1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/range.h> 16 #include <linux/pfn.h> 17 #include <linux/bit_spinlock.h> 18 #include <linux/shrinker.h> 19 20 struct mempolicy; 21 struct anon_vma; 22 struct file_ra_state; 23 struct user_struct; 24 struct writeback_control; 25 26 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 27 extern unsigned long max_mapnr; 28 #endif 29 30 extern unsigned long num_physpages; 31 extern unsigned long totalram_pages; 32 extern void * high_memory; 33 extern int page_cluster; 34 35 #ifdef CONFIG_SYSCTL 36 extern int sysctl_legacy_va_layout; 37 #else 38 #define sysctl_legacy_va_layout 0 39 #endif 40 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/processor.h> 44 45 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 46 47 /* to align the pointer to the (next) page boundary */ 48 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 49 50 /* 51 * Linux kernel virtual memory manager primitives. 52 * The idea being to have a "virtual" mm in the same way 53 * we have a virtual fs - giving a cleaner interface to the 54 * mm details, and allowing different kinds of memory mappings 55 * (from shared memory to executable loading to arbitrary 56 * mmap() functions). 57 */ 58 59 extern struct kmem_cache *vm_area_cachep; 60 61 #ifndef CONFIG_MMU 62 extern struct rb_root nommu_region_tree; 63 extern struct rw_semaphore nommu_region_sem; 64 65 extern unsigned int kobjsize(const void *objp); 66 #endif 67 68 /* 69 * vm_flags in vm_area_struct, see mm_types.h. 70 */ 71 #define VM_READ 0x00000001 /* currently active flags */ 72 #define VM_WRITE 0x00000002 73 #define VM_EXEC 0x00000004 74 #define VM_SHARED 0x00000008 75 76 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 77 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 78 #define VM_MAYWRITE 0x00000020 79 #define VM_MAYEXEC 0x00000040 80 #define VM_MAYSHARE 0x00000080 81 82 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 83 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 84 #define VM_GROWSUP 0x00000200 85 #else 86 #define VM_GROWSUP 0x00000000 87 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 88 #endif 89 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 90 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 91 92 #define VM_EXECUTABLE 0x00001000 93 #define VM_LOCKED 0x00002000 94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 95 96 /* Used by sys_madvise() */ 97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 99 100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 102 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 103 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 104 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 105 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 106 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 107 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 108 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 109 #else 110 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 111 #endif 112 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 113 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 114 115 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 116 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 117 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 118 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 119 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 120 121 /* Bits set in the VMA until the stack is in its final location */ 122 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 123 124 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 125 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 126 #endif 127 128 #ifdef CONFIG_STACK_GROWSUP 129 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 130 #else 131 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132 #endif 133 134 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 135 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 136 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 137 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 138 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 139 140 /* 141 * Special vmas that are non-mergable, non-mlock()able. 142 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 143 */ 144 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 145 146 /* 147 * mapping from the currently active vm_flags protection bits (the 148 * low four bits) to a page protection mask.. 149 */ 150 extern pgprot_t protection_map[16]; 151 152 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 153 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 154 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 155 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 156 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 157 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 158 159 /* 160 * This interface is used by x86 PAT code to identify a pfn mapping that is 161 * linear over entire vma. This is to optimize PAT code that deals with 162 * marking the physical region with a particular prot. This is not for generic 163 * mm use. Note also that this check will not work if the pfn mapping is 164 * linear for a vma starting at physical address 0. In which case PAT code 165 * falls back to slow path of reserving physical range page by page. 166 */ 167 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 168 { 169 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 170 } 171 172 static inline int is_pfn_mapping(struct vm_area_struct *vma) 173 { 174 return !!(vma->vm_flags & VM_PFNMAP); 175 } 176 177 /* 178 * vm_fault is filled by the the pagefault handler and passed to the vma's 179 * ->fault function. The vma's ->fault is responsible for returning a bitmask 180 * of VM_FAULT_xxx flags that give details about how the fault was handled. 181 * 182 * pgoff should be used in favour of virtual_address, if possible. If pgoff 183 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 184 * mapping support. 185 */ 186 struct vm_fault { 187 unsigned int flags; /* FAULT_FLAG_xxx flags */ 188 pgoff_t pgoff; /* Logical page offset based on vma */ 189 void __user *virtual_address; /* Faulting virtual address */ 190 191 struct page *page; /* ->fault handlers should return a 192 * page here, unless VM_FAULT_NOPAGE 193 * is set (which is also implied by 194 * VM_FAULT_ERROR). 195 */ 196 }; 197 198 /* 199 * These are the virtual MM functions - opening of an area, closing and 200 * unmapping it (needed to keep files on disk up-to-date etc), pointer 201 * to the functions called when a no-page or a wp-page exception occurs. 