1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 30 struct mempolicy; 31 struct anon_vma; 32 struct anon_vma_chain; 33 struct file_ra_state; 34 struct user_struct; 35 struct writeback_control; 36 struct bdi_writeback; 37 38 void init_mm_internals(void); 39 40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41 extern unsigned long max_mapnr; 42 43 static inline void set_max_mapnr(unsigned long limit) 44 { 45 max_mapnr = limit; 46 } 47 #else 48 static inline void set_max_mapnr(unsigned long limit) { } 49 #endif 50 51 extern unsigned long totalram_pages; 52 extern void * high_memory; 53 extern int page_cluster; 54 55 #ifdef CONFIG_SYSCTL 56 extern int sysctl_legacy_va_layout; 57 #else 58 #define sysctl_legacy_va_layout 0 59 #endif 60 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62 extern const int mmap_rnd_bits_min; 63 extern const int mmap_rnd_bits_max; 64 extern int mmap_rnd_bits __read_mostly; 65 #endif 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67 extern const int mmap_rnd_compat_bits_min; 68 extern const int mmap_rnd_compat_bits_max; 69 extern int mmap_rnd_compat_bits __read_mostly; 70 #endif 71 72 #include <asm/page.h> 73 #include <asm/pgtable.h> 74 #include <asm/processor.h> 75 76 #ifndef __pa_symbol 77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78 #endif 79 80 #ifndef page_to_virt 81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82 #endif 83 84 #ifndef lm_alias 85 #define lm_alias(x) __va(__pa_symbol(x)) 86 #endif 87 88 /* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95 #ifndef mm_forbids_zeropage 96 #define mm_forbids_zeropage(X) (0) 97 #endif 98 99 /* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104 #ifndef mm_zero_struct_page 105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106 #endif 107 108 /* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124 #define MAPCOUNT_ELF_CORE_MARGIN (5) 125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127 extern int sysctl_max_map_count; 128 129 extern unsigned long sysctl_user_reserve_kbytes; 130 extern unsigned long sysctl_admin_reserve_kbytes; 131 132 extern int sysctl_overcommit_memory; 133 extern int sysctl_overcommit_ratio; 134 extern unsigned long sysctl_overcommit_kbytes; 135 136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143 /* to align the pointer to the (next) page boundary */ 144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149 /* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160 void vm_area_free(struct vm_area_struct *); 161 162 #ifndef CONFIG_MMU 163 extern struct rb_root nommu_region_tree; 164 extern struct rw_semaphore nommu_region_sem; 165 166 extern unsigned int kobjsize(const void *objp); 167 #endif 168 169 /* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173 #define VM_NONE 0x00000000 174 175 #define VM_READ 0x00000001 /* currently active flags */ 176 #define VM_WRITE 0x00000002 177 #define VM_EXEC 0x00000004 178 #define VM_SHARED 0x00000008 179 180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182 #define VM_MAYWRITE 0x00000020 183 #define VM_MAYEXEC 0x00000040 184 #define VM_MAYSHARE 0x00000080 185 186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192 #define VM_LOCKED 0x00002000 193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210 #ifdef CONFIG_MEM_SOFT_DIRTY 211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212 #else 213 # define VM_SOFTDIRTY 0 214 #endif 215 216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234 #ifdef CONFIG_ARCH_HAS_PKEYS 235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240 #ifdef CONFIG_PPC 241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242 #else 243 # define VM_PKEY_BIT4 0 244 #endif 245 #endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247 #if defined(CONFIG_X86) 248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249 #elif defined(CONFIG_PPC) 250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251 #elif defined(CONFIG_PARISC) 252 # define VM_GROWSUP VM_ARCH_1 253 #elif defined(CONFIG_IA64) 254 # define VM_GROWSUP VM_ARCH_1 255 #elif defined(CONFIG_SPARC64) 256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257 # define VM_ARCH_CLEAR VM_SPARC_ADI 258 #elif !defined(CONFIG_MMU) 259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260 #endif 261 262 #if defined(CONFIG_X86_INTEL_MPX) 263 /* MPX specific bounds table or bounds directory */ 264 # define VM_MPX VM_HIGH_ARCH_4 265 #else 266 # define VM_MPX VM_NONE 267 #endif 268 269 #ifndef VM_GROWSUP 270 # define VM_GROWSUP VM_NONE 271 #endif 272 273 /* Bits set in the VMA until the stack is in its final location */ 274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278 #endif 279 280 #ifdef CONFIG_STACK_GROWSUP 281 #define VM_STACK VM_GROWSUP 282 #else 283 #define VM_STACK VM_GROWSDOWN 284 #endif 285 286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288 /* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294 /* This mask defines which mm->def_flags a process can inherit its parent */ 295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297 /* This mask is used to clear all the VMA flags used by mlock */ 298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300 /* Arch-specific flags to clear when updating VM flags on protection change */ 301 #ifndef VM_ARCH_CLEAR 302 # define VM_ARCH_CLEAR VM_NONE 303 #endif 304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306 /* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310 extern pgprot_t protection_map[16]; 311 312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322 #define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333 /* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343 struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379 }; 380 381 /* page entry size for vm->huge_fault() */ 382 enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386 }; 387 388 /* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393 struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423 #ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445 #endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453 }; 454 455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 456 { 457 static const struct vm_operations_struct dummy_vm_ops = {}; 458 459 vma->vm_mm = mm; 460 vma->vm_ops = &dummy_vm_ops; 461 INIT_LIST_HEAD(&vma->anon_vma_chain); 462 } 463 464 static inline void vma_set_anonymous(struct vm_area_struct *vma) 465 { 466 vma->vm_ops = NULL; 467 } 468 469 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 470 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 471 472 struct mmu_gather; 473 struct inode; 474 475 #define page_private(page) ((page)->private) 476 #define set_page_private(page, v) ((page)->private = (v)) 477 478 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 479 static inline int pmd_devmap(pmd_t pmd) 480 { 481 return 0; 482 } 483 static inline int pud_devmap(pud_t pud) 484 { 485 return 0; 486 } 487 static inline int pgd_devmap(pgd_t pgd) 488 { 489 return 0; 490 } 491 #endif 492 493 /* 494 * FIXME: take this include out, include page-flags.h in 495 * files which need it (119 of them) 496 */ 497 #include <linux/page-flags.h> 498 #include <linux/huge_mm.h> 499 500 /* 501 * Methods to modify the page usage count. 502 * 503 * What counts for a page usage: 504 * - cache mapping (page->mapping) 505 * - private data (page->private) 506 * - page mapped in a task's page tables, each mapping 507 * is counted separately 508 * 509 * Also, many kernel routines increase the page count before a critical 510 * routine so they can be sure the page doesn't go away from under them. 511 */ 512 513 /* 514 * Drop a ref, return true if the refcount fell to zero (the page has no users) 515 */ 516 static inline int put_page_testzero(struct page *page) 517 { 518 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 519 return page_ref_dec_and_test(page); 520 } 521 522 /* 523 * Try to grab a ref unless the page has a refcount of zero, return false if 524 * that is the case. 525 * This can be called when MMU is off so it must not access 526 * any of the virtual mappings. 527 */ 528 static inline int get_page_unless_zero(struct page *page) 529 { 530 return page_ref_add_unless(page, 1, 0); 531 } 532 533 extern int page_is_ram(unsigned long pfn); 534 535 enum { 536 REGION_INTERSECTS, 537 REGION_DISJOINT, 538 REGION_MIXED, 539 }; 540 541 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 542 unsigned long desc); 543 544 /* Support for virtually mapped pages */ 545 struct page *vmalloc_to_page(const void *addr); 546 unsigned long vmalloc_to_pfn(const void *addr); 547 548 /* 549 * Determine if an address is within the vmalloc range 550 * 551 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 552 * is no special casing required. 553 */ 554 static inline bool is_vmalloc_addr(const void *x) 555 { 556 #ifdef CONFIG_MMU 557 unsigned long addr = (unsigned long)x; 558 559 return addr >= VMALLOC_START && addr < VMALLOC_END; 560 #else 561 return false; 562 #endif 563 } 564 #ifdef CONFIG_MMU 565 extern int is_vmalloc_or_module_addr(const void *x); 566 #else 567 static inline int is_vmalloc_or_module_addr(const void *x) 568 { 569 return 0; 570 } 571 #endif 572 573 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 574 static inline void *kvmalloc(size_t size, gfp_t flags) 575 { 576 return kvmalloc_node(size, flags, NUMA_NO_NODE); 577 } 578 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 579 { 580 return kvmalloc_node(size, flags | __GFP_ZERO, node); 581 } 582 static inline void *kvzalloc(size_t size, gfp_t flags) 583 { 584 return kvmalloc(size, flags | __GFP_ZERO); 585 } 586 587 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 588 { 589 size_t bytes; 590 591 if (unlikely(check_mul_overflow(n, size, &bytes))) 592 return NULL; 593 594 return kvmalloc(bytes, flags); 595 } 596 597 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 598 { 599 return kvmalloc_array(n, size, flags | __GFP_ZERO); 600 } 601 602 extern void kvfree(const void *addr); 603 604 static inline atomic_t *compound_mapcount_ptr(struct page *page) 605 { 606 return &page[1].compound_mapcount; 607 } 608 609 static inline int compound_mapcount(struct page *page) 610 { 611 VM_BUG_ON_PAGE(!PageCompound(page), page); 612 page = compound_head(page); 613 return atomic_read(compound_mapcount_ptr(page)) + 1; 614 } 615 616 /* 617 * The atomic page->_mapcount, starts from -1: so that transitions 618 * both from it and to it can be tracked, using atomic_inc_and_test 619 * and atomic_add_negative(-1). 