminit_pfnnid_cache *state); 2454 #endif 2455 2456 extern void set_dma_reserve(unsigned long new_dma_reserve); 2457 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2458 enum memmap_context, struct vmem_altmap *); 2459 extern void setup_per_zone_wmarks(void); 2460 extern int __meminit init_per_zone_wmark_min(void); 2461 extern void mem_init(void); 2462 extern void __init mmap_init(void); 2463 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2464 extern long si_mem_available(void); 2465 extern void si_meminfo(struct sysinfo * val); 2466 extern void si_meminfo_node(struct sysinfo *val, int nid); 2467 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2468 extern unsigned long arch_reserved_kernel_pages(void); 2469 #endif 2470 2471 extern __printf(3, 4) 2472 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2473 2474 extern void setup_per_cpu_pageset(void); 2475 2476 /* page_alloc.c */ 2477 extern int min_free_kbytes; 2478 extern int watermark_boost_factor; 2479 extern int watermark_scale_factor; 2480 extern bool arch_has_descending_max_zone_pfns(void); 2481 2482 /* nommu.c */ 2483 extern atomic_long_t mmap_pages_allocated; 2484 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2485 2486 /* interval_tree.c */ 2487 void vma_interval_tree_insert(struct vm_area_struct *node, 2488 struct rb_root_cached *root); 2489 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2490 struct vm_area_struct *prev, 2491 struct rb_root_cached *root); 2492 void vma_interval_tree_remove(struct vm_area_struct *node, 2493 struct rb_root_cached *root); 2494 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2495 unsigned long start, unsigned long last); 2496 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2497 unsigned long start, unsigned long last); 2498 2499 #define vma_interval_tree_foreach(vma, root, start, last) \ 2500 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2501 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2502 2503 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2504 struct rb_root_cached *root); 2505 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2506 struct rb_root_cached *root); 2507 struct anon_vma_chain * 2508 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2509 unsigned long start, unsigned long last); 2510 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2511 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2512 #ifdef CONFIG_DEBUG_VM_RB 2513 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2514 #endif 2515 2516 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2517 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2518 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2519 2520 /* mmap.c */ 2521 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2522 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2523 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2524 struct vm_area_struct *expand); 2525 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2526 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2527 { 2528 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2529 } 2530 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2531 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2532 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2533 struct mempolicy *, struct vm_userfaultfd_ctx); 2534 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2535 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2536 unsigned long addr, int new_below); 2537 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2538 unsigned long addr, int new_below); 2539 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2540 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2541 struct rb_node **, struct rb_node *); 2542 extern void unlink_file_vma(struct vm_area_struct *); 2543 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2544 unsigned long addr, unsigned long len, pgoff_t pgoff, 2545 bool *need_rmap_locks); 2546 extern void exit_mmap(struct mm_struct *); 2547 2548 static inline int check_data_rlimit(unsigned long rlim, 2549 unsigned long new, 2550 unsigned long start, 2551 unsigned long end_data, 2552 unsigned long start_data) 2553 { 2554 if (rlim < RLIM_INFINITY) { 2555 if (((new - start) + (end_data - start_data)) > rlim) 2556 return -ENOSPC; 2557 } 2558 2559 return 0; 2560 } 2561 2562 extern int mm_take_all_locks(struct mm_struct *mm); 2563 extern void mm_drop_all_locks(struct mm_struct *mm); 2564 2565 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2566 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2567 extern struct file *get_task_exe_file(struct task_struct *task); 2568 2569 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2570 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2571 2572 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2573 const struct vm_special_mapping *sm); 2574 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2575 unsigned long addr, unsigned long len, 2576 unsigned long flags, 2577 const struct vm_special_mapping *spec); 2578 /* This is an obsolete alternative to _install_special_mapping. */ 2579 extern int install_special_mapping(struct mm_struct *mm, 2580 unsigned long addr, unsigned long len, 2581 unsigned long flags, struct page **pages); 2582 2583 unsigned long randomize_stack_top(unsigned long stack_top); 2584 2585 