202 */ 203 struct vm_operations_struct { 204 void (*open)(struct vm_area_struct * area); 205 void (*close)(struct vm_area_struct * area); 206 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 207 208 /* notification that a previously read-only page is about to become 209 * writable, if an error is returned it will cause a SIGBUS */ 210 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 211 212 /* called by access_process_vm when get_user_pages() fails, typically 213 * for use by special VMAs that can switch between memory and hardware 214 */ 215 int (*access)(struct vm_area_struct *vma, unsigned long addr, 216 void *buf, int len, int write); 217 #ifdef CONFIG_NUMA 218 /* 219 * set_policy() op must add a reference to any non-NULL @new mempolicy 220 * to hold the policy upon return. Caller should pass NULL @new to 221 * remove a policy and fall back to surrounding context--i.e. do not 222 * install a MPOL_DEFAULT policy, nor the task or system default 223 * mempolicy. 224 */ 225 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 226 227 /* 228 * get_policy() op must add reference [mpol_get()] to any policy at 229 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 230 * in mm/mempolicy.c will do this automatically. 231 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 232 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 233 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 234 * must return NULL--i.e., do not "fallback" to task or system default 235 * policy. 236 */ 237 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 238 unsigned long addr); 239 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 240 const nodemask_t *to, unsigned long flags); 241 #endif 242 }; 243 244 struct mmu_gather; 245 struct inode; 246 247 #define page_private(page) ((page)->private) 248 #define set_page_private(page, v) ((page)->private = (v)) 249 250 /* 251 * FIXME: take this include out, include page-flags.h in 252 * files which need it (119 of them) 253 */ 254 #include <linux/page-flags.h> 255 #include <linux/huge_mm.h> 256 257 /* 258 * Methods to modify the page usage count. 259 * 260 * What counts for a page usage: 261 * - cache mapping (page->mapping) 262 * - private data (page->private) 263 * - page mapped in a task's page tables, each mapping 264 * is counted separately 265 * 266 * Also, many kernel routines increase the page count before a critical 267 * routine so they can be sure the page doesn't go away from under them. 268 */ 269 270 /* 271 * Drop a ref, return true if the refcount fell to zero (the page has no users) 272 */ 273 static inline int put_page_testzero(struct page *page) 274 { 275 VM_BUG_ON(atomic_read(&page->_count) == 0); 276 return atomic_dec_and_test(&page->_count); 277 } 278 279 /* 280 * Try to grab a ref unless the page has a refcount of zero, return false if 281 * that is the case. 282 */ 283 static inline int get_page_unless_zero(struct page *page) 284 { 285 return atomic_inc_not_zero(&page->_count); 286 } 287 288 extern int page_is_ram(unsigned long pfn); 289 290 /* Support for virtually mapped pages */ 291 struct page *vmalloc_to_page(const void *addr); 292 unsigned long vmalloc_to_pfn(const void *addr); 293 294 /* 295 * Determine if an address is within the vmalloc range 296 * 297 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 298 * is no special casing required. 299 */ 300 static inline int is_vmalloc_addr(const void *x) 301 { 302 #ifdef CONFIG_MMU 303 unsigned long addr = (unsigned long)x; 304 305 return addr >= VMALLOC_START && addr < VMALLOC_END; 306 #else 307 return 0; 308 #endif 309 } 310 #ifdef CONFIG_MMU 311 extern int is_vmalloc_or_module_addr(const void *x); 312 #else 313 static inline int is_vmalloc_or_module_addr(const void *x) 314 { 315 return 0; 316 } 317 #endif 318 319 static inline void compound_lock(struct page *page) 320 { 321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 322 bit_spin_lock(PG_compound_lock, &page->flags); 323 #endif 324 } 325 326 static inline void compound_unlock(struct page *page) 327 { 328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 329 bit_spin_unlock(PG_compound_lock, &page->flags); 330 #endif 331 } 332 333 static inline unsigned long compound_lock_irqsave(struct page *page) 334 { 335 unsigned long uninitialized_var(flags); 336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 337 local_irq_save(flags); 338 compound_lock(page); 339 #endif 340 return flags; 341 } 342 343 static inline void compound_unlock_irqrestore(struct page *page, 344 unsigned long flags) 345 { 346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 347 compound_unlock(page); 348 local_irq_restore(flags); 349 #endif 350 } 351 352 static inline struct page *compound_head(struct page *page) 353 { 354 if (unlikely(PageTail(page))) 355 return page->first_page; 356 return page; 357 } 358 359 static inline int page_count(struct page *page) 360 { 361 return atomic_read(&compound_head(page)->_count); 362 } 363 364 static inline void get_page(struct page *page) 365 { 366 /* 367 * Getting a normal page or the head of a compound page 368 * requires to already have an elevated page->_count. Only if 369 * we're getting a tail page, the elevated page->_count is 370 * required only in the head page, so for tail pages the 371 * bugcheck only verifies that the page->_count isn't 372 * negative. 373 */ 374 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 375 atomic_inc(&page->_count); 376 /* 377 * Getting a tail page will elevate both the head and tail 378 * page->_count(s). 379 */ 380 if (unlikely(PageTail(page))) { 381 /* 382 * This is safe only because 383 * __split_huge_page_refcount can't run under 384 * get_page(). 385 */ 386 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 387 atomic_inc(&page->first_page->_count); 388 } 389 } 390 391 static inline struct page *virt_to_head_page(const void *x) 392 { 393 struct page *page = virt_to_page(x); 394 return compound_head(page); 395 } 396 397 /* 398 * Setup the page count before being freed into the page allocator for 399 * the first time (boot or memory hotplug) 400 */ 401 static inline void init_page_count(struct page *page) 402 { 403 atomic_set(&page->_count, 1); 404 } 405 406 /* 407 * PageBuddy() indicate that the page is free and in the buddy system 408 * (see mm/page_alloc.c). 409 * 410 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 411 * -2 so that an underflow of the page_mapcount() won't be mistaken 412 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 413 * efficiently by most CPU architectures. 414 */ 415 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 416 417 static inline int PageBuddy(struct page *page) 418 { 419 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 420 } 421 422 static inline void __SetPageBuddy(struct page *page) 423 { 424 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 425 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 426 } 427 428 static inline void __ClearPageBuddy(struct page *page) 429 { 430 VM_BUG_ON(!PageBuddy(page)); 431 atomic_set(&page->_mapcount, -1); 432 } 433 434 void put_page(struct page *page); 435 void put_pages_list(struct list_head *pages); 436 437 void split_page(struct page *page, unsigned int order); 438 int split_free_page(struct page *page); 439 440 /* 441 * Compound pages have a destructor function. Provide a 442 * prototype for that function and accessor functions. 