620 */ 621 static inline void page_mapcount_reset(struct page *page) 622 { 623 atomic_set(&(page)->_mapcount, -1); 624 } 625 626 int __page_mapcount(struct page *page); 627 628 static inline int page_mapcount(struct page *page) 629 { 630 VM_BUG_ON_PAGE(PageSlab(page), page); 631 632 if (unlikely(PageCompound(page))) 633 return __page_mapcount(page); 634 return atomic_read(&page->_mapcount) + 1; 635 } 636 637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 638 int total_mapcount(struct page *page); 639 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 640 #else 641 static inline int total_mapcount(struct page *page) 642 { 643 return page_mapcount(page); 644 } 645 static inline int page_trans_huge_mapcount(struct page *page, 646 int *total_mapcount) 647 { 648 int mapcount = page_mapcount(page); 649 if (total_mapcount) 650 *total_mapcount = mapcount; 651 return mapcount; 652 } 653 #endif 654 655 static inline struct page *virt_to_head_page(const void *x) 656 { 657 struct page *page = virt_to_page(x); 658 659 return compound_head(page); 660 } 661 662 void __put_page(struct page *page); 663 664 void put_pages_list(struct list_head *pages); 665 666 void split_page(struct page *page, unsigned int order); 667 668 /* 669 * Compound pages have a destructor function. Provide a 670 * prototype for that function and accessor functions. 671 * These are _only_ valid on the head of a compound page. 672 */ 673 typedef void compound_page_dtor(struct page *); 674 675 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 676 enum compound_dtor_id { 677 NULL_COMPOUND_DTOR, 678 COMPOUND_PAGE_DTOR, 679 #ifdef CONFIG_HUGETLB_PAGE 680 HUGETLB_PAGE_DTOR, 681 #endif 682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 683 TRANSHUGE_PAGE_DTOR, 684 #endif 685 NR_COMPOUND_DTORS, 686 }; 687 extern compound_page_dtor * const compound_page_dtors[]; 688 689 static inline void set_compound_page_dtor(struct page *page, 690 enum compound_dtor_id compound_dtor) 691 { 692 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 693 page[1].compound_dtor = compound_dtor; 694 } 695 696 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 697 { 698 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 699 return compound_page_dtors[page[1].compound_dtor]; 700 } 701 702 static inline unsigned int compound_order(struct page *page) 703 { 704 if (!PageHead(page)) 705 return 0; 706 return page[1].compound_order; 707 } 708 709 static inline void set_compound_order(struct page *page, unsigned int order) 710 { 711 page[1].compound_order = order; 712 } 713 714 void free_compound_page(struct page *page); 715 716 #ifdef CONFIG_MMU 717 /* 718 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 719 * servicing faults for write access. In the normal case, do always want 720 * pte_mkwrite. But get_user_pages can cause write faults for mappings 721 * that do not have writing enabled, when used by access_process_vm. 722 */ 723 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 724 { 725 if (likely(vma->vm_flags & VM_WRITE)) 726 pte = pte_mkwrite(pte); 727 return pte; 728 } 729 730 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 731 struct page *page); 732 int finish_fault(struct vm_fault *vmf); 733 int finish_mkwrite_fault(struct vm_fault *vmf); 734 #endif 735 736 /* 737 * Multiple processes may "see" the same page. E.g. for untouched 738 * mappings of /dev/null, all processes see the same page full of 739 * zeroes, and text pages of executables and shared libraries have 740 * only one copy in memory, at most, normally. 741 * 742 * For the non-reserved pages, page_count(page) denotes a reference count. 743 * page_count() == 0 means the page is free. page->lru is then used for 744 * freelist management in the buddy allocator. 745 * page_count() > 0 means the page has been allocated. 746 * 747 * Pages are allocated by the slab allocator in order to provide memory 748 * to kmalloc and kmem_cache_alloc. In this case, the management of the 749 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 750 * unless a particular usage is carefully commented. (the responsibility of 751 * freeing the kmalloc memory is the caller's, of course). 752 * 753 * A page may be used by anyone else who does a __get_free_page(). 754 * In this case, page_count still tracks the references, and should only 755 * be used through the normal accessor functions. The top bits of page->flags 756 * and page->virtual store page management information, but all other fields 757 * are unused and could be used privately, carefully. The management of this 758 * page is the responsibility of the one who allocated it, and those who have 759 * subsequently been given references to it. 760 * 761 * The other pages (we may call them "pagecache pages") are completely 762 * managed by the Linux memory manager: I/O, buffers, swapping etc. 763 * The following discussion applies only to them. 764 * 765 * A pagecache page contains an opaque `private' member, which belongs to the 766 * page's address_space. Usually, this is the address of a circular list of 767 * the page's disk buffers. PG_private must be set to tell the VM to call 768 * into the filesystem to release these pages. 769 * 770 * A page may belong to an inode's memory mapping. In this case, page->mapping 771 * is the pointer to the inode, and page->index is the file offset of the page, 772 * in units of PAGE_SIZE. 773 * 774 * If pagecache pages are not associated with an inode, they are said to be 775 * anonymous pages. These may become associated with the swapcache, and in that 776 * case PG_swapcache is set, and page->private is an offset into the swapcache. 777 * 778 * In either case (swapcache or inode backed), the pagecache itself holds one 779 * reference to the page. Setting PG_private should also increment the 780 * refcount. The each user mapping also has a reference to the page. 781 * 782 * The pagecache pages are stored in a per-mapping radix tree, which is 783 * rooted at mapping->i_pages, and indexed by offset. 784 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 785 * lists, we instead now tag pages as dirty/writeback in the radix tree. 786 * 787 * All pagecache pages may be subject to I/O: 788 * - inode pages may need to be read from disk, 789 * - inode pages which have been modified and are MAP_SHARED may need 790 * to be written back to the inode on disk, 791 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 792 * modified may need to be swapped out to swap space and (later) to be read 793 * back into memory. 794 */ 795 796 /* 797 * The zone field is never updated after free_area_init_core() 798 * sets it, so none of the operations on it need to be atomic. 799 */ 800 801 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 802 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 803 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 804 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 805 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 806 807 /* 808 * Define the bit shifts to access each section. For non-existent 809 * sections we define the shift as 0; that plus a 0 mask ensures 810 * the compiler will optimise away reference to them. 811 */ 812 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 813 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 814 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 815 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 816 817 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 818 #ifdef NODE_NOT_IN_PAGE_FLAGS 819 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 820 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 821 SECTIONS_PGOFF : ZONES_PGOFF) 822 #else 823 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 824 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 825 NODES_PGOFF : ZONES_PGOFF) 826 #endif 827 828 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 829 830 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 831 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 832 #endif 833 834 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 835 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 836 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 837 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 838 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 839 840 static inline enum zone_type page_zonenum(const struct page *page) 841 { 842 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 843 } 844 845 #ifdef CONFIG_ZONE_DEVICE 846 static inline bool is_zone_device_page(const struct page *page) 847 { 848 return page_zonenum(page) == ZONE_DEVICE; 849 } 850 #else 851 static inline bool is_zone_device_page(const struct page *page) 852 { 853 return false; 854 } 855 #endif 856 857 #ifdef CONFIG_DEV_PAGEMAP_OPS 858 void dev_pagemap_get_ops(void); 859 void dev_pagemap_put_ops(void); 860 void __put_devmap_managed_page(struct page *page); 861 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 862 static inline bool put_devmap_managed_page(struct page *page) 863 { 864 if (!static_branch_unlikely(&devmap_managed_key)) 865 return false; 866 if (!is_zone_device_page(page)) 867 return false; 868 switch (page->pgmap->type) { 869 case MEMORY_DEVICE_PRIVATE: 870 case MEMORY_DEVICE_PUBLIC: 871 case MEMORY_DEVICE_FS_DAX: 872 __put_devmap_managed_page(page); 873 return true; 874 default: 875 break; 876 } 877 return false; 878 } 879 880 static inline bool is_device_private_page(const struct page *page) 881 { 882 return is_zone_device_page(page) && 883 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 884 } 885 886 static inline bool is_device_public_page(const struct page *page) 887 { 888 return is_zone_device_page(page) && 889 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 890 } 891 892 #else /* CONFIG_DEV_PAGEMAP_OPS */ 893 static inline void dev_pagemap_get_ops(void) 894 { 895 } 896 897 static inline void dev_pagemap_put_ops(void) 898 { 899 } 900 901 static inline bool put_devmap_managed_page(struct page *page) 902 { 903 return false; 904 } 905 906 static inline bool is_device_private_page(const struct page *page) 907 { 908 return false; 909 } 910 911 static inline bool is_device_public_page(const struct page *page) 912 { 913 return false; 914 } 915 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 916 917 static inline void get_page(struct page *page) 918 { 919 page = compound_head(page); 920 /* 921 * Getting a normal page or the head of a compound page 922 * requires to already have an elevated page->_refcount. 