xref: /linux-6.15/include/linux/mm.h (revision f79e4d5f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54 
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60 
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71 
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75 
76 #ifndef __pa_symbol
77 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79 
80 #ifndef page_to_virt
81 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83 
84 #ifndef lm_alias
85 #define lm_alias(x)	__va(__pa_symbol(x))
86 #endif
87 
88 /*
89  * To prevent common memory management code establishing
90  * a zero page mapping on a read fault.
91  * This macro should be defined within <asm/pgtable.h>.
92  * s390 does this to prevent multiplexing of hardware bits
93  * related to the physical page in case of virtualization.
94  */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X)	(0)
97 #endif
98 
99 /*
100  * On some architectures it is expensive to call memset() for small sizes.
101  * Those architectures should provide their own implementation of "struct page"
102  * zeroing by defining this macro in <asm/pgtable.h>.
103  */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107 
108 /*
109  * Default maximum number of active map areas, this limits the number of vmas
110  * per mm struct. Users can overwrite this number by sysctl but there is a
111  * problem.
112  *
113  * When a program's coredump is generated as ELF format, a section is created
114  * per a vma. In ELF, the number of sections is represented in unsigned short.
115  * This means the number of sections should be smaller than 65535 at coredump.
116  * Because the kernel adds some informative sections to a image of program at
117  * generating coredump, we need some margin. The number of extra sections is
118  * 1-3 now and depends on arch. We use "5" as safe margin, here.
119  *
120  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121  * not a hard limit any more. Although some userspace tools can be surprised by
122  * that.
123  */
124 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
125 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 
127 extern int sysctl_max_map_count;
128 
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131 
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135 
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 				    size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 				    size_t *, loff_t *);
140 
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148 
149 /*
150  * Linux kernel virtual memory manager primitives.
151  * The idea being to have a "virtual" mm in the same way
152  * we have a virtual fs - giving a cleaner interface to the
153  * mm details, and allowing different kinds of memory mappings
154  * (from shared memory to executable loading to arbitrary
155  * mmap() functions).
156  */
157 
158 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
161 
162 #ifndef CONFIG_MMU
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
165 
166 extern unsigned int kobjsize(const void *objp);
167 #endif
168 
169 /*
170  * vm_flags in vm_area_struct, see mm_types.h.
171  * When changing, update also include/trace/events/mmflags.h
172  */
173 #define VM_NONE		0x00000000
174 
175 #define VM_READ		0x00000001	/* currently active flags */
176 #define VM_WRITE	0x00000002
177 #define VM_EXEC		0x00000004
178 #define VM_SHARED	0x00000008
179 
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
182 #define VM_MAYWRITE	0x00000020
183 #define VM_MAYEXEC	0x00000040
184 #define VM_MAYSHARE	0x00000080
185 
186 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
187 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
188 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
191 
192 #define VM_LOCKED	0x00002000
193 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
194 
195 					/* Used by sys_madvise() */
196 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
197 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
198 
199 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
203 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
204 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
205 #define VM_SYNC		0x00800000	/* Synchronous page faults */
206 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
207 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
208 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
209 
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
212 #else
213 # define VM_SOFTDIRTY	0
214 #endif
215 
216 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
220 
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233 
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
238 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
240 #ifdef CONFIG_PPC
241 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
242 #else
243 # define VM_PKEY_BIT4  0
244 #endif
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
246 
247 #if defined(CONFIG_X86)
248 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP	VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP	VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR	VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
260 #endif
261 
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX		VM_HIGH_ARCH_4
265 #else
266 # define VM_MPX		VM_NONE
267 #endif
268 
269 #ifndef VM_GROWSUP
270 # define VM_GROWSUP	VM_NONE
271 #endif
272 
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
275 
276 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278 #endif
279 
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK	VM_GROWSUP
282 #else
283 #define VM_STACK	VM_GROWSDOWN
284 #endif
285 
286 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287 
288 /*
289  * Special vmas that are non-mergable, non-mlock()able.