443 * These are _only_ valid on the head of a PG_compound page. 444 */ 445 typedef void compound_page_dtor(struct page *); 446 447 static inline void set_compound_page_dtor(struct page *page, 448 compound_page_dtor *dtor) 449 { 450 page[1].lru.next = (void *)dtor; 451 } 452 453 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 454 { 455 return (compound_page_dtor *)page[1].lru.next; 456 } 457 458 static inline int compound_order(struct page *page) 459 { 460 if (!PageHead(page)) 461 return 0; 462 return (unsigned long)page[1].lru.prev; 463 } 464 465 static inline int compound_trans_order(struct page *page) 466 { 467 int order; 468 unsigned long flags; 469 470 if (!PageHead(page)) 471 return 0; 472 473 flags = compound_lock_irqsave(page); 474 order = compound_order(page); 475 compound_unlock_irqrestore(page, flags); 476 return order; 477 } 478 479 static inline void set_compound_order(struct page *page, unsigned long order) 480 { 481 page[1].lru.prev = (void *)order; 482 } 483 484 #ifdef CONFIG_MMU 485 /* 486 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 487 * servicing faults for write access. In the normal case, do always want 488 * pte_mkwrite. But get_user_pages can cause write faults for mappings 489 * that do not have writing enabled, when used by access_process_vm. 490 */ 491 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 492 { 493 if (likely(vma->vm_flags & VM_WRITE)) 494 pte = pte_mkwrite(pte); 495 return pte; 496 } 497 #endif 498 499 /* 500 * Multiple processes may "see" the same page. E.g. for untouched 501 * mappings of /dev/null, all processes see the same page full of 502 * zeroes, and text pages of executables and shared libraries have 503 * only one copy in memory, at most, normally. 504 * 505 * For the non-reserved pages, page_count(page) denotes a reference count. 506 * page_count() == 0 means the page is free. page->lru is then used for 507 * freelist management in the buddy allocator. 508 * page_count() > 0 means the page has been allocated. 509 * 510 * Pages are allocated by the slab allocator in order to provide memory 511 * to kmalloc and kmem_cache_alloc. In this case, the management of the 512 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 513 * unless a particular usage is carefully commented. (the responsibility of 514 * freeing the kmalloc memory is the caller's, of course). 515 * 516 * A page may be used by anyone else who does a __get_free_page(). 517 * In this case, page_count still tracks the references, and should only 518 * be used through the normal accessor functions. The top bits of page->flags 519 * and page->virtual store page management information, but all other fields 520 * are unused and could be used privately, carefully. The management of this 521 * page is the responsibility of the one who allocated it, and those who have 522 * subsequently been given references to it. 523 * 524 * The other pages (we may call them "pagecache pages") are completely 525 * managed by the Linux memory manager: I/O, buffers, swapping etc. 526 * The following discussion applies only to them. 527 * 528 * A pagecache page contains an opaque `private' member, which belongs to the 529 * page's address_space. Usually, this is the address of a circular list of 530 * the page's disk buffers. PG_private must be set to tell the VM to call 531 * into the filesystem to release these pages. 532 * 533 * A page may belong to an inode's memory mapping. In this case, page->mapping 534 * is the pointer to the inode, and page->index is the file offset of the page, 535 * in units of PAGE_CACHE_SIZE. 536 * 537 * If pagecache pages are not associated with an inode, they are said to be 538 * anonymous pages. These may become associated with the swapcache, and in that 539 * case PG_swapcache is set, and page->private is an offset into the swapcache. 540 * 541 * In either case (swapcache or inode backed), the pagecache itself holds one 542 * reference to the page. Setting PG_private should also increment the 543 * refcount. The each user mapping also has a reference to the page. 544 * 545 * The pagecache pages are stored in a per-mapping radix tree, which is 546 * rooted at mapping->page_tree, and indexed by offset. 547 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 548 * lists, we instead now tag pages as dirty/writeback in the radix tree. 549 * 550 * All pagecache pages may be subject to I/O: 551 * - inode pages may need to be read from disk, 552 * - inode pages which have been modified and are MAP_SHARED may need 553 * to be written back to the inode on disk, 554 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 555 * modified may need to be swapped out to swap space and (later) to be read 556 * back into memory. 557 */ 558 559 /* 560 * The zone field is never updated after free_area_init_core() 561 * sets it, so none of the operations on it need to be atomic. 562 */ 563 564 565 /* 566 * page->flags layout: 567 * 568 * There are three possibilities for how page->flags get 569 * laid out. The first is for the normal case, without 570 * sparsemem. The second is for sparsemem when there is 571 * plenty of space for node and section. The last is when 572 * we have run out of space and have to fall back to an 573 * alternate (slower) way of determining the node. 574 * 575 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 576 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 577 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 578 */ 579 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 580 #define SECTIONS_WIDTH SECTIONS_SHIFT 581 #else 582 #define SECTIONS_WIDTH 0 583 #endif 584 585 #define ZONES_WIDTH ZONES_SHIFT 586 587 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 588 #define NODES_WIDTH NODES_SHIFT 589 #else 590 #ifdef CONFIG_SPARSEMEM_VMEMMAP 591 #error "Vmemmap: No space for nodes field in page flags" 592 #endif 593 #define NODES_WIDTH 0 594 #endif 595 596 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 597 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 598 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 599 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 600 601 /* 602 * We are going to use the flags for the page to node mapping if its in 603 * there. This includes the case where there is no node, so it is implicit. 604 */ 605 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 606 #define NODE_NOT_IN_PAGE_FLAGS 607 #endif 608 609 /* 610 * Define the bit shifts to access each section. For non-existent 611 * sections we define the shift as 0; that plus a 0 mask ensures 612 * the compiler will optimise away reference to them. 613 */ 614 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 615 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 616 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 617 618 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 619 #ifdef NODE_NOT_IN_PAGE_FLAGS 620 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 621 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 622 SECTIONS_PGOFF : ZONES_PGOFF) 623 #else 624 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 625 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 626 NODES_PGOFF : ZONES_PGOFF) 627 #endif 628 629 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 630 631 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 632 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 633 #endif 634 635 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 636 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 637 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 638 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 639 640 static inline enum zone_type page_zonenum(const struct page *page) 641 { 642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 643 } 644 645 /* 646 * The identification function is only used by the buddy allocator for 647 * determining if two pages could be buddies. We are not really 648 * identifying a zone since we could be using a the section number 649 * id if we have not node id available in page flags. 