923 */ 924 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 925 page_ref_inc(page); 926 } 927 928 static inline void put_page(struct page *page) 929 { 930 page = compound_head(page); 931 932 /* 933 * For devmap managed pages we need to catch refcount transition from 934 * 2 to 1, when refcount reach one it means the page is free and we 935 * need to inform the device driver through callback. See 936 * include/linux/memremap.h and HMM for details. 937 */ 938 if (put_devmap_managed_page(page)) 939 return; 940 941 if (put_page_testzero(page)) 942 __put_page(page); 943 } 944 945 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 946 #define SECTION_IN_PAGE_FLAGS 947 #endif 948 949 /* 950 * The identification function is mainly used by the buddy allocator for 951 * determining if two pages could be buddies. We are not really identifying 952 * the zone since we could be using the section number id if we do not have 953 * node id available in page flags. 954 * We only guarantee that it will return the same value for two combinable 955 * pages in a zone. 956 */ 957 static inline int page_zone_id(struct page *page) 958 { 959 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 960 } 961 962 static inline int zone_to_nid(struct zone *zone) 963 { 964 #ifdef CONFIG_NUMA 965 return zone->node; 966 #else 967 return 0; 968 #endif 969 } 970 971 #ifdef NODE_NOT_IN_PAGE_FLAGS 972 extern int page_to_nid(const struct page *page); 973 #else 974 static inline int page_to_nid(const struct page *page) 975 { 976 struct page *p = (struct page *)page; 977 978 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 979 } 980 #endif 981 982 #ifdef CONFIG_NUMA_BALANCING 983 static inline int cpu_pid_to_cpupid(int cpu, int pid) 984 { 985 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 986 } 987 988 static inline int cpupid_to_pid(int cpupid) 989 { 990 return cpupid & LAST__PID_MASK; 991 } 992 993 static inline int cpupid_to_cpu(int cpupid) 994 { 995 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 996 } 997 998 static inline int cpupid_to_nid(int cpupid) 999 { 1000 return cpu_to_node(cpupid_to_cpu(cpupid)); 1001 } 1002 1003 static inline bool cpupid_pid_unset(int cpupid) 1004 { 1005 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1006 } 1007 1008 static inline bool cpupid_cpu_unset(int cpupid) 1009 { 1010 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1011 } 1012 1013 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1014 { 1015 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1016 } 1017 1018 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1019 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1020 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1021 { 1022 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1023 } 1024 1025 static inline int page_cpupid_last(struct page *page) 1026 { 1027 return page->_last_cpupid; 1028 } 1029 static inline void page_cpupid_reset_last(struct page *page) 1030 { 1031 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1032 } 1033 #else 1034 static inline int page_cpupid_last(struct page *page) 1035 { 1036 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1037 } 1038 1039 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1040 1041 static inline void page_cpupid_reset_last(struct page *page) 1042 { 1043 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1044 } 1045 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1046 #else /* !CONFIG_NUMA_BALANCING */ 1047 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1048 { 1049 return page_to_nid(page); /* XXX */ 1050 } 1051 1052 static inline int page_cpupid_last(struct page *page) 1053 { 1054 return page_to_nid(page); /* XXX */ 1055 } 1056 1057 static inline int cpupid_to_nid(int cpupid) 1058 { 1059 return -1; 1060 } 1061 1062 static inline int cpupid_to_pid(int cpupid) 1063 { 1064 return -1; 1065 } 1066 1067 static inline int cpupid_to_cpu(int cpupid) 1068 { 1069 return -1; 1070 } 1071 1072 static inline int cpu_pid_to_cpupid(int nid, int pid) 1073 { 1074 return -1; 1075 } 1076 1077 static inline bool cpupid_pid_unset(int cpupid) 1078 { 1079 return 1; 1080 } 1081 1082 static inline void page_cpupid_reset_last(struct page *page) 1083 { 1084 } 1085 1086 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1087 { 1088 return false; 1089 } 1090 #endif /* CONFIG_NUMA_BALANCING */ 1091 1092 static inline struct zone *page_zone(const struct page *page) 1093 { 1094 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1095 } 1096 1097 static inline pg_data_t *page_pgdat(const struct page *page) 1098 { 1099 return NODE_DATA(page_to_nid(page)); 1100 } 1101 1102 #ifdef SECTION_IN_PAGE_FLAGS 1103 static inline void set_page_section(struct page *page, unsigned long section) 1104 { 1105 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1106 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1107 } 1108 1109 static inline unsigned long page_to_section(const struct page *page) 1110 { 1111 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1112 } 1113 #endif 1114 1115 static inline void set_page_zone(struct page *page, enum zone_type zone) 1116 { 1117 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1118 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1119 } 1120 1121 static inline void set_page_node(struct page *page, unsigned long node) 1122 { 1123 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1124 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1125 } 1126 1127 static inline void set_page_links(struct page *page, enum zone_type zone, 1128 unsigned long node, unsigned long pfn) 1129 { 1130 set_page_zone(page, zone); 1131 set_page_node(page, node); 1132 #ifdef SECTION_IN_PAGE_FLAGS 1133 set_page_section(page, pfn_to_section_nr(pfn)); 1134 #endif 1135 } 1136 1137 #ifdef CONFIG_MEMCG 1138 static inline struct mem_cgroup *page_memcg(struct page *page) 1139 { 1140 return page->mem_cgroup; 1141 } 1142 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1143 { 1144 WARN_ON_ONCE(!rcu_read_lock_held()); 1145 return READ_ONCE(page->mem_cgroup); 1146 } 1147 #else 1148 static inline struct mem_cgroup *page_memcg(struct page *page) 1149 { 1150 return NULL; 1151 } 1152 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1153 { 1154 WARN_ON_ONCE(!rcu_read_lock_held()); 1155 return NULL; 1156 } 1157 #endif 1158 1159 /* 1160 * Some inline functions in vmstat.h depend on page_zone() 1161 */ 1162 #include <linux/vmstat.h> 1163 1164 static __always_inline void *lowmem_page_address(const struct page *page) 1165 { 1166 return page_to_virt(page); 1167 } 1168 1169 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1170 #define HASHED_PAGE_VIRTUAL 1171 #endif 1172 1173 #if defined(WANT_PAGE_VIRTUAL) 1174 static inline void *page_address(const struct page *page) 1175 { 1176 return page->virtual; 1177 } 1178 static inline void set_page_address(struct page *page, void *address) 1179 { 1180 page->virtual = address; 1181 } 1182 #define page_address_init() do { } while(0) 1183 #endif 1184 1185 #if defined(HASHED_PAGE_VIRTUAL) 1186 void *page_address(const struct page *page); 1187 void set_page_address(struct page *page, void *virtual); 1188 void page_address_init(void); 1189 #endif 1190 1191 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1192 #define page_address(page) lowmem_page_address(page) 1193 #define set_page_address(page, address) do { } while(0) 1194 #define page_address_init() do { } while(0) 1195 #endif 1196 1197 extern void *page_rmapping(struct page *page); 1198 extern struct anon_vma *page_anon_vma(struct page *page); 1199 extern struct address_space *page_mapping(struct page *page); 1200 1201 extern struct address_space *__page_file_mapping(struct page *); 1202 1203 static inline 1204 struct address_space *page_file_mapping(struct page *page) 1205 { 1206 if (unlikely(PageSwapCache(page))) 1207 return __page_file_mapping(page); 1208 1209 return page->mapping; 1210 } 1211 1212 extern pgoff_t __page_file_index(struct page *page); 1213 1214 /* 1215 * Return the pagecache index of the passed page. Regular pagecache pages 1216 * use ->index whereas swapcache pages use swp_offset(->private) 1217 */ 1218 static inline pgoff_t page_index(struct page *page) 1219 { 1220 if (unlikely(PageSwapCache(page))) 1221 return __page_file_index(page); 1222 return page->index; 1223 } 1224 1225 bool page_mapped(struct page *page); 1226 struct address_space *page_mapping(struct page *page); 1227 struct address_space *page_mapping_file(struct page *page); 1228 1229 /* 1230 * Return true only if the page has been allocated with 1231 * ALLOC_NO_WATERMARKS and the low watermark was not 1232 * met implying that the system is under some pressure. 1233 */ 1234 static inline bool page_is_pfmemalloc(struct page *page) 1235 { 1236 /* 1237 * Page index cannot be this large so this must be 1238 * a pfmemalloc page. 1239 */ 1240 return page->index == -1UL; 1241 } 1242 1243 /* 1244 * Only to be called by the page allocator on a freshly allocated 1245 * page. 1246 */ 1247 static inline void set_page_pfmemalloc(struct page *page) 1248 { 1249 page->index = -1UL; 1250 } 1251 1252 static inline void clear_page_pfmemalloc(struct page *page) 1253 { 1254 page->index = 0; 1255 } 1256 1257 /* 1258 * Different kinds of faults, as returned by handle_mm_fault(). 