290  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291  */
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293 
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
296 
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
299 
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR	VM_NONE
303 #endif
304 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305 
306 /*
307  * mapping from the currently active vm_flags protection bits (the
308  * low four bits) to a page protection mask..
309  */
310 extern pgprot_t protection_map[16];
311 
312 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED	0x20	/* Second try */
318 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
321 
322 #define FAULT_FLAG_TRACE \
323 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
324 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
325 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
326 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
327 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
328 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
329 	{ FAULT_FLAG_USER,		"USER" }, \
330 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
331 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
332 
333 /*
334  * vm_fault is filled by the the pagefault handler and passed to the vma's
335  * ->fault function. The vma's ->fault is responsible for returning a bitmask
336  * of VM_FAULT_xxx flags that give details about how the fault was handled.
337  *
338  * MM layer fills up gfp_mask for page allocations but fault handler might
339  * alter it if its implementation requires a different allocation context.
340  *
341  * pgoff should be used in favour of virtual_address, if possible.
342  */
343 struct vm_fault {
344 	struct vm_area_struct *vma;	/* Target VMA */
345 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
346 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
347 	pgoff_t pgoff;			/* Logical page offset based on vma */
348 	unsigned long address;		/* Faulting virtual address */
349 	pmd_t *pmd;			/* Pointer to pmd entry matching
350 					 * the 'address' */
351 	pud_t *pud;			/* Pointer to pud entry matching
352 					 * the 'address'
353 					 */
354 	pte_t orig_pte;			/* Value of PTE at the time of fault */
355 
356 	struct page *cow_page;		/* Page handler may use for COW fault */
357 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
358 	struct page *page;		/* ->fault handlers should return a
359 					 * page here, unless VM_FAULT_NOPAGE
360 					 * is set (which is also implied by
361 					 * VM_FAULT_ERROR).
362 					 */
363 	/* These three entries are valid only while holding ptl lock */
364 	pte_t *pte;			/* Pointer to pte entry matching
365 					 * the 'address'. NULL if the page
366 					 * table hasn't been allocated.
367 					 */
368 	spinlock_t *ptl;		/* Page table lock.
369 					 * Protects pte page table if 'pte'
370 					 * is not NULL, otherwise pmd.
371 					 */
372 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
373 					 * vm_ops->map_pages() calls
374 					 * alloc_set_pte() from atomic context.
375 					 * do_fault_around() pre-allocates
376 					 * page table to avoid allocation from
377 					 * atomic context.
378 					 */
379 };
380 
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
383 	PE_SIZE_PTE = 0,
384 	PE_SIZE_PMD,
385 	PE_SIZE_PUD,
386 };
387 
388 /*
389  * These are the virtual MM functions - opening of an area, closing and
390  * unmapping it (needed to keep files on disk up-to-date etc), pointer
391  * to the functions called when a no-page or a wp-page exception occurs.
392  */
393 struct vm_operations_struct {
394 	void (*open)(struct vm_area_struct * area);
395 	void (*close)(struct vm_area_struct * area);
396 	int (*split)(struct vm_area_struct * area, unsigned long addr);
397 	int (*mremap)(struct vm_area_struct * area);
398 	vm_fault_t (*fault)(struct vm_fault *vmf);
399 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 			enum page_entry_size pe_size);
401 	void (*map_pages)(struct vm_fault *vmf,
402 			pgoff_t start_pgoff, pgoff_t end_pgoff);
403 	unsigned long (*pagesize)(struct vm_area_struct * area);
404 
405 	/* notification that a previously read-only page is about to become
406 	 * writable, if an error is returned it will cause a SIGBUS */
407 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408 
409 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411 
412 	/* called by access_process_vm when get_user_pages() fails, typically
413 	 * for use by special VMAs that can switch between memory and hardware
414 	 */
415 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 		      void *buf, int len, int write);
417 
418 	/* Called by the /proc/PID/maps code to ask the vma whether it
419 	 * has a special name.  Returning non-NULL will also cause this
420 	 * vma to be dumped unconditionally. */
421 	const char *(*name)(struct vm_area_struct *vma);
422 
423 #ifdef CONFIG_NUMA
424 	/*
425 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 	 * to hold the policy upon return.  Caller should pass NULL @new to
427 	 * remove a policy and fall back to surrounding context--i.e. do not
428 	 * install a MPOL_DEFAULT policy, nor the task or system default
429 	 * mempolicy.