650 * We guarantee only that it will return the same value for two 651 * combinable pages in a zone. 652 */ 653 static inline int page_zone_id(struct page *page) 654 { 655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 656 } 657 658 static inline int zone_to_nid(struct zone *zone) 659 { 660 #ifdef CONFIG_NUMA 661 return zone->node; 662 #else 663 return 0; 664 #endif 665 } 666 667 #ifdef NODE_NOT_IN_PAGE_FLAGS 668 extern int page_to_nid(const struct page *page); 669 #else 670 static inline int page_to_nid(const struct page *page) 671 { 672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 673 } 674 #endif 675 676 static inline struct zone *page_zone(const struct page *page) 677 { 678 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 679 } 680 681 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 682 static inline void set_page_section(struct page *page, unsigned long section) 683 { 684 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 685 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 686 } 687 688 static inline unsigned long page_to_section(const struct page *page) 689 { 690 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 691 } 692 #endif 693 694 static inline void set_page_zone(struct page *page, enum zone_type zone) 695 { 696 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 697 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 698 } 699 700 static inline void set_page_node(struct page *page, unsigned long node) 701 { 702 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 703 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 704 } 705 706 static inline void set_page_links(struct page *page, enum zone_type zone, 707 unsigned long node, unsigned long pfn) 708 { 709 set_page_zone(page, zone); 710 set_page_node(page, node); 711 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 712 set_page_section(page, pfn_to_section_nr(pfn)); 713 #endif 714 } 715 716 /* 717 * Some inline functions in vmstat.h depend on page_zone() 718 */ 719 #include <linux/vmstat.h> 720 721 static __always_inline void *lowmem_page_address(const struct page *page) 722 { 723 return __va(PFN_PHYS(page_to_pfn(page))); 724 } 725 726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 727 #define HASHED_PAGE_VIRTUAL 728 #endif 729 730 #if defined(WANT_PAGE_VIRTUAL) 731 #define page_address(page) ((page)->virtual) 732 #define set_page_address(page, address) \ 733 do { \ 734 (page)->virtual = (address); \ 735 } while(0) 736 #define page_address_init() do { } while(0) 737 #endif 738 739 #if defined(HASHED_PAGE_VIRTUAL) 740 void *page_address(const struct page *page); 741 void set_page_address(struct page *page, void *virtual); 742 void page_address_init(void); 743 #endif 744 745 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 746 #define page_address(page) lowmem_page_address(page) 747 #define set_page_address(page, address) do { } while(0) 748 #define page_address_init() do { } while(0) 749 #endif 750 751 /* 752 * On an anonymous page mapped into a user virtual memory area, 753 * page->mapping points to its anon_vma, not to a struct address_space; 754 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 755 * 756 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 757 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 758 * and then page->mapping points, not to an anon_vma, but to a private 759 * structure which KSM associates with that merged page. See ksm.h. 760 * 761 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 762 * 763 * Please note that, confusingly, "page_mapping" refers to the inode 764 * address_space which maps the page from disk; whereas "page_mapped" 765 * refers to user virtual address space into which the page is mapped. 766 */ 767 #define PAGE_MAPPING_ANON 1 768 #define PAGE_MAPPING_KSM 2 769 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 770 771 extern struct address_space swapper_space; 772 static inline struct address_space *page_mapping(struct page *page) 773 { 774 struct address_space *mapping = page->mapping; 775 776 VM_BUG_ON(PageSlab(page)); 777 if (unlikely(PageSwapCache(page))) 778 mapping = &swapper_space; 779 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 780 mapping = NULL; 781 return mapping; 782 } 783 784 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 785 static inline void *page_rmapping(struct page *page) 786 { 787 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 788 } 789 790 static inline int PageAnon(struct page *page) 791 { 792 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 793 } 794 795 /* 796 * Return the pagecache index of the passed page. Regular pagecache pages 797 * use ->index whereas swapcache pages use ->private 798 */ 799 static inline pgoff_t page_index(struct page *page) 800 { 801 if (unlikely(PageSwapCache(page))) 802 return page_private(page); 803 return page->index; 804 } 805 806 /* 807 * The atomic page->_mapcount, like _count, starts from -1: 808 * so that transitions both from it and to it can be tracked, 809 * using atomic_inc_and_test and atomic_add_negative(-1). 810 */ 811 static inline void reset_page_mapcount(struct page *page) 812 { 813 atomic_set(&(page)->_mapcount, -1); 814 } 815 816 static inline int page_mapcount(struct page *page) 817 { 818 return atomic_read(&(page)->_mapcount) + 1; 819 } 820 821 /* 822 * Return true if this page is mapped into pagetables. 823 */ 824 static inline int page_mapped(struct page *page) 825 { 826 return atomic_read(&(page)->_mapcount) >= 0; 827 } 828 829 /* 830 * Different kinds of faults, as returned by handle_mm_fault(). 831 * Used to decide whether a process gets delivered SIGBUS or 832 * just gets major/minor fault counters bumped up. 833 */ 834 835 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 836 837 #define VM_FAULT_OOM 0x0001 838 #define VM_FAULT_SIGBUS 0x0002 839 #define VM_FAULT_MAJOR 0x0004 840 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 841 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 842 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 843 844 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 845 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 846 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 847 848 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 849 850 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 851 VM_FAULT_HWPOISON_LARGE) 852 853 /* Encode hstate index for a hwpoisoned large page */ 854 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 855 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 856 857 /* 858 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 859 */ 860 extern void pagefault_out_of_memory(void); 861 862 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 863 864 /* 865 * Flags passed to show_mem() and show_free_areas() to suppress output in 866 * various contexts. 