1259 * Used to decide whether a process gets delivered SIGBUS or 1260 * just gets major/minor fault counters bumped up. 1261 */ 1262 1263 #define VM_FAULT_OOM 0x0001 1264 #define VM_FAULT_SIGBUS 0x0002 1265 #define VM_FAULT_MAJOR 0x0004 1266 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1267 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1268 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1269 #define VM_FAULT_SIGSEGV 0x0040 1270 1271 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1272 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1273 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1274 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1275 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1276 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1277 * and needs fsync() to complete (for 1278 * synchronous page faults in DAX) */ 1279 1280 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1281 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1282 VM_FAULT_FALLBACK) 1283 1284 #define VM_FAULT_RESULT_TRACE \ 1285 { VM_FAULT_OOM, "OOM" }, \ 1286 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1287 { VM_FAULT_MAJOR, "MAJOR" }, \ 1288 { VM_FAULT_WRITE, "WRITE" }, \ 1289 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1290 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1291 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1292 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1293 { VM_FAULT_LOCKED, "LOCKED" }, \ 1294 { VM_FAULT_RETRY, "RETRY" }, \ 1295 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1296 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1297 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1298 1299 /* Encode hstate index for a hwpoisoned large page */ 1300 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1301 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1302 1303 /* 1304 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1305 */ 1306 extern void pagefault_out_of_memory(void); 1307 1308 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1309 1310 /* 1311 * Flags passed to show_mem() and show_free_areas() to suppress output in 1312 * various contexts. 1313 */ 1314 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1315 1316 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1317 1318 extern bool can_do_mlock(void); 1319 extern int user_shm_lock(size_t, struct user_struct *); 1320 extern void user_shm_unlock(size_t, struct user_struct *); 1321 1322 /* 1323 * Parameter block passed down to zap_pte_range in exceptional cases. 1324 */ 1325 struct zap_details { 1326 struct address_space *check_mapping; /* Check page->mapping if set */ 1327 pgoff_t first_index; /* Lowest page->index to unmap */ 1328 pgoff_t last_index; /* Highest page->index to unmap */ 1329 }; 1330 1331 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1332 pte_t pte, bool with_public_device); 1333 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1334 1335 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1336 pmd_t pmd); 1337 1338 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1339 unsigned long size); 1340 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1341 unsigned long size); 1342 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1343 unsigned long start, unsigned long end); 1344 1345 /** 1346 * mm_walk - callbacks for walk_page_range 1347 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1348 * this handler should only handle pud_trans_huge() puds. 1349 * the pmd_entry or pte_entry callbacks will be used for 1350 * regular PUDs. 1351 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1352 * this handler is required to be able to handle 1353 * pmd_trans_huge() pmds. They may simply choose to 1354 * split_huge_page() instead of handling it explicitly. 1355 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1356 * @pte_hole: if set, called for each hole at all levels 1357 * @hugetlb_entry: if set, called for each hugetlb entry 1358 * @test_walk: caller specific callback function to determine whether 1359 * we walk over the current vma or not. Returning 0 1360 * value means "do page table walk over the current vma," 1361 * and a negative one means "abort current page table walk 1362 * right now." 1 means "skip the current vma." 1363 * @mm: mm_struct representing the target process of page table walk 1364 * @vma: vma currently walked (NULL if walking outside vmas) 1365 * @private: private data for callbacks' usage 1366 * 1367 * (see the comment on walk_page_range() for more details) 1368 */ 1369 struct mm_walk { 1370 int (*pud_entry)(pud_t *pud, unsigned long addr, 1371 unsigned long next, struct mm_walk *walk); 1372 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1373 unsigned long next, struct mm_walk *walk); 1374 int (*pte_entry)(pte_t *pte, unsigned long addr, 1375 unsigned long next, struct mm_walk *walk); 1376 int (*pte_hole)(unsigned long addr, unsigned long next, 1377 struct mm_walk *walk); 1378 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1379 unsigned long addr, unsigned long next, 1380 struct mm_walk *walk); 1381 int (*test_walk)(unsigned long addr, unsigned long next, 1382 struct mm_walk *walk); 1383 struct mm_struct *mm; 1384 struct vm_area_struct *vma; 1385 void *private; 1386 }; 1387 1388 int walk_page_range(unsigned long addr, unsigned long end, 1389 struct mm_walk *walk); 1390 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1391 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1392 unsigned long end, unsigned long floor, unsigned long ceiling); 1393 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1394 struct vm_area_struct *vma); 1395 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1396 unsigned long *start, unsigned long *end, 1397 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1398 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1399 unsigned long *pfn); 1400 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1401 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1403 void *buf, int len, int write); 1404 1405 extern void truncate_pagecache(struct inode *inode, loff_t new); 1406 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1407 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1408 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1409 int truncate_inode_page(struct address_space *mapping, struct page *page); 1410 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1411 int invalidate_inode_page(struct page *page); 1412 1413 #ifdef CONFIG_MMU 1414 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1415 unsigned int flags); 1416 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1417 unsigned long address, unsigned int fault_flags, 1418 bool *unlocked); 1419 void unmap_mapping_pages(struct address_space *mapping, 1420 pgoff_t start, pgoff_t nr, bool even_cows); 1421 void unmap_mapping_range(struct address_space *mapping, 1422 loff_t const holebegin, loff_t const holelen, int even_cows); 1423 #else 1424 static inline int handle_mm_fault(struct vm_area_struct *vma, 1425 unsigned long address, unsigned int flags) 1426 { 1427 /* should never happen if there's no MMU */ 1428 BUG(); 1429 return VM_FAULT_SIGBUS; 1430 } 1431 static inline int fixup_user_fault(struct task_struct *tsk, 1432 struct mm_struct *mm, unsigned long address, 1433 unsigned int fault_flags, bool *unlocked) 1434 { 1435 /* should never happen if there's no MMU */ 1436 BUG(); 1437 return -EFAULT; 1438 } 1439 static inline void unmap_mapping_pages(struct address_space *mapping, 1440 pgoff_t start, pgoff_t nr, bool even_cows) { } 1441 static inline void unmap_mapping_range(struct address_space *mapping, 1442 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1443 #endif 1444 1445 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1446 loff_t const holebegin, loff_t const holelen) 1447 { 1448 unmap_mapping_range(mapping, holebegin, holelen, 0); 1449 } 1450 1451 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1452 void *buf, int len, unsigned int gup_flags); 1453 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1454 void *buf, int len, unsigned int gup_flags); 1455 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1456 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1457 1458 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1459 unsigned long start, unsigned long nr_pages, 1460 unsigned int gup_flags, struct page **pages, 1461 struct vm_area_struct **vmas, int *locked); 1462 long get_user_pages(unsigned long start, unsigned long nr_pages, 1463 unsigned int gup_flags, struct page **pages, 1464 struct vm_area_struct **vmas); 1465 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1466 unsigned int gup_flags, struct page **pages, int *locked); 1467 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1468 struct page **pages, unsigned int gup_flags); 1469 #ifdef CONFIG_FS_DAX 1470 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1471 unsigned int gup_flags, struct page **pages, 1472 struct vm_area_struct **vmas); 1473 #else 1474 static inline long get_user_pages_longterm(unsigned long start, 1475 unsigned long nr_pages, unsigned int gup_flags, 1476 struct page **pages, struct vm_area_struct **vmas) 1477 { 1478 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1479 } 1480 #endif /* CONFIG_FS_DAX */ 1481 1482 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1483 struct page **pages); 1484 1485 /* Container for pinned pfns / pages */ 1486 struct frame_vector { 1487 unsigned int nr_allocated; /* Number of frames we have space for */ 1488 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1489 bool got_ref; /* Did we pin pages by getting page ref? */ 1490 bool is_pfns; /* Does array contain pages or pfns? */ 1491 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1492 * pfns_vector_pages() or pfns_vector_pfns() 1493 * for access */ 1494 }; 1495 1496 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1497 void frame_vector_destroy(struct frame_vector *vec); 1498 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1499 unsigned int gup_flags, struct frame_vector *vec); 1500 void put_vaddr_frames(struct frame_vector *vec); 1501 int frame_vector_to_pages(struct frame_vector *vec); 1502 void frame_vector_to_pfns(struct frame_vector *vec); 1503 1504 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1505 { 1506 return vec->nr_frames; 1507 } 1508 1509 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1510 { 1511 if (vec->is_pfns) { 1512 int err = frame_vector_to_pages(vec); 1513 1514 if (err) 1515 return ERR_PTR(err); 1516 } 1517 return (struct page **)(vec->ptrs); 1518 } 1519 1520 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1521 { 1522 if (!vec->is_pfns) 1523 frame_vector_to_pfns(vec); 1524 return (unsigned long *)(vec->ptrs); 1525 } 1526 1527 struct kvec; 1528 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1529 struct page **pages); 1530 int get_kernel_page(unsigned long start, int write, struct page **pages); 1531 struct page *get_dump_page(unsigned long addr); 1532 1533 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1534 extern void do_invalidatepage(struct page *page, unsigned int offset, 1535 unsigned int length); 1536 1537 void __set_page_dirty(struct page *, struct address_space *, int warn); 1538 int __set_page_dirty_nobuffers(struct page *page); 1539 int __set_page_dirty_no_writeback(struct page *page); 1540 int redirty_page_for_writepage(struct writeback_control *wbc, 1541 struct page *page); 1542 void account_page_dirtied(struct page *page, struct address_space *mapping); 1543 void account_page_cleaned(struct page *page, struct address_space *mapping, 1544 struct bdi_writeback *wb); 1545 int set_page_dirty(struct page *page); 1546 int set_page_dirty_lock(struct page *page); 1547 void __cancel_dirty_page(struct page *page); 1548 static inline void cancel_dirty_page(struct page *page) 1549 { 1550 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1551 if (PageDirty(page)) 1552 __cancel_dirty_page(page); 1553 } 1554 int clear_page_dirty_for_io(struct page *page); 1555 1556 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1557 1558 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1559 { 1560 return !vma->vm_ops; 1561 } 1562 1563 #ifdef CONFIG_SHMEM 1564 /* 1565 * The vma_is_shmem is not inline because it is used only by slow 1566 * paths in userfault. 