430 	 */
431 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432 
433 	/*
434 	 * get_policy() op must add reference [mpol_get()] to any policy at
435 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
436 	 * in mm/mempolicy.c will do this automatically.
437 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 	 * must return NULL--i.e., do not "fallback" to task or system default
441 	 * policy.
442 	 */
443 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 					unsigned long addr);
445 #endif
446 	/*
447 	 * Called by vm_normal_page() for special PTEs to find the
448 	 * page for @addr.  This is useful if the default behavior
449 	 * (using pte_page()) would not find the correct page.
450 	 */
451 	struct page *(*find_special_page)(struct vm_area_struct *vma,
452 					  unsigned long addr);
453 };
454 
455 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456 {
457 	static const struct vm_operations_struct dummy_vm_ops = {};
458 
459 	vma->vm_mm = mm;
460 	vma->vm_ops = &dummy_vm_ops;
461 	INIT_LIST_HEAD(&vma->anon_vma_chain);
462 }
463 
464 static inline void vma_set_anonymous(struct vm_area_struct *vma)
465 {
466 	vma->vm_ops = NULL;
467 }
468 
469 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
470 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
471 
472 struct mmu_gather;
473 struct inode;
474 
475 #define page_private(page)		((page)->private)
476 #define set_page_private(page, v)	((page)->private = (v))
477 
478 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
479 static inline int pmd_devmap(pmd_t pmd)
480 {
481 	return 0;
482 }
483 static inline int pud_devmap(pud_t pud)
484 {
485 	return 0;
486 }
487 static inline int pgd_devmap(pgd_t pgd)
488 {
489 	return 0;
490 }
491 #endif
492 
493 /*
494  * FIXME: take this include out, include page-flags.h in
495  * files which need it (119 of them)
496  */
497 #include <linux/page-flags.h>
498 #include <linux/huge_mm.h>
499 
500 /*
501  * Methods to modify the page usage count.
502  *
503  * What counts for a page usage:
504  * - cache mapping   (page->mapping)
505  * - private data    (page->private)
506  * - page mapped in a task's page tables, each mapping
507  *   is counted separately
508  *
509  * Also, many kernel routines increase the page count before a critical
510  * routine so they can be sure the page doesn't go away from under them.
511  */
512 
513 /*
514  * Drop a ref, return true if the refcount fell to zero (the page has no users)
515  */
516 static inline int put_page_testzero(struct page *page)
517 {
518 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
519 	return page_ref_dec_and_test(page);
520 }
521 
522 /*
523  * Try to grab a ref unless the page has a refcount of zero, return false if
524  * that is the case.
525  * This can be called when MMU is off so it must not access
526  * any of the virtual mappings.
527  */
528 static inline int get_page_unless_zero(struct page *page)
529 {
530 	return page_ref_add_unless(page, 1, 0);
531 }
532 
533 extern int page_is_ram(unsigned long pfn);
534 
535 enum {
536 	REGION_INTERSECTS,
537 	REGION_DISJOINT,
538 	REGION_MIXED,
539 };
540 
541 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
542 		      unsigned long desc);
543 
544 /* Support for virtually mapped pages */
545 struct page *vmalloc_to_page(const void *addr);
546 unsigned long vmalloc_to_pfn(const void *addr);
547 
548 /*
549  * Determine if an address is within the vmalloc range
550  *
551  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
552  * is no special casing required.