867 */ 868 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 869 870 extern void show_free_areas(unsigned int flags); 871 extern bool skip_free_areas_node(unsigned int flags, int nid); 872 873 int shmem_lock(struct file *file, int lock, struct user_struct *user); 874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 875 int shmem_zero_setup(struct vm_area_struct *); 876 877 extern int can_do_mlock(void); 878 extern int user_shm_lock(size_t, struct user_struct *); 879 extern void user_shm_unlock(size_t, struct user_struct *); 880 881 /* 882 * Parameter block passed down to zap_pte_range in exceptional cases. 883 */ 884 struct zap_details { 885 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 886 struct address_space *check_mapping; /* Check page->mapping if set */ 887 pgoff_t first_index; /* Lowest page->index to unmap */ 888 pgoff_t last_index; /* Highest page->index to unmap */ 889 }; 890 891 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 892 pte_t pte); 893 894 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 895 unsigned long size); 896 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 897 unsigned long size, struct zap_details *); 898 unsigned long unmap_vmas(struct mmu_gather *tlb, 899 struct vm_area_struct *start_vma, unsigned long start_addr, 900 unsigned long end_addr, unsigned long *nr_accounted, 901 struct zap_details *); 902 903 /** 904 * mm_walk - callbacks for walk_page_range 905 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 906 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 907 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 908 * this handler is required to be able to handle 909 * pmd_trans_huge() pmds. They may simply choose to 910 * split_huge_page() instead of handling it explicitly. 911 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 912 * @pte_hole: if set, called for each hole at all levels 913 * @hugetlb_entry: if set, called for each hugetlb entry 914 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 915 * is used. 916 * 917 * (see walk_page_range for more details) 918 */ 919 struct mm_walk { 920 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 924 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 925 int (*hugetlb_entry)(pte_t *, unsigned long, 926 unsigned long, unsigned long, struct mm_walk *); 927 struct mm_struct *mm; 928 void *private; 929 }; 930 931 int walk_page_range(unsigned long addr, unsigned long end, 932 struct mm_walk *walk); 933 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 934 unsigned long end, unsigned long floor, unsigned long ceiling); 935 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 936 struct vm_area_struct *vma); 937 void unmap_mapping_range(struct address_space *mapping, 938 loff_t const holebegin, loff_t const holelen, int even_cows); 939 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 940 unsigned long *pfn); 941 int follow_phys(struct vm_area_struct *vma, unsigned long address, 942 unsigned int flags, unsigned long *prot, resource_size_t *phys); 943 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 944 void *buf, int len, int write); 945 946 static inline void unmap_shared_mapping_range(struct address_space *mapping, 947 loff_t const holebegin, loff_t const holelen) 948 { 949 unmap_mapping_range(mapping, holebegin, holelen, 0); 950 } 951 952 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 953 extern void truncate_setsize(struct inode *inode, loff_t newsize); 954 extern int vmtruncate(struct inode *inode, loff_t offset); 955 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 956 957 int truncate_inode_page(struct address_space *mapping, struct page *page); 958 int generic_error_remove_page(struct address_space *mapping, struct page *page); 959 960 int invalidate_inode_page(struct page *page); 961 962 #ifdef CONFIG_MMU 963 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 964 unsigned long address, unsigned int flags); 965 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 966 unsigned long address, unsigned int fault_flags); 967 #else 968 static inline int handle_mm_fault(struct mm_struct *mm, 969 struct vm_area_struct *vma, unsigned long address, 970 unsigned int flags) 971 { 972 /* should never happen if there's no MMU */ 973 BUG(); 974 return VM_FAULT_SIGBUS; 975 } 976 static inline int fixup_user_fault(struct task_struct *tsk, 977 struct mm_struct *mm, unsigned long address, 978 unsigned int fault_flags) 979 { 980 /* should never happen if there's no MMU */ 981 BUG(); 982 return -EFAULT; 983 } 984 #endif 985 986 extern int make_pages_present(unsigned long addr, unsigned long end); 987 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 988 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 989 void *buf, int len, int write); 990 991 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 992 unsigned long start, int len, unsigned int foll_flags, 993 struct page **pages, struct vm_area_struct **vmas, 994 int *nonblocking); 995 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 996 unsigned long start, int nr_pages, int write, int force, 997 struct page **pages, struct vm_area_struct **vmas); 998 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 999 struct page **pages); 1000 struct page *get_dump_page(unsigned long addr); 1001 1002 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1003 extern void do_invalidatepage(struct page *page, unsigned long offset); 1004 1005 int __set_page_dirty_nobuffers(struct page *page); 1006 int __set_page_dirty_no_writeback(struct page *page); 1007 int redirty_page_for_writepage(struct writeback_control *wbc, 1008 struct page *page); 1009 void account_page_dirtied(struct page *page, struct address_space *mapping); 1010 void account_page_writeback(struct page *page); 1011 int set_page_dirty(struct page *page); 1012 int set_page_dirty_lock(struct page *page); 1013 int clear_page_dirty_for_io(struct page *page); 1014 1015 /* Is the vma a continuation of the stack vma above it? */ 1016 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1017 { 1018 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1019 } 1020 1021 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1022 unsigned long addr) 1023 { 1024 return (vma->vm_flags & VM_GROWSDOWN) && 1025 (vma->vm_start == addr) && 1026 !vma_growsdown(vma->vm_prev, addr); 1027 } 1028 1029 /* Is the vma a continuation of the stack vma below it? */ 1030 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1031 { 1032 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1033 } 1034 1035 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1036 unsigned long addr) 1037 { 1038 return (vma->vm_flags & VM_GROWSUP) && 1039 (vma->vm_end == addr) && 1040 !vma_growsup(vma->vm_next, addr); 1041 } 1042 1043 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1044 unsigned long old_addr, struct vm_area_struct *new_vma, 1045 unsigned long new_addr, unsigned long len); 1046 extern unsigned long do_mremap(unsigned long addr, 1047 unsigned long old_len, unsigned long new_len, 1048 unsigned long flags, unsigned long new_addr); 1049 extern int mprotect_fixup(struct vm_area_struct *vma, 1050 struct vm_area_struct **pprev, unsigned long start, 1051 unsigned long end, unsigned long newflags); 1052 1053 /* 1054 * doesn't attempt to fault and will return short. 