1567 */ 1568 bool vma_is_shmem(struct vm_area_struct *vma); 1569 #else 1570 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1571 #endif 1572 1573 int vma_is_stack_for_current(struct vm_area_struct *vma); 1574 1575 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1576 unsigned long old_addr, struct vm_area_struct *new_vma, 1577 unsigned long new_addr, unsigned long len, 1578 bool need_rmap_locks); 1579 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1580 unsigned long end, pgprot_t newprot, 1581 int dirty_accountable, int prot_numa); 1582 extern int mprotect_fixup(struct vm_area_struct *vma, 1583 struct vm_area_struct **pprev, unsigned long start, 1584 unsigned long end, unsigned long newflags); 1585 1586 /* 1587 * doesn't attempt to fault and will return short. 1588 */ 1589 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1590 struct page **pages); 1591 /* 1592 * per-process(per-mm_struct) statistics. 1593 */ 1594 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1595 { 1596 long val = atomic_long_read(&mm->rss_stat.count[member]); 1597 1598 #ifdef SPLIT_RSS_COUNTING 1599 /* 1600 * counter is updated in asynchronous manner and may go to minus. 1601 * But it's never be expected number for users. 1602 */ 1603 if (val < 0) 1604 val = 0; 1605 #endif 1606 return (unsigned long)val; 1607 } 1608 1609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1610 { 1611 atomic_long_add(value, &mm->rss_stat.count[member]); 1612 } 1613 1614 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1615 { 1616 atomic_long_inc(&mm->rss_stat.count[member]); 1617 } 1618 1619 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1620 { 1621 atomic_long_dec(&mm->rss_stat.count[member]); 1622 } 1623 1624 /* Optimized variant when page is already known not to be PageAnon */ 1625 static inline int mm_counter_file(struct page *page) 1626 { 1627 if (PageSwapBacked(page)) 1628 return MM_SHMEMPAGES; 1629 return MM_FILEPAGES; 1630 } 1631 1632 static inline int mm_counter(struct page *page) 1633 { 1634 if (PageAnon(page)) 1635 return MM_ANONPAGES; 1636 return mm_counter_file(page); 1637 } 1638 1639 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1640 { 1641 return get_mm_counter(mm, MM_FILEPAGES) + 1642 get_mm_counter(mm, MM_ANONPAGES) + 1643 get_mm_counter(mm, MM_SHMEMPAGES); 1644 } 1645 1646 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1647 { 1648 return max(mm->hiwater_rss, get_mm_rss(mm)); 1649 } 1650 1651 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1652 { 1653 return max(mm->hiwater_vm, mm->total_vm); 1654 } 1655 1656 static inline void update_hiwater_rss(struct mm_struct *mm) 1657 { 1658 unsigned long _rss = get_mm_rss(mm); 1659 1660 if ((mm)->hiwater_rss < _rss) 1661 (mm)->hiwater_rss = _rss; 1662 } 1663 1664 static inline void update_hiwater_vm(struct mm_struct *mm) 1665 { 1666 if (mm->hiwater_vm < mm->total_vm) 1667 mm->hiwater_vm = mm->total_vm; 1668 } 1669 1670 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1671 { 1672 mm->hiwater_rss = get_mm_rss(mm); 1673 } 1674 1675 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1676 struct mm_struct *mm) 1677 { 1678 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1679 1680 if (*maxrss < hiwater_rss) 1681 *maxrss = hiwater_rss; 1682 } 1683 1684 #if defined(SPLIT_RSS_COUNTING) 1685 void sync_mm_rss(struct mm_struct *mm); 1686 #else 1687 static inline void sync_mm_rss(struct mm_struct *mm) 1688 { 1689 } 1690 #endif 1691 1692 #ifndef __HAVE_ARCH_PTE_DEVMAP 1693 static inline int pte_devmap(pte_t pte) 1694 { 1695 return 0; 1696 } 1697 #endif 1698 1699 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1700 1701 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1702 spinlock_t **ptl); 1703 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1704 spinlock_t **ptl) 1705 { 1706 pte_t *ptep; 1707 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1708 return ptep; 1709 } 1710 1711 #ifdef __PAGETABLE_P4D_FOLDED 1712 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1713 unsigned long address) 1714 { 1715 return 0; 1716 } 1717 #else 1718 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1719 #endif 1720 1721 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1722 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1723 unsigned long address) 1724 { 1725 return 0; 1726 } 1727 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1728 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1729 1730 #else 1731 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1732 1733 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1734 { 1735 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1736 } 1737 1738 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1739 { 1740 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1741 } 1742 #endif 1743 1744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1746 unsigned long address) 1747 { 1748 return 0; 1749 } 1750 1751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1753 1754 #else 1755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1756 1757 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1758 { 1759 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1760 } 1761 1762 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1763 { 1764 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1765 } 1766 #endif 1767 1768 #ifdef CONFIG_MMU 1769 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1770 { 1771 atomic_long_set(&mm->pgtables_bytes, 0); 1772 } 1773 1774 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1775 { 1776 return atomic_long_read(&mm->pgtables_bytes); 1777 } 1778 1779 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1780 { 1781 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1782 } 1783 1784 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1785 { 1786 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1787 } 1788 #else 1789 1790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1791 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1792 { 1793 return 0; 1794 } 1795 1796 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1797 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1798 #endif 1799 1800 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1801 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1802 1803 /* 1804 * The following ifdef needed to get the 4level-fixup.h header to work. 1805 * Remove it when 4level-fixup.h has been removed. 1806 */ 1807 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1808 1809 #ifndef __ARCH_HAS_5LEVEL_HACK 1810 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1811 unsigned long address) 1812 { 1813 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1814 NULL : p4d_offset(pgd, address); 1815 } 1816 1817 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1818 unsigned long address) 1819 { 1820 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1821 NULL : pud_offset(p4d, address); 1822 } 1823 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1824 1825 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1826 { 1827 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1828 NULL: pmd_offset(pud, address); 1829 } 1830 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1831 1832 #if USE_SPLIT_PTE_PTLOCKS 1833 #if ALLOC_SPLIT_PTLOCKS 1834 void __init ptlock_cache_init(void); 1835 extern bool ptlock_alloc(struct page *page); 1836 extern void ptlock_free(struct page *page); 1837 1838 static inline spinlock_t *ptlock_ptr(struct page *page) 1839 { 1840 return page->ptl; 1841 } 1842 #else /* ALLOC_SPLIT_PTLOCKS */ 1843 static inline void ptlock_cache_init(void) 1844 { 1845 } 1846 1847 static inline bool ptlock_alloc(struct page *page) 1848 { 1849 return true; 1850 } 1851 1852 static inline void ptlock_free(struct page *page) 1853 { 1854 } 1855 1856 static inline spinlock_t *ptlock_ptr(struct page *page) 1857 { 1858 return &page->ptl; 1859 } 1860 #endif /* ALLOC_SPLIT_PTLOCKS */ 1861 1862 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1863 { 1864 return ptlock_ptr(pmd_page(*pmd)); 1865 } 1866 1867 static inline bool ptlock_init(struct page *page) 1868 { 1869 /* 1870 * prep_new_page() initialize page->private (and therefore page->ptl) 1871 * with 0. Make sure nobody took it in use in between. 