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2586 2587 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2588 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2589 struct list_head *uf); 2590 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2591 unsigned long len, unsigned long prot, unsigned long flags, 2592 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2593 struct list_head *uf); 2594 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2595 struct list_head *uf, bool downgrade); 2596 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2597 struct list_head *uf); 2598 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2599 2600 static inline unsigned long 2601 do_mmap_pgoff(struct file *file, unsigned long addr, 2602 unsigned long len, unsigned long prot, unsigned long flags, 2603 unsigned long pgoff, unsigned long *populate, 2604 struct list_head *uf) 2605 { 2606 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2607 } 2608 2609 #ifdef CONFIG_MMU 2610 extern int __mm_populate(unsigned long addr, unsigned long len, 2611 int ignore_errors); 2612 static inline void mm_populate(unsigned long addr, unsigned long len) 2613 { 2614 /* Ignore errors */ 2615 (void) __mm_populate(addr, len, 1); 2616 } 2617 #else 2618 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2619 #endif 2620 2621 /* These take the mm semaphore themselves */ 2622 extern int __must_check vm_brk(unsigned long, unsigned long); 2623 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2624 extern int vm_munmap(unsigned long, size_t); 2625 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2626 unsigned long, unsigned long, 2627 unsigned long, unsigned long); 2628 2629 struct vm_unmapped_area_info { 2630 #define VM_UNMAPPED_AREA_TOPDOWN 1 2631 unsigned long flags; 2632 unsigned long length; 2633 unsigned long low_limit; 2634 unsigned long high_limit; 2635 unsigned long align_mask; 2636 unsigned long align_offset; 2637 }; 2638 2639 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2640 2641 /* truncate.c */ 2642 extern void truncate_inode_pages(struct address_space *, loff_t); 2643 extern void truncate_inode_pages_range(struct address_space *, 2644 loff_t lstart, loff_t lend); 2645 extern void truncate_inode_pages_final(struct address_space *); 2646 2647 /* generic vm_area_ops exported for stackable file systems */ 2648 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2649 extern void filemap_map_pages(struct vm_fault *vmf, 2650 pgoff_t start_pgoff, pgoff_t end_pgoff); 2651 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2652 2653 /* mm/page-writeback.c */ 2654 int __must_check write_one_page(struct page *page); 2655 void task_dirty_inc(struct task_struct *tsk); 2656 2657 extern unsigned long stack_guard_gap; 2658 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2659 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2660 2661 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2662 extern int expand_downwards(struct vm_area_struct *vma, 2663 unsigned long address); 2664 #if VM_GROWSUP 2665 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2666 #else 2667 #define expand_upwards(vma, address) (0) 2668 #endif 2669 2670 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2671 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2672 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2673 struct vm_area_struct **pprev); 2674 2675 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2676 NULL if none. Assume start_addr < end_addr. */ 2677 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2678 { 2679 struct vm_area_struct * vma = find_vma(mm,start_addr); 2680 2681 if (vma && end_addr <= vma->vm_start) 2682 vma = NULL; 2683 return vma; 2684 } 2685 2686 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2687 { 2688 unsigned long vm_start = vma->vm_start; 2689 2690 if (vma->vm_flags & VM_GROWSDOWN) { 2691 vm_start -= stack_guard_gap; 2692 if (vm_start > vma->vm_start) 2693 vm_start = 0; 2694 } 2695 return vm_start; 2696 } 2697 2698 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2699 { 2700 unsigned long vm_end = vma->vm_end; 2701 2702 if (vma->vm_flags & VM_GROWSUP) { 2703 vm_end += stack_guard_gap; 2704 if (vm_end < vma->vm_end) 2705 vm_end = -PAGE_SIZE; 2706 } 2707 return vm_end; 2708 } 2709 2710 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2711 { 2712 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2713 } 2714 2715 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2716 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2717 unsigned long vm_start, unsigned long vm_end) 2718 { 2719 struct vm_area_struct *vma = find_vma(mm, vm_start); 2720 2721 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2722 vma = NULL; 2723 2724 return vma; 2725 } 2726 2727 static inline bool range_in_vma(struct vm_area_struct *vma, 2728 unsigned long start, unsigned long end) 2729 { 2730 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2731 } 2732 2733 #ifdef CONFIG_MMU 2734 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2735 void vma_set_page_prot(struct vm_area_struct *vma); 2736 #else 2737 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2738 { 2739 return __pgprot(0); 2740 } 2741 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2742 { 2743 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2744 } 2745 #endif 2746 2747 #ifdef CONFIG_NUMA_BALANCING 2748 unsigned long change_prot_numa(struct vm_area_struct *vma, 2749 unsigned long start, unsigned long end); 2750 #endif 2751 2752 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2753 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2754 unsigned long pfn, unsigned long size, pgprot_t); 2755 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2756 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2757 struct page **pages, unsigned long *num); 2758 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2759 unsigned long num); 2760 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2761 unsigned long num); 2762 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2763 unsigned long pfn); 2764 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2765 unsigned long pfn, pgprot_t pgprot); 2766 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2767 pfn_t pfn); 2768 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2769 pfn_t pfn, pgprot_t pgprot); 2770 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2771 unsigned long addr, pfn_t pfn); 2772 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2773 2774 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2775 unsigned long addr, struct page *page) 2776 { 2777 int err = vm_insert_page(vma, addr, page); 2778 2779 if (err == -ENOMEM) 2780 return VM_FAULT_OOM; 2781 if (err < 0 && err != -EBUSY) 2782 return VM_FAULT_SIGBUS; 2783 2784 return VM_FAULT_NOPAGE; 2785 } 2786 2787 static inline vm_fault_t vmf_error(int err) 2788 { 2789 if (err == -ENOMEM) 2790 return VM_FAULT_OOM; 2791 return VM_FAULT_SIGBUS; 2792 } 2793 2794 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2795 unsigned int foll_flags); 2796 2797 #define FOLL_WRITE 0x01 /* check pte is writable */ 2798 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2799 #define FOLL_GET 0x04 /* do get_page on page */ 2800 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2801 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2802 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2803 * and return without waiting upon it */ 2804 #define FOLL_POPULATE 0x40 /* fault in page */ 2805 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2806 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2807 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2808 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2809 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2810 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2811 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2812 #define FOLL_COW 0x4000 /* internal GUP flag */ 2813 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2814 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2815 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2816 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2817 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2818 2819 /* 2820 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2821 * other. Here is what they mean, and how to use them: 2822 * 2823 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2824 * period _often_ under userspace control. This is in contrast to 2825 * iov_iter_get_pages(), whose usages are transient. 2826 * 2827 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2828 * lifetime enforced by the filesystem and we need guarantees that longterm 2829 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2830 * the filesystem. Ideas for this coordination include revoking the longterm 2831 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2832 * added after the problem with filesystems was found FS DAX VMAs are 2833 * specifically failed. Filesystem pages are still subject to bugs and use of 2834 * FOLL_LONGTERM should be avoided on those pages. 2835 * 2836 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2837 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2838 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2839 * is due to an incompatibility with the FS DAX check and 2840 * FAULT_FLAG_ALLOW_RETRY. 2841 * 2842 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2843 * that region. And so, CMA attempts to migrate the page before pinning, when 2844 * FOLL_LONGTERM is specified. 2845 * 2846 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2847 * but an additional pin counting system) will be invoked. This is intended for 2848 * anything that gets a page reference and then touches page data (for example, 2849 * Direct IO). This lets the filesystem know that some non-file-system entity is 2850 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2851 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2852 * a call to unpin_user_page(). 2853 * 2854 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2855 * and separate refcounting mechanisms, however, and that means that each has 2856 * its own acquire and release mechanisms: 2857 * 2858 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2859 * 2860 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2861 * 2862 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2863 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2864 * calls applied to them, and that's perfectly OK. This is a constraint on the 2865 * callers, not on the pages.) 