1055 */ 1056 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1057 struct page **pages); 1058 /* 1059 * per-process(per-mm_struct) statistics. 1060 */ 1061 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1062 { 1063 atomic_long_set(&mm->rss_stat.count[member], value); 1064 } 1065 1066 #if defined(SPLIT_RSS_COUNTING) 1067 unsigned long get_mm_counter(struct mm_struct *mm, int member); 1068 #else 1069 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1070 { 1071 return atomic_long_read(&mm->rss_stat.count[member]); 1072 } 1073 #endif 1074 1075 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1076 { 1077 atomic_long_add(value, &mm->rss_stat.count[member]); 1078 } 1079 1080 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1081 { 1082 atomic_long_inc(&mm->rss_stat.count[member]); 1083 } 1084 1085 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1086 { 1087 atomic_long_dec(&mm->rss_stat.count[member]); 1088 } 1089 1090 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1091 { 1092 return get_mm_counter(mm, MM_FILEPAGES) + 1093 get_mm_counter(mm, MM_ANONPAGES); 1094 } 1095 1096 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1097 { 1098 return max(mm->hiwater_rss, get_mm_rss(mm)); 1099 } 1100 1101 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1102 { 1103 return max(mm->hiwater_vm, mm->total_vm); 1104 } 1105 1106 static inline void update_hiwater_rss(struct mm_struct *mm) 1107 { 1108 unsigned long _rss = get_mm_rss(mm); 1109 1110 if ((mm)->hiwater_rss < _rss) 1111 (mm)->hiwater_rss = _rss; 1112 } 1113 1114 static inline void update_hiwater_vm(struct mm_struct *mm) 1115 { 1116 if (mm->hiwater_vm < mm->total_vm) 1117 mm->hiwater_vm = mm->total_vm; 1118 } 1119 1120 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1121 struct mm_struct *mm) 1122 { 1123 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1124 1125 if (*maxrss < hiwater_rss) 1126 *maxrss = hiwater_rss; 1127 } 1128 1129 #if defined(SPLIT_RSS_COUNTING) 1130 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1131 #else 1132 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1133 { 1134 } 1135 #endif 1136 1137 int vma_wants_writenotify(struct vm_area_struct *vma); 1138 1139 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1140 spinlock_t **ptl); 1141 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1142 spinlock_t **ptl) 1143 { 1144 pte_t *ptep; 1145 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1146 return ptep; 1147 } 1148 1149 #ifdef __PAGETABLE_PUD_FOLDED 1150 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1151 unsigned long address) 1152 { 1153 return 0; 1154 } 1155 #else 1156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1157 #endif 1158 1159 #ifdef __PAGETABLE_PMD_FOLDED 1160 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1161 unsigned long address) 1162 { 1163 return 0; 1164 } 1165 #else 1166 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1167 #endif 1168 1169 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1170 pmd_t *pmd, unsigned long address); 1171 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1172 1173 /* 1174 * The following ifdef needed to get the 4level-fixup.h header to work. 1175 * Remove it when 4level-fixup.h has been removed. 1176 */ 1177 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1178 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1179 { 1180 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1181 NULL: pud_offset(pgd, address); 1182 } 1183 1184 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1185 { 1186 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1187 NULL: pmd_offset(pud, address); 1188 } 1189 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1190 1191 #if USE_SPLIT_PTLOCKS 1192 /* 1193 * We tuck a spinlock to guard each pagetable page into its struct page, 1194 * at page->private, with BUILD_BUG_ON to make sure that this will not 1195 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1196 * When freeing, reset page->mapping so free_pages_check won't complain. 1197 */ 1198 #define __pte_lockptr(page) &((page)->ptl) 1199 #define pte_lock_init(_page) do { \ 1200 spin_lock_init(__pte_lockptr(_page)); \ 1201 } while (0) 1202 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1203 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1204 #else /* !USE_SPLIT_PTLOCKS */ 1205 /* 1206 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1207 */ 1208 #define pte_lock_init(page) do {} while (0) 1209 #define pte_lock_deinit(page) do {} while (0) 1210 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1211 #endif /* USE_SPLIT_PTLOCKS */ 1212 1213 static inline void pgtable_page_ctor(struct page *page) 1214 { 1215 pte_lock_init(page); 1216 inc_zone_page_state(page, NR_PAGETABLE); 1217 } 1218 1219 static inline void pgtable_page_dtor(struct page *page) 1220 { 1221 pte_lock_deinit(page); 1222 dec_zone_page_state(page, NR_PAGETABLE); 1223 } 1224 1225 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1226 ({ \ 1227 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1228 pte_t *__pte = pte_offset_map(pmd, address); \ 1229 *(ptlp) = __ptl; \ 1230 spin_lock(__ptl); \ 1231 __pte; \ 1232 }) 1233 1234 #define pte_unmap_unlock(pte, ptl) do { \ 1235 spin_unlock(ptl); \ 1236 pte_unmap(pte); \ 1237 } while (0) 1238 1239 #define pte_alloc_map(mm, vma, pmd, address) \ 1240 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1241 pmd, address))? \ 1242 NULL: pte_offset_map(pmd, address)) 1243 1244 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1246 pmd, address))? \ 1247 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1248 1249 #define pte_alloc_kernel(pmd, address) \ 1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1251 NULL: pte_offset_kernel(pmd, address)) 1252 1253 extern void free_area_init(unsigned long * zones_size); 1254 extern void free_area_init_node(int nid, unsigned long * zones_size, 1255 unsigned long zone_start_pfn, unsigned long *zholes_size); 1256 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1257 /* 1258 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1259 * zones, allocate the backing mem_map and account for memory holes in a more 1260 * architecture independent manner. This is a substitute for creating the 1261 * zone_sizes[] and zholes_size[] arrays and passing them to 1262 * free_area_init_node() 1263 * 1264 * An architecture is expected to register range of page frames backed by 1265 * physical memory with add_active_range() before calling 1266 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1267 * usage, an architecture is expected to do something like 1268 * 1269 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1270 * max_highmem_pfn}; 1271 * for_each_valid_physical_page_range() 1272 * add_active_range(node_id, start_pfn, end_pfn) 1273 * free_area_init_nodes(max_zone_pfns); 1274 * 1275 * If the architecture guarantees that there are no holes in the ranges 1276 * registered with add_active_range(), free_bootmem_active_regions() 1277 * will call free_bootmem_node() for each registered physical page range. 