1872 * 1873 * It can happen if arch try to use slab for page table allocation: 1874 * slab code uses page->slab_cache, which share storage with page->ptl. 1875 */ 1876 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1877 if (!ptlock_alloc(page)) 1878 return false; 1879 spin_lock_init(ptlock_ptr(page)); 1880 return true; 1881 } 1882 1883 /* Reset page->mapping so free_pages_check won't complain. */ 1884 static inline void pte_lock_deinit(struct page *page) 1885 { 1886 page->mapping = NULL; 1887 ptlock_free(page); 1888 } 1889 1890 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1891 /* 1892 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1893 */ 1894 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1895 { 1896 return &mm->page_table_lock; 1897 } 1898 static inline void ptlock_cache_init(void) {} 1899 static inline bool ptlock_init(struct page *page) { return true; } 1900 static inline void pte_lock_deinit(struct page *page) {} 1901 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1902 1903 static inline void pgtable_init(void) 1904 { 1905 ptlock_cache_init(); 1906 pgtable_cache_init(); 1907 } 1908 1909 static inline bool pgtable_page_ctor(struct page *page) 1910 { 1911 if (!ptlock_init(page)) 1912 return false; 1913 __SetPageTable(page); 1914 inc_zone_page_state(page, NR_PAGETABLE); 1915 return true; 1916 } 1917 1918 static inline void pgtable_page_dtor(struct page *page) 1919 { 1920 pte_lock_deinit(page); 1921 __ClearPageTable(page); 1922 dec_zone_page_state(page, NR_PAGETABLE); 1923 } 1924 1925 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1926 ({ \ 1927 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1928 pte_t *__pte = pte_offset_map(pmd, address); \ 1929 *(ptlp) = __ptl; \ 1930 spin_lock(__ptl); \ 1931 __pte; \ 1932 }) 1933 1934 #define pte_unmap_unlock(pte, ptl) do { \ 1935 spin_unlock(ptl); \ 1936 pte_unmap(pte); \ 1937 } while (0) 1938 1939 #define pte_alloc(mm, pmd, address) \ 1940 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1941 1942 #define pte_alloc_map(mm, pmd, address) \ 1943 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1944 1945 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1946 (pte_alloc(mm, pmd, address) ? \ 1947 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1948 1949 #define pte_alloc_kernel(pmd, address) \ 1950 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1951 NULL: pte_offset_kernel(pmd, address)) 1952 1953 #if USE_SPLIT_PMD_PTLOCKS 1954 1955 static struct page *pmd_to_page(pmd_t *pmd) 1956 { 1957 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1958 return virt_to_page((void *)((unsigned long) pmd & mask)); 1959 } 1960 1961 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1962 { 1963 return ptlock_ptr(pmd_to_page(pmd)); 1964 } 1965 1966 static inline bool pgtable_pmd_page_ctor(struct page *page) 1967 { 1968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1969 page->pmd_huge_pte = NULL; 1970 #endif 1971 return ptlock_init(page); 1972 } 1973 1974 static inline void pgtable_pmd_page_dtor(struct page *page) 1975 { 1976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1977 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1978 #endif 1979 ptlock_free(page); 1980 } 1981 1982 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1983 1984 #else 1985 1986 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1987 { 1988 return &mm->page_table_lock; 1989 } 1990 1991 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1992 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1993 1994 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1995 1996 #endif 1997 1998 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1999 { 2000 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2001 spin_lock(ptl); 2002 return ptl; 2003 } 2004 2005 /* 2006 * No scalability reason to split PUD locks yet, but follow the same pattern 2007 * as the PMD locks to make it easier if we decide to. The VM should not be 2008 * considered ready to switch to split PUD locks yet; there may be places 2009 * which need to be converted from page_table_lock. 2010 */ 2011 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2012 { 2013 return &mm->page_table_lock; 2014 } 2015 2016 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2017 { 2018 spinlock_t *ptl = pud_lockptr(mm, pud); 2019 2020 spin_lock(ptl); 2021 return ptl; 2022 } 2023 2024 extern void __init pagecache_init(void); 2025 extern void free_area_init(unsigned long * zones_size); 2026 extern void free_area_init_node(int nid, unsigned long * zones_size, 2027 unsigned long zone_start_pfn, unsigned long *zholes_size); 2028 extern void free_initmem(void); 2029 2030 /* 2031 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2032 * into the buddy system. The freed pages will be poisoned with pattern 2033 * "poison" if it's within range [0, UCHAR_MAX]. 2034 * Return pages freed into the buddy system. 2035 */ 2036 extern unsigned long free_reserved_area(void *start, void *end, 2037 int poison, char *s); 2038 2039 #ifdef CONFIG_HIGHMEM 2040 /* 2041 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2042 * and totalram_pages. 2043 */ 2044 extern void free_highmem_page(struct page *page); 2045 #endif 2046 2047 extern void adjust_managed_page_count(struct page *page, long count); 2048 extern void mem_init_print_info(const char *str); 2049 2050 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2051 2052 /* Free the reserved page into the buddy system, so it gets managed. */ 2053 static inline void __free_reserved_page(struct page *page) 2054 { 2055 ClearPageReserved(page); 2056 init_page_count(page); 2057 __free_page(page); 2058 } 2059 2060 static inline void free_reserved_page(struct page *page) 2061 { 2062 __free_reserved_page(page); 2063 adjust_managed_page_count(page, 1); 2064 } 2065 2066 static inline void mark_page_reserved(struct page *page) 2067 { 2068 SetPageReserved(page); 2069 adjust_managed_page_count(page, -1); 2070 } 2071 2072 /* 2073 * Default method to free all the __init memory into the buddy system. 2074 * The freed pages will be poisoned with pattern "poison" if it's within 2075 * range [0, UCHAR_MAX]. 2076 * Return pages freed into the buddy system. 2077 */ 2078 static inline unsigned long free_initmem_default(int poison) 2079 { 2080 extern char __init_begin[], __init_end[]; 2081 2082 return free_reserved_area(&__init_begin, &__init_end, 2083 poison, "unused kernel"); 2084 } 2085 2086 static inline unsigned long get_num_physpages(void) 2087 { 2088 int nid; 2089 unsigned long phys_pages = 0; 2090 2091 for_each_online_node(nid) 2092 phys_pages += node_present_pages(nid); 2093 2094 return phys_pages; 2095 } 2096 2097 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2098 /* 2099 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2100 * zones, allocate the backing mem_map and account for memory holes in a more 2101 * architecture independent manner. This is a substitute for creating the 2102 * zone_sizes[] and zholes_size[] arrays and passing them to 2103 * free_area_init_node() 2104 * 2105 * An architecture is expected to register range of page frames backed by 2106 * physical memory with memblock_add[_node]() before calling 2107 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2108 * usage, an architecture is expected to do something like 2109 * 2110 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2111 * max_highmem_pfn}; 2112 * for_each_valid_physical_page_range() 2113 * memblock_add_node(base, size, nid) 2114 * free_area_init_nodes(max_zone_pfns); 2115 * 2116 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2117 * registered physical page range. Similarly 2118 * sparse_memory_present_with_active_regions() calls memory_present() for 2119 * each range when SPARSEMEM is enabled. 2120 * 2121 * See mm/page_alloc.c for more information on each function exposed by 2122 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2123 */ 2124 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2125 unsigned long node_map_pfn_alignment(void); 2126 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2127 unsigned long end_pfn); 2128 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2129 unsigned long end_pfn); 2130 extern void get_pfn_range_for_nid(unsigned int nid, 2131 unsigned long *start_pfn, unsigned long *end_pfn); 2132 extern unsigned long find_min_pfn_with_active_regions(void); 2133 extern void free_bootmem_with_active_regions(int nid, 2134 unsigned long max_low_pfn); 2135 extern void sparse_memory_present_with_active_regions(int nid); 2136 2137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2138 2139 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2140 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2141 static inline int __early_pfn_to_nid(unsigned long pfn, 2142 struct mminit_pfnnid_cache *state) 2143 { 2144 return 0; 2145 } 2146 #else 2147 /* please see mm/page_alloc.c */ 2148 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2149 /* there is a per-arch backend function. */ 2150 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2151 struct mminit_pfnnid_cache *state); 2152 #endif 2153 2154 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) 2155 void zero_resv_unavail(void); 2156 #else 2157 static inline void zero_resv_unavail(void) {} 2158 #endif 2159 2160 extern void set_dma_reserve(unsigned long new_dma_reserve); 2161 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2162 enum memmap_context, struct vmem_altmap *); 2163 extern void setup_per_zone_wmarks(void); 2164 extern int __meminit init_per_zone_wmark_min(void); 2165 extern void mem_init(void); 2166 extern void __init mmap_init(void); 2167 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2168 extern long si_mem_available(void); 2169 extern void si_meminfo(struct sysinfo * val); 2170 extern void si_meminfo_node(struct sysinfo *val, int nid); 2171 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2172 extern unsigned long arch_reserved_kernel_pages(void); 2173 #endif 2174 2175 extern __printf(3, 4) 2176 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2177 2178 extern void setup_per_cpu_pageset(void); 2179 2180 extern void zone_pcp_update(struct zone *zone); 2181 extern void zone_pcp_reset(struct zone *zone); 2182 2183 /* page_alloc.c */ 2184 extern int min_free_kbytes; 2185 extern int watermark_scale_factor; 2186 2187 /* nommu.c */ 2188 extern atomic_long_t mmap_pages_allocated; 2189 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2190 2191 /* interval_tree.c */ 2192 void vma_interval_tree_insert(struct vm_area_struct *node, 2193 struct rb_root_cached *root); 2194 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2195 struct vm_area_struct *prev, 2196 struct rb_root_cached *root); 2197 void vma_interval_tree_remove(struct vm_area_struct *node, 2198 struct rb_root_cached *root); 2199 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2200 unsigned long start, unsigned long last); 2201 