553  */
554 static inline bool is_vmalloc_addr(const void *x)
555 {
556 #ifdef CONFIG_MMU
557 	unsigned long addr = (unsigned long)x;
558 
559 	return addr >= VMALLOC_START && addr < VMALLOC_END;
560 #else
561 	return false;
562 #endif
563 }
564 #ifdef CONFIG_MMU
565 extern int is_vmalloc_or_module_addr(const void *x);
566 #else
567 static inline int is_vmalloc_or_module_addr(const void *x)
568 {
569 	return 0;
570 }
571 #endif
572 
573 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
574 static inline void *kvmalloc(size_t size, gfp_t flags)
575 {
576 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
577 }
578 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
579 {
580 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
581 }
582 static inline void *kvzalloc(size_t size, gfp_t flags)
583 {
584 	return kvmalloc(size, flags | __GFP_ZERO);
585 }
586 
587 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
588 {
589 	size_t bytes;
590 
591 	if (unlikely(check_mul_overflow(n, size, &bytes)))
592 		return NULL;
593 
594 	return kvmalloc(bytes, flags);
595 }
596 
597 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
598 {
599 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
600 }
601 
602 extern void kvfree(const void *addr);
603 
604 static inline atomic_t *compound_mapcount_ptr(struct page *page)
605 {
606 	return &page[1].compound_mapcount;
607 }
608 
609 static inline int compound_mapcount(struct page *page)
610 {
611 	VM_BUG_ON_PAGE(!PageCompound(page), page);
612 	page = compound_head(page);
613 	return atomic_read(compound_mapcount_ptr(page)) + 1;
614 }
615 
616 /*
617  * The atomic page->_mapcount, starts from -1: so that transitions
618  * both from it and to it can be tracked, using atomic_inc_and_test
619  * and atomic_add_negative(-1).
620  */
621 static inline void page_mapcount_reset(struct page *page)
622 {
623 	atomic_set(&(page)->_mapcount, -1);
624 }
625 
626 int __page_mapcount(struct page *page);
627 
628 static inline int page_mapcount(struct page *page)
629 {
630 	VM_BUG_ON_PAGE(PageSlab(page), page);
631 
632 	if (unlikely(PageCompound(page)))
633 		return __page_mapcount(page);
634 	return atomic_read(&page->_mapcount) + 1;
635 }
636 
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 int total_mapcount(struct page *page);
639 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
640 #else
641 static inline int total_mapcount(struct page *page)
642 {
643 	return page_mapcount(page);
644 }
645 static inline int page_trans_huge_mapcount(struct page *page,
646 					   int *total_mapcount)
647 {
648 	int mapcount = page_mapcount(page);
649 	if (total_mapcount)
650 		*total_mapcount = mapcount;
651 	return mapcount;
652 }
653 #endif
654 
655 static inline struct page *virt_to_head_page(const void *x)
656 {
657 	struct page *page = virt_to_page(x);
658 
659 	return compound_head(page);
660 }
661 
662 void __put_page(struct page *page);
663 
664 void put_pages_list(struct list_head *pages);
665 
666 void split_page(struct page *page, unsigned int order);
667 
668 /*
669  * Compound pages have a destructor function.  Provide a
670  * prototype for that function and accessor functions.
671  * These are _only_ valid on the head of a compound page.
672  */
673 typedef void compound_page_dtor(struct page *);
674 
675 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
676 enum compound_dtor_id {
677 	NULL_COMPOUND_DTOR,
678 	COMPOUND_PAGE_DTOR,
679 #ifdef CONFIG_HUGETLB_PAGE
680 	HUGETLB_PAGE_DTOR,
681 #endif
682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
683 	TRANSHUGE_PAGE_DTOR,
684 #endif
685 	NR_COMPOUND_DTORS,
686 };
687 extern compound_page_dtor * const compound_page_dtors[];
688 
689 static inline void set_compound_page_dtor(struct page *page,
690 		enum compound_dtor_id compound_dtor)
691 {
692 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
693 	page[1].compound_dtor = compound_dtor;
694 }
695 
696 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
697 {
698 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
699 	return compound_page_dtors[page[1].compound_dtor];
700 }
701 
702 static inline unsigned int compound_order(struct page *page)
703 {
704 	if (!PageHead(page))
705 		return 0;
706 	return page[1].compound_order;
707 }
708 
709 static inline void set_compound_order(struct page *page, unsigned int order)
710 {
711 	page[1].compound_order = order;
712 }
713 
714 void free_compound_page(struct page *page);
715 
716 #ifdef CONFIG_MMU
717 /*
718  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
719  * servicing faults for write access.  In the normal case, do always want
720  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
721  * that do not have writing enabled, when used by access_process_vm.