1278 * Similarly sparse_memory_present_with_active_regions() calls 1279 * memory_present() for each range when SPARSEMEM is enabled. 1280 * 1281 * See mm/page_alloc.c for more information on each function exposed by 1282 * CONFIG_ARCH_POPULATES_NODE_MAP 1283 */ 1284 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1285 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1286 unsigned long end_pfn); 1287 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1288 unsigned long end_pfn); 1289 extern void remove_all_active_ranges(void); 1290 void sort_node_map(void); 1291 unsigned long node_map_pfn_alignment(void); 1292 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1293 unsigned long end_pfn); 1294 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1295 unsigned long end_pfn); 1296 extern void get_pfn_range_for_nid(unsigned int nid, 1297 unsigned long *start_pfn, unsigned long *end_pfn); 1298 extern unsigned long find_min_pfn_with_active_regions(void); 1299 extern void free_bootmem_with_active_regions(int nid, 1300 unsigned long max_low_pfn); 1301 int add_from_early_node_map(struct range *range, int az, 1302 int nr_range, int nid); 1303 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1304 u64 goal, u64 limit); 1305 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1306 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1307 extern void sparse_memory_present_with_active_regions(int nid); 1308 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1309 1310 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1311 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1312 static inline int __early_pfn_to_nid(unsigned long pfn) 1313 { 1314 return 0; 1315 } 1316 #else 1317 /* please see mm/page_alloc.c */ 1318 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1319 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1320 /* there is a per-arch backend function. */ 1321 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1323 #endif 1324 1325 extern void set_dma_reserve(unsigned long new_dma_reserve); 1326 extern void memmap_init_zone(unsigned long, int, unsigned long, 1327 unsigned long, enum memmap_context); 1328 extern void setup_per_zone_wmarks(void); 1329 extern int __meminit init_per_zone_wmark_min(void); 1330 extern void mem_init(void); 1331 extern void __init mmap_init(void); 1332 extern void show_mem(unsigned int flags); 1333 extern void si_meminfo(struct sysinfo * val); 1334 extern void si_meminfo_node(struct sysinfo *val, int nid); 1335 extern int after_bootmem; 1336 1337 extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1338 1339 extern void setup_per_cpu_pageset(void); 1340 1341 extern void zone_pcp_update(struct zone *zone); 1342 1343 /* nommu.c */ 1344 extern atomic_long_t mmap_pages_allocated; 1345 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1346 1347 /* prio_tree.c */ 1348 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1349 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1350 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1351 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1352 struct prio_tree_iter *iter); 1353 1354 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1355 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1356 (vma = vma_prio_tree_next(vma, iter)); ) 1357 1358 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1359 struct list_head *list) 1360 { 1361 vma->shared.vm_set.parent = NULL; 1362 list_add_tail(&vma->shared.vm_set.list, list); 1363 } 1364 1365 /* mmap.c */ 1366 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1367 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1368 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1369 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1370 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1371 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1372 struct mempolicy *); 1373 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1374 extern int split_vma(struct mm_struct *, 1375 struct vm_area_struct *, unsigned long addr, int new_below); 1376 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1377 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1378 struct rb_node **, struct rb_node *); 1379 extern void unlink_file_vma(struct vm_area_struct *); 1380 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1381 unsigned long addr, unsigned long len, pgoff_t pgoff); 1382 extern void exit_mmap(struct mm_struct *); 1383 1384 extern int mm_take_all_locks(struct mm_struct *mm); 1385 extern void mm_drop_all_locks(struct mm_struct *mm); 1386 1387 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1388 extern void added_exe_file_vma(struct mm_struct *mm); 1389 extern void removed_exe_file_vma(struct mm_struct *mm); 1390 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1391 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1392 1393 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1394 extern int install_special_mapping(struct mm_struct *mm, 1395 unsigned long addr, unsigned long len, 1396 unsigned long flags, struct page **pages); 1397 1398 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1399 1400 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1401 unsigned long len, unsigned long prot, 1402 unsigned long flag, unsigned long pgoff); 1403 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1404 unsigned long len, unsigned long flags, 1405 vm_flags_t vm_flags, unsigned long pgoff); 1406 1407 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1408 unsigned long len, unsigned long prot, 1409 unsigned long flag, unsigned long offset) 1410 { 1411 unsigned long ret = -EINVAL; 1412 if ((offset + PAGE_ALIGN(len)) < offset) 1413 goto out; 1414 if (!