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2202 unsigned long start, unsigned long last); 2203 2204 #define vma_interval_tree_foreach(vma, root, start, last) \ 2205 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2206 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2207 2208 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2209 struct rb_root_cached *root); 2210 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2211 struct rb_root_cached *root); 2212 struct anon_vma_chain * 2213 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2214 unsigned long start, unsigned long last); 2215 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2216 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2217 #ifdef CONFIG_DEBUG_VM_RB 2218 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2219 #endif 2220 2221 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2222 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2223 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2224 2225 /* mmap.c */ 2226 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2227 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2228 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2229 struct vm_area_struct *expand); 2230 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2231 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2232 { 2233 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2234 } 2235 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2236 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2237 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2238 struct mempolicy *, struct vm_userfaultfd_ctx); 2239 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2240 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2241 unsigned long addr, int new_below); 2242 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2243 unsigned long addr, int new_below); 2244 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2245 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2246 struct rb_node **, struct rb_node *); 2247 extern void unlink_file_vma(struct vm_area_struct *); 2248 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2249 unsigned long addr, unsigned long len, pgoff_t pgoff, 2250 bool *need_rmap_locks); 2251 extern void exit_mmap(struct mm_struct *); 2252 2253 static inline int check_data_rlimit(unsigned long rlim, 2254 unsigned long new, 2255 unsigned long start, 2256 unsigned long end_data, 2257 unsigned long start_data) 2258 { 2259 if (rlim < RLIM_INFINITY) { 2260 if (((new - start) + (end_data - start_data)) > rlim) 2261 return -ENOSPC; 2262 } 2263 2264 return 0; 2265 } 2266 2267 extern int mm_take_all_locks(struct mm_struct *mm); 2268 extern void mm_drop_all_locks(struct mm_struct *mm); 2269 2270 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2271 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2272 extern struct file *get_task_exe_file(struct task_struct *task); 2273 2274 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2275 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2276 2277 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2278 const struct vm_special_mapping *sm); 2279 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2280 unsigned long addr, unsigned long len, 2281 unsigned long flags, 2282 const struct vm_special_mapping *spec); 2283 /* This is an obsolete alternative to _install_special_mapping. */ 2284 extern int install_special_mapping(struct mm_struct *mm, 2285 unsigned long addr, unsigned long len, 2286 unsigned long flags, struct page **pages); 2287 2288 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2289 2290 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2291 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2292 struct list_head *uf); 2293 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2294 unsigned long len, unsigned long prot, unsigned long flags, 2295 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2296 struct list_head *uf); 2297 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2298 struct list_head *uf); 2299 2300 static inline unsigned long 2301 do_mmap_pgoff(struct file *file, unsigned long addr, 2302 unsigned long len, unsigned long prot, unsigned long flags, 2303 unsigned long pgoff, unsigned long *populate, 2304 struct list_head *uf) 2305 { 2306 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2307 } 2308 2309 #ifdef CONFIG_MMU 2310 extern int __mm_populate(unsigned long addr, unsigned long len, 2311 int ignore_errors); 2312 static inline void mm_populate(unsigned long addr, unsigned long len) 2313 { 2314 /* Ignore errors */ 2315 (void) __mm_populate(addr, len, 1); 2316 } 2317 #else 2318 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2319 #endif 2320 2321 /* These take the mm semaphore themselves */ 2322 extern int __must_check vm_brk(unsigned long, unsigned long); 2323 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2324 extern int vm_munmap(unsigned long, size_t); 2325 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2326 unsigned long, unsigned long, 2327 unsigned long, unsigned long); 2328 2329 struct vm_unmapped_area_info { 2330 #define VM_UNMAPPED_AREA_TOPDOWN 1 2331 unsigned long flags; 2332 unsigned long length; 2333 unsigned long low_limit; 2334 unsigned long high_limit; 2335 unsigned long align_mask; 2336 unsigned long align_offset; 2337 }; 2338 2339 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2340 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2341 2342 /* 2343 * Search for an unmapped address range. 2344 * 2345 * We are looking for a range that: 2346 * - does not intersect with any VMA; 2347 * - is contained within the [low_limit, high_limit) interval; 2348 * - is at least the desired size. 2349 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2350 */ 2351 static inline unsigned long 2352 vm_unmapped_area(struct vm_unmapped_area_info *info) 2353 { 2354 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2355 return unmapped_area_topdown(info); 2356 else 2357 return unmapped_area(info); 2358 } 2359 2360 /* truncate.c */ 2361 extern void truncate_inode_pages(struct address_space *, loff_t); 2362 extern void truncate_inode_pages_range(struct address_space *, 2363 loff_t lstart, loff_t lend); 2364 extern void truncate_inode_pages_final(struct address_space *); 2365 2366 /* generic vm_area_ops exported for stackable file systems */ 2367 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2368 extern void filemap_map_pages(struct vm_fault *vmf, 2369 pgoff_t start_pgoff, pgoff_t end_pgoff); 2370 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2371 2372 /* mm/page-writeback.c */ 2373 int __must_check write_one_page(struct page *page); 2374 void task_dirty_inc(struct task_struct *tsk); 2375 2376 /* readahead.c */ 2377 #define VM_MAX_READAHEAD 128 /* kbytes */ 2378 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2379 2380 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2381 pgoff_t offset, unsigned long nr_to_read); 2382 2383 void page_cache_sync_readahead(struct address_space *mapping, 2384 struct file_ra_state *ra, 2385 struct file *filp, 2386 pgoff_t offset, 2387 unsigned long size); 2388 2389 void page_cache_async_readahead(struct address_space *mapping, 2390 struct file_ra_state *ra, 2391 struct file *filp, 2392 struct page *pg, 2393 pgoff_t offset, 2394 unsigned long size); 2395 2396 extern unsigned long stack_guard_gap; 2397 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2398 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2399 2400 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2401 extern int expand_downwards(struct vm_area_struct *vma, 2402 unsigned long address); 2403 #if VM_GROWSUP 2404 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2405 #else 2406 #define expand_upwards(vma, address) (0) 2407 #endif 2408 2409 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2410 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2411 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2412 struct vm_area_struct **pprev); 2413 2414 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2415 NULL if none. Assume start_addr < end_addr. */ 2416 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2417 { 2418 struct vm_area_struct * vma = find_vma(mm,start_addr); 2419 2420 if (vma && end_addr <= vma->vm_start) 2421 vma = NULL; 2422 return vma; 2423 } 2424 2425 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2426 { 2427 unsigned long vm_start = vma->vm_start; 2428 2429 if (vma->vm_flags & VM_GROWSDOWN) { 2430 vm_start -= stack_guard_gap; 2431 if (vm_start > vma->vm_start) 2432 vm_start = 0; 2433 } 2434 return vm_start; 2435 } 2436 2437 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2438 { 2439 unsigned long vm_end = vma->vm_end; 2440 2441 if (vma->vm_flags & VM_GROWSUP) { 2442 vm_end += stack_guard_gap; 2443 if (vm_end < vma->vm_end) 2444 vm_end = -PAGE_SIZE; 2445 } 2446 return vm_end; 2447 } 2448 2449 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2450 { 2451 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2452 } 2453 2454 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2455 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2456 unsigned long vm_start, unsigned long vm_end) 2457 { 2458 struct vm_area_struct *vma = find_vma(mm, vm_start); 2459 2460 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2461 vma = NULL; 2462 2463 return vma; 2464 } 2465 2466 #ifdef CONFIG_MMU 2467 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2468 void vma_set_page_prot(struct vm_area_struct *vma); 2469 #else 2470 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2471 { 2472 return __pgprot(0); 2473 } 2474 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2475 { 2476 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2477 } 2478 #endif 2479 2480 #ifdef CONFIG_NUMA_BALANCING 2481 unsigned long change_prot_numa(struct vm_area_struct *vma, 2482 unsigned long start, unsigned long end); 2483 #endif 2484 2485 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2486 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2487 unsigned long pfn, unsigned long size, pgprot_t); 2488 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2489 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2490 unsigned long pfn); 2491 