2866 * 2867 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2868 * directly by the caller. That's in order to help avoid mismatches when 2869 * releasing pages: get_user_pages*() pages must be released via put_page(), 2870 * while pin_user_pages*() pages must be released via unpin_user_page(). 2871 * 2872 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2873 */ 2874 2875 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2876 { 2877 if (vm_fault & VM_FAULT_OOM) 2878 return -ENOMEM; 2879 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2880 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2881 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2882 return -EFAULT; 2883 return 0; 2884 } 2885 2886 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2887 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2888 unsigned long size, pte_fn_t fn, void *data); 2889 extern int apply_to_existing_page_range(struct mm_struct *mm, 2890 unsigned long address, unsigned long size, 2891 pte_fn_t fn, void *data); 2892 2893 #ifdef CONFIG_PAGE_POISONING 2894 extern bool page_poisoning_enabled(void); 2895 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2896 #else 2897 static inline bool page_poisoning_enabled(void) { return false; } 2898 static inline void kernel_poison_pages(struct page *page, int numpages, 2899 int enable) { } 2900 #endif 2901 2902 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2903 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2904 #else 2905 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2906 #endif 2907 static inline bool want_init_on_alloc(gfp_t flags) 2908 { 2909 if (static_branch_unlikely(&init_on_alloc) && 2910 !page_poisoning_enabled()) 2911 return true; 2912 return flags & __GFP_ZERO; 2913 } 2914 2915 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2916 DECLARE_STATIC_KEY_TRUE(init_on_free); 2917 #else 2918 DECLARE_STATIC_KEY_FALSE(init_on_free); 2919 #endif 2920 static inline bool want_init_on_free(void) 2921 { 2922 return static_branch_unlikely(&init_on_free) && 2923 !page_poisoning_enabled(); 2924 } 2925 2926 #ifdef CONFIG_DEBUG_PAGEALLOC 2927 extern void init_debug_pagealloc(void); 2928 #else 2929 static inline void init_debug_pagealloc(void) {} 2930 #endif 2931 extern bool _debug_pagealloc_enabled_early; 2932 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2933 2934 static inline bool debug_pagealloc_enabled(void) 2935 { 2936 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2937 _debug_pagealloc_enabled_early; 2938 } 2939 2940 /* 2941 * For use in fast paths after init_debug_pagealloc() has run, or when a 2942 * false negative result is not harmful when called too early. 2943 */ 2944 static inline bool debug_pagealloc_enabled_static(void) 2945 { 2946 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2947 return false; 2948 2949 return static_branch_unlikely(&_debug_pagealloc_enabled); 2950 } 2951 2952 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2953 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2954 2955 /* 2956 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2957 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2958 */ 2959 static inline void 2960 kernel_map_pages(struct page *page, int numpages, int enable) 2961 { 2962 __kernel_map_pages(page, numpages, enable); 2963 } 2964 #ifdef CONFIG_HIBERNATION 2965 extern bool kernel_page_present(struct page *page); 2966 #endif /* CONFIG_HIBERNATION */ 2967 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2968 static inline void 2969 kernel_map_pages(struct page *page, int numpages, int enable) {} 2970 #ifdef CONFIG_HIBERNATION 2971 static inline bool kernel_page_present(struct page *page) { return true; } 2972 #endif /* CONFIG_HIBERNATION */ 2973 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2974 2975 #ifdef __HAVE_ARCH_GATE_AREA 2976 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2977 extern int in_gate_area_no_mm(unsigned long addr); 2978 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2979 #else 2980 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2981 { 2982 return NULL; 2983 } 2984 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2985 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2986 { 2987 return 0; 2988 } 2989 #endif /* __HAVE_ARCH_GATE_AREA */ 2990 2991 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2992 2993 #ifdef CONFIG_SYSCTL 2994 extern int sysctl_drop_caches; 2995 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2996 loff_t *); 2997 #endif 2998 2999 void drop_slab(void); 3000 void drop_slab_node(int nid); 3001 3002 #ifndef CONFIG_MMU 3003 #define randomize_va_space 0 3004 #else 3005 extern int randomize_va_space; 3006 #endif 3007 3008 const char * arch_vma_name(struct vm_area_struct *vma); 3009 #ifdef CONFIG_MMU 3010 void print_vma_addr(char *prefix, unsigned long rip); 3011 #else 3012 static inline void print_vma_addr(char *prefix, unsigned long rip) 3013 { 3014 } 3015 #endif 3016 3017 void *sparse_buffer_alloc(unsigned long size); 3018 struct page * __populate_section_memmap(unsigned long pfn, 3019 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3020 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3021 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3022 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3023 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3024 