(offset & ~PAGE_MASK)) 1415 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1416 out: 1417 return ret; 1418 } 1419 1420 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1421 1422 extern unsigned long do_brk(unsigned long, unsigned long); 1423 1424 /* truncate.c */ 1425 extern void truncate_inode_pages(struct address_space *, loff_t); 1426 extern void truncate_inode_pages_range(struct address_space *, 1427 loff_t lstart, loff_t lend); 1428 1429 /* generic vm_area_ops exported for stackable file systems */ 1430 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1431 1432 /* mm/page-writeback.c */ 1433 int write_one_page(struct page *page, int wait); 1434 void task_dirty_inc(struct task_struct *tsk); 1435 1436 /* readahead.c */ 1437 #define VM_MAX_READAHEAD 128 /* kbytes */ 1438 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1439 1440 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1441 pgoff_t offset, unsigned long nr_to_read); 1442 1443 void page_cache_sync_readahead(struct address_space *mapping, 1444 struct file_ra_state *ra, 1445 struct file *filp, 1446 pgoff_t offset, 1447 unsigned long size); 1448 1449 void page_cache_async_readahead(struct address_space *mapping, 1450 struct file_ra_state *ra, 1451 struct file *filp, 1452 struct page *pg, 1453 pgoff_t offset, 1454 unsigned long size); 1455 1456 unsigned long max_sane_readahead(unsigned long nr); 1457 unsigned long ra_submit(struct file_ra_state *ra, 1458 struct address_space *mapping, 1459 struct file *filp); 1460 1461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1462 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1463 1464 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1465 extern int expand_downwards(struct vm_area_struct *vma, 1466 unsigned long address); 1467 #if VM_GROWSUP 1468 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1469 #else 1470 #define expand_upwards(vma, address) do { } while (0) 1471 #endif 1472 1473 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1474 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1475 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1476 struct vm_area_struct **pprev); 1477 1478 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1479 NULL if none. Assume start_addr < end_addr. */ 1480 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1481 { 1482 struct vm_area_struct * vma = find_vma(mm,start_addr); 1483 1484 if (vma && end_addr <= vma->vm_start) 1485 vma = NULL; 1486 return vma; 1487 } 1488 1489 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1490 { 1491 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1492 } 1493 1494 #ifdef CONFIG_MMU 1495 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1496 #else 1497 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1498 { 1499 return __pgprot(0); 1500 } 1501 #endif 1502 1503 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1504 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1505 unsigned long pfn, unsigned long size, pgprot_t); 1506 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1507 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1508 unsigned long pfn); 1509 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1510 unsigned long pfn); 1511 1512 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1513 unsigned int foll_flags); 1514 #define FOLL_WRITE 0x01 /* check pte is writable */ 1515 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1516 #define FOLL_GET 0x04 /* do get_page on page */ 1517 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1518 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1519 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1520 * and return without waiting upon it */ 1521 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1522 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1523 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1524 1525 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1526 void *data); 1527 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1528 unsigned long size, pte_fn_t fn, void *data); 1529 1530 #ifdef CONFIG_PROC_FS 1531 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1532 #else 1533 static inline void vm_stat_account(struct mm_struct *mm, 1534 unsigned long flags, struct file *file, long pages) 1535 { 1536 } 1537 #endif /* CONFIG_PROC_FS */ 1538 1539 #ifdef CONFIG_DEBUG_PAGEALLOC 1540 extern int debug_pagealloc_enabled; 1541 1542 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1543 1544 static inline void enable_debug_pagealloc(void) 1545 { 1546 debug_pagealloc_enabled = 1; 1547 } 1548 #ifdef CONFIG_HIBERNATION 1549 extern bool kernel_page_present(struct page *page); 1550 #endif /* CONFIG_HIBERNATION */ 1551 #else 1552 static inline void 1553 kernel_map_pages(struct page *page, int numpages, int enable) {} 1554 static inline void enable_debug_pagealloc(void) 1555 { 1556 } 1557 #ifdef CONFIG_HIBERNATION 1558 static inline bool kernel_page_present(struct page *page) { return true; } 1559 #endif /* CONFIG_HIBERNATION */ 1560 #endif 1561 1562 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1563 #ifdef __HAVE_ARCH_GATE_AREA 1564 int in_gate_area_no_mm(unsigned long addr); 1565 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1566 #else 1567 int in_gate_area_no_mm(unsigned long addr); 1568 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1569 #endif /* __HAVE_ARCH_GATE_AREA */ 1570 1571 int drop_caches_sysctl_handler(struct ctl_table *, int, 1572 void __user *, size_t *, loff_t *); 1573 unsigned long shrink_slab(struct shrink_control *shrink, 1574 unsigned long nr_pages_scanned, 1575 unsigned long lru_pages); 1576 1577 #ifndef CONFIG_MMU 1578 #define randomize_va_space 0 1579 #else 1580 extern int randomize_va_space; 1581 #endif 1582 1583 const char * arch_vma_name(struct vm_area_struct *vma); 1584 void print_vma_addr(char *prefix, unsigned long rip); 1585 1586 void sparse_mem_maps_populate_node(struct page **map_map, 1587 unsigned long pnum_begin, 1588 unsigned long pnum_end, 1589 unsigned long map_count, 1590 int nodeid); 1591 1592 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1593 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1594 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1595 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1596 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1597 void *vmemmap_alloc_block(unsigned long size, int node); 1598 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1599 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1600 int vmemmap_populate_basepages(struct page *start_page, 1601 unsigned long pages, int node); 1602 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1603 void vmemmap_populate_print_last(void); 1604 1605 1606 enum mf_flags { 1607 MF_COUNT_INCREASED = 1 << 0, 1608 }; 1609 extern void memory_failure(unsigned long pfn, int trapno); 1610 extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1611 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1612 extern int unpoison_memory(unsigned long pfn); 1613 extern int sysctl_memory_failure_early_kill; 1614 extern int sysctl_memory_failure_recovery; 1615 extern void shake_page(struct page *p, int access); 1616 extern atomic_long_t mce_bad_pages; 1617 extern int soft_offline_page(struct page *page, int flags); 1618 1619 extern void dump_page(struct page *page); 1620 1621 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1622 extern void clear_huge_page(struct page *page, 1623 unsigned long addr, 1624 unsigned int pages_per_huge_page); 1625 extern void copy_user_huge_page(struct page *dst, struct page *src, 1626 unsigned long addr, struct vm_area_struct *vma, 1627 unsigned int pages_per_huge_page); 1628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1629 1630 #endif /* __KERNEL__ */ 1631 #endif /* _LINUX_MM_H */ 1632