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2492 unsigned long pfn, pgprot_t pgprot); 2493 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2494 pfn_t pfn); 2495 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2496 unsigned long addr, pfn_t pfn); 2497 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2498 2499 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2500 unsigned long addr, struct page *page) 2501 { 2502 int err = vm_insert_page(vma, addr, page); 2503 2504 if (err == -ENOMEM) 2505 return VM_FAULT_OOM; 2506 if (err < 0 && err != -EBUSY) 2507 return VM_FAULT_SIGBUS; 2508 2509 return VM_FAULT_NOPAGE; 2510 } 2511 2512 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, 2513 unsigned long addr, pfn_t pfn) 2514 { 2515 int err = vm_insert_mixed(vma, addr, pfn); 2516 2517 if (err == -ENOMEM) 2518 return VM_FAULT_OOM; 2519 if (err < 0 && err != -EBUSY) 2520 return VM_FAULT_SIGBUS; 2521 2522 return VM_FAULT_NOPAGE; 2523 } 2524 2525 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, 2526 unsigned long addr, unsigned long pfn) 2527 { 2528 int err = vm_insert_pfn(vma, addr, pfn); 2529 2530 if (err == -ENOMEM) 2531 return VM_FAULT_OOM; 2532 if (err < 0 && err != -EBUSY) 2533 return VM_FAULT_SIGBUS; 2534 2535 return VM_FAULT_NOPAGE; 2536 } 2537 2538 static inline vm_fault_t vmf_error(int err) 2539 { 2540 if (err == -ENOMEM) 2541 return VM_FAULT_OOM; 2542 return VM_FAULT_SIGBUS; 2543 } 2544 2545 struct page *follow_page_mask(struct vm_area_struct *vma, 2546 unsigned long address, unsigned int foll_flags, 2547 unsigned int *page_mask); 2548 2549 static inline struct page *follow_page(struct vm_area_struct *vma, 2550 unsigned long address, unsigned int foll_flags) 2551 { 2552 unsigned int unused_page_mask; 2553 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2554 } 2555 2556 #define FOLL_WRITE 0x01 /* check pte is writable */ 2557 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2558 #define FOLL_GET 0x04 /* do get_page on page */ 2559 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2560 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2561 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2562 * and return without waiting upon it */ 2563 #define FOLL_POPULATE 0x40 /* fault in page */ 2564 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2565 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2566 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2567 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2568 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2569 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2570 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2571 #define FOLL_COW 0x4000 /* internal GUP flag */ 2572 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2573 2574 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2575 { 2576 if (vm_fault & VM_FAULT_OOM) 2577 return -ENOMEM; 2578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2581 return -EFAULT; 2582 return 0; 2583 } 2584 2585 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2586 void *data); 2587 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2588 unsigned long size, pte_fn_t fn, void *data); 2589 2590 2591 #ifdef CONFIG_PAGE_POISONING 2592 extern bool page_poisoning_enabled(void); 2593 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2594 #else 2595 static inline bool page_poisoning_enabled(void) { return false; } 2596 static inline void kernel_poison_pages(struct page *page, int numpages, 2597 int enable) { } 2598 #endif 2599 2600 #ifdef CONFIG_DEBUG_PAGEALLOC 2601 extern bool _debug_pagealloc_enabled; 2602 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2603 2604 static inline bool debug_pagealloc_enabled(void) 2605 { 2606 return _debug_pagealloc_enabled; 2607 } 2608 2609 static inline void 2610 kernel_map_pages(struct page *page, int numpages, int enable) 2611 { 2612 if (!debug_pagealloc_enabled()) 2613 return; 2614 2615 __kernel_map_pages(page, numpages, enable); 2616 } 2617 #ifdef CONFIG_HIBERNATION 2618 extern bool kernel_page_present(struct page *page); 2619 #endif /* CONFIG_HIBERNATION */ 2620 #else /* CONFIG_DEBUG_PAGEALLOC */ 2621 static inline void 2622 kernel_map_pages(struct page *page, int numpages, int enable) {} 2623 #ifdef CONFIG_HIBERNATION 2624 static inline bool kernel_page_present(struct page *page) { return true; } 2625 #endif /* CONFIG_HIBERNATION */ 2626 static inline bool debug_pagealloc_enabled(void) 2627 { 2628 return false; 2629 } 2630 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2631 2632 #ifdef __HAVE_ARCH_GATE_AREA 2633 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2634 extern int in_gate_area_no_mm(unsigned long addr); 2635 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2636 #else 2637 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2638 { 2639 return NULL; 2640 } 2641 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2642 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2643 { 2644 return 0; 2645 } 2646 #endif /* __HAVE_ARCH_GATE_AREA */ 2647 2648 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2649 2650 #ifdef CONFIG_SYSCTL 2651 extern int sysctl_drop_caches; 2652 int drop_caches_sysctl_handler(struct ctl_table *, int, 2653 void __user *, size_t *, loff_t *); 2654 #endif 2655 2656 void drop_slab(void); 2657 void drop_slab_node(int nid); 2658 2659 #ifndef CONFIG_MMU 2660 #define randomize_va_space 0 2661 #else 2662 extern int randomize_va_space; 2663 #endif 2664 2665 const char * arch_vma_name(struct vm_area_struct *vma); 2666 void print_vma_addr(char *prefix, unsigned long rip); 2667 2668 void sparse_mem_maps_populate_node(struct page **map_map, 2669 unsigned long pnum_begin, 2670 unsigned long pnum_end, 2671 unsigned long map_count, 2672 int nodeid); 2673 2674 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2675 struct vmem_altmap *altmap); 2676 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2677 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2678 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2679 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2680 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2681 void *vmemmap_alloc_block(unsigned long size, int node); 2682 struct vmem_altmap; 2683 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2684 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2685 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2686 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2687 int node); 2688 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2689 struct vmem_altmap *altmap); 2690 void vmemmap_populate_print_last(void); 2691 #ifdef CONFIG_MEMORY_HOTPLUG 2692 void vmemmap_free(unsigned long start, unsigned long end, 2693 struct vmem_altmap *altmap); 2694 #endif 2695 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2696 unsigned long nr_pages); 2697 2698 enum mf_flags { 2699 MF_COUNT_INCREASED = 1 << 0, 2700 MF_ACTION_REQUIRED = 1 << 1, 2701 MF_MUST_KILL = 1 << 2, 2702 MF_SOFT_OFFLINE = 1 << 3, 2703 }; 2704 extern int memory_failure(unsigned long pfn, int flags); 2705 extern void memory_failure_queue(unsigned long pfn, int flags); 2706 extern int unpoison_memory(unsigned long pfn); 2707 extern int get_hwpoison_page(struct page *page); 2708 #define put_hwpoison_page(page) put_page(page) 2709 extern int sysctl_memory_failure_early_kill; 2710 extern int sysctl_memory_failure_recovery; 2711 extern void shake_page(struct page *p, int access); 2712 extern atomic_long_t num_poisoned_pages __read_mostly; 2713 extern int soft_offline_page(struct page *page, int flags); 2714 2715 2716 /* 2717 * Error handlers for various types of pages. 2718 */ 2719 enum mf_result { 2720 MF_IGNORED, /* Error: cannot be handled */ 2721 MF_FAILED, /* Error: handling failed */ 2722 MF_DELAYED, /* Will be handled later */ 2723 MF_RECOVERED, /* Successfully recovered */ 2724 }; 2725 2726 enum mf_action_page_type { 2727 MF_MSG_KERNEL, 2728 MF_MSG_KERNEL_HIGH_ORDER, 2729 MF_MSG_SLAB, 2730 MF_MSG_DIFFERENT_COMPOUND, 2731 MF_MSG_POISONED_HUGE, 2732 MF_MSG_HUGE, 2733 MF_MSG_FREE_HUGE, 2734 MF_MSG_NON_PMD_HUGE, 2735 MF_MSG_UNMAP_FAILED, 2736 MF_MSG_DIRTY_SWAPCACHE, 2737 MF_MSG_CLEAN_SWAPCACHE, 2738 MF_MSG_DIRTY_MLOCKED_LRU, 2739 MF_MSG_CLEAN_MLOCKED_LRU, 2740 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2741 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2742 MF_MSG_DIRTY_LRU, 2743 MF_MSG_CLEAN_LRU, 2744 MF_MSG_TRUNCATED_LRU, 2745 MF_MSG_BUDDY, 2746 MF_MSG_BUDDY_2ND, 2747 MF_MSG_UNKNOWN, 2748 }; 2749 2750 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2751 extern void clear_huge_page(struct page *page, 2752 unsigned long addr_hint, 2753 unsigned int pages_per_huge_page); 2754 extern void copy_user_huge_page(struct page *dst, struct page *src, 2755 unsigned long addr, struct vm_area_struct *vma, 2756 unsigned int pages_per_huge_page); 2757 extern long copy_huge_page_from_user(struct page *dst_page, 2758 const void __user *usr_src, 2759 unsigned int pages_per_huge_page, 2760 bool allow_pagefault); 2761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2762 2763 extern struct page_ext_operations debug_guardpage_ops; 2764 2765 #ifdef CONFIG_DEBUG_PAGEALLOC 2766 extern unsigned int _debug_guardpage_minorder; 2767 extern bool _debug_guardpage_enabled; 2768 2769 static inline unsigned int debug_guardpage_minorder(void) 2770 { 2771 return _debug_guardpage_minorder; 2772 } 2773 2774 static inline bool debug_guardpage_enabled(void) 2775 { 2776 return _debug_guardpage_enabled; 2777 } 2778 2779 static inline bool page_is_guard(struct page *page) 2780 { 2781 struct page_ext *page_ext; 2782 2783 if (!debug_guardpage_enabled()) 2784 return false; 2785 2786 page_ext = lookup_page_ext(page); 2787 if (unlikely(!page_ext)) 2788 return false; 2789 2790 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2791 } 2792 #else 2793 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2794 static inline bool debug_guardpage_enabled(void) { return false; } 2795 static inline bool page_is_guard(struct page *page) { return false; } 2796 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2797 2798 #if MAX_NUMNODES > 1 2799 void __init setup_nr_node_ids(void); 2800 #else 2801 static inline void setup_nr_node_ids(void) {} 2802 #endif 2803 2804 #endif /* __KERNEL__ */ 2805 #endif /* _LINUX_MM_H */ 2806