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3025 void *vmemmap_alloc_block(unsigned long size, int node); 3026 struct vmem_altmap; 3027 void *vmemmap_alloc_block_buf(unsigned long size, int node); 3028 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3029 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3030 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3031 int node); 3032 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3033 struct vmem_altmap *altmap); 3034 void vmemmap_populate_print_last(void); 3035 #ifdef CONFIG_MEMORY_HOTPLUG 3036 void vmemmap_free(unsigned long start, unsigned long end, 3037 struct vmem_altmap *altmap); 3038 #endif 3039 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3040 unsigned long nr_pages); 3041 3042 enum mf_flags { 3043 MF_COUNT_INCREASED = 1 << 0, 3044 MF_ACTION_REQUIRED = 1 << 1, 3045 MF_MUST_KILL = 1 << 2, 3046 MF_SOFT_OFFLINE = 1 << 3, 3047 }; 3048 extern int memory_failure(unsigned long pfn, int flags); 3049 extern void memory_failure_queue(unsigned long pfn, int flags); 3050 extern void memory_failure_queue_kick(int cpu); 3051 extern int unpoison_memory(unsigned long pfn); 3052 extern int get_hwpoison_page(struct page *page); 3053 #define put_hwpoison_page(page) put_page(page) 3054 extern int sysctl_memory_failure_early_kill; 3055 extern int sysctl_memory_failure_recovery; 3056 extern void shake_page(struct page *p, int access); 3057 extern atomic_long_t num_poisoned_pages __read_mostly; 3058 extern int soft_offline_page(unsigned long pfn, int flags); 3059 3060 3061 /* 3062 * Error handlers for various types of pages. 3063 */ 3064 enum mf_result { 3065 MF_IGNORED, /* Error: cannot be handled */ 3066 MF_FAILED, /* Error: handling failed */ 3067 MF_DELAYED, /* Will be handled later */ 3068 MF_RECOVERED, /* Successfully recovered */ 3069 }; 3070 3071 enum mf_action_page_type { 3072 MF_MSG_KERNEL, 3073 MF_MSG_KERNEL_HIGH_ORDER, 3074 MF_MSG_SLAB, 3075 MF_MSG_DIFFERENT_COMPOUND, 3076 MF_MSG_POISONED_HUGE, 3077 MF_MSG_HUGE, 3078 MF_MSG_FREE_HUGE, 3079 MF_MSG_NON_PMD_HUGE, 3080 MF_MSG_UNMAP_FAILED, 3081 MF_MSG_DIRTY_SWAPCACHE, 3082 MF_MSG_CLEAN_SWAPCACHE, 3083 MF_MSG_DIRTY_MLOCKED_LRU, 3084 MF_MSG_CLEAN_MLOCKED_LRU, 3085 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3086 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3087 MF_MSG_DIRTY_LRU, 3088 MF_MSG_CLEAN_LRU, 3089 MF_MSG_TRUNCATED_LRU, 3090 MF_MSG_BUDDY, 3091 MF_MSG_BUDDY_2ND, 3092 MF_MSG_DAX, 3093 MF_MSG_UNKNOWN, 3094 }; 3095 3096 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3097 extern void clear_huge_page(struct page *page, 3098 unsigned long addr_hint, 3099 unsigned int pages_per_huge_page); 3100 extern void copy_user_huge_page(struct page *dst, struct page *src, 3101 unsigned long addr_hint, 3102 struct vm_area_struct *vma, 3103 unsigned int pages_per_huge_page); 3104 extern long copy_huge_page_from_user(struct page *dst_page, 3105 const void __user *usr_src, 3106 unsigned int pages_per_huge_page, 3107 bool allow_pagefault); 3108 3109 /** 3110 * vma_is_special_huge - Are transhuge page-table entries considered special? 3111 * @vma: Pointer to the struct vm_area_struct to consider 3112 * 3113 * Whether transhuge page-table entries are considered "special" following 3114 * the definition in vm_normal_page(). 3115 * 3116 * Return: true if transhuge page-table entries should be considered special, 3117 * false otherwise. 3118 */ 3119 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3120 { 3121 return vma_is_dax(vma) || (vma->vm_file && 3122 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3123 } 3124 3125 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3126 3127 #ifdef CONFIG_DEBUG_PAGEALLOC 3128 extern unsigned int _debug_guardpage_minorder; 3129 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3130 3131 static inline unsigned int debug_guardpage_minorder(void) 3132 { 3133 return _debug_guardpage_minorder; 3134 } 3135 3136 static inline bool debug_guardpage_enabled(void) 3137 { 3138 return static_branch_unlikely(&_debug_guardpage_enabled); 3139 } 3140 3141 static inline bool page_is_guard(struct page *page) 3142 { 3143 if (!debug_guardpage_enabled()) 3144 return false; 3145 3146 return PageGuard(page); 3147 } 3148 #else 3149 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3150 static inline bool debug_guardpage_enabled(void) { return false; } 3151 static inline bool page_is_guard(struct page *page) { return false; } 3152 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3153 3154 #if MAX_NUMNODES > 1 3155 void __init setup_nr_node_ids(void); 3156 #else 3157 static inline void setup_nr_node_ids(void) {} 3158 #endif 3159 3160 extern int memcmp_pages(struct page *page1, struct page *page2); 3161 3162 static inline int pages_identical(struct page *page1, struct page *page2) 3163 { 3164 return !memcmp_pages(page1, page2); 3165 } 3166 3167 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3168 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3169 pgoff_t first_index, pgoff_t nr, 3170 pgoff_t bitmap_pgoff, 3171 unsigned long *bitmap, 3172 pgoff_t *start, 3173 pgoff_t *end); 3174 3175 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3176 pgoff_t first_index, pgoff_t nr); 3177 #endif 3178 3179 extern int sysctl_nr_trim_pages; 3180 3181 #endif /* __KERNEL__ */ 3182 #endif /* _LINUX_MM_H */ 3183