722  */
723 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
724 {
725 	if (likely(vma->vm_flags & VM_WRITE))
726 		pte = pte_mkwrite(pte);
727 	return pte;
728 }
729 
730 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
731 		struct page *page);
732 int finish_fault(struct vm_fault *vmf);
733 int finish_mkwrite_fault(struct vm_fault *vmf);
734 #endif
735 
736 /*
737  * Multiple processes may "see" the same page. E.g. for untouched
738  * mappings of /dev/null, all processes see the same page full of
739  * zeroes, and text pages of executables and shared libraries have
740  * only one copy in memory, at most, normally.
741  *
742  * For the non-reserved pages, page_count(page) denotes a reference count.
743  *   page_count() == 0 means the page is free. page->lru is then used for
744  *   freelist management in the buddy allocator.
745  *   page_count() > 0  means the page has been allocated.
746  *
747  * Pages are allocated by the slab allocator in order to provide memory
748  * to kmalloc and kmem_cache_alloc. In this case, the management of the
749  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
750  * unless a particular usage is carefully commented. (the responsibility of
751  * freeing the kmalloc memory is the caller's, of course).
752  *
753  * A page may be used by anyone else who does a __get_free_page().
754  * In this case, page_count still tracks the references, and should only
755  * be used through the normal accessor functions. The top bits of page->flags
756  * and page->virtual store page management information, but all other fields
757  * are unused and could be used privately, carefully. The management of this
758  * page is the responsibility of the one who allocated it, and those who have
759  * subsequently been given references to it.
760  *
761  * The other pages (we may call them "pagecache pages") are completely
762  * managed by the Linux memory manager: I/O, buffers, swapping etc.
763  * The following discussion applies only to them.
764  *
765  * A pagecache page contains an opaque `private' member, which belongs to the
766  * page's address_space. Usually, this is the address of a circular list of
767  * the page's disk buffers. PG_private must be set to tell the VM to call
768  * into the filesystem to release these pages.
769  *
770  * A page may belong to an inode's memory mapping. In this case, page->mapping
771  * is the pointer to the inode, and page->index is the file offset of the page,
772  * in units of PAGE_SIZE.
773  *
774  * If pagecache pages are not associated with an inode, they are said to be
775  * anonymous pages. These may become associated with the swapcache, and in that
776  * case PG_swapcache is set, and page->private is an offset into the swapcache.
777  *
778  * In either case (swapcache or inode backed), the pagecache itself holds one
779  * reference to the page. Setting PG_private should also increment the
780  * refcount. The each user mapping also has a reference to the page.
781  *
782  * The pagecache pages are stored in a per-mapping radix tree, which is
783  * rooted at mapping->i_pages, and indexed by offset.
784  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
785  * lists, we instead now tag pages as dirty/writeback in the radix tree.
786  *
787  * All pagecache pages may be subject to I/O:
788  * - inode pages may need to be read from disk,
789  * - inode pages which have been modified and are MAP_SHARED may need
790  *   to be written back to the inode on disk,
791  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
792  *   modified may need to be swapped out to swap space and (later) to be read
793  *   back into memory.
794  */
795 
796 /*
797  * The zone field is never updated after free_area_init_core()
798  * sets it, so none of the operations on it need to be atomic.
799  */
800 
801 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
802 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
803 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
804 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
805 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
806 
807 /*
808  * Define the bit shifts to access each section.  For non-existent
809  * sections we define the shift as 0; that plus a 0 mask ensures
810  * the compiler will optimise away reference to them.
811  */
812 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
813 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
814 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
815 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
816 
817 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
818 #ifdef NODE_NOT_IN_PAGE_FLAGS
819 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
820 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
821 						SECTIONS_PGOFF : ZONES_PGOFF)
822 #else
823 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
824 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
825 						NODES_PGOFF : ZONES_PGOFF)
826 #endif
827 
828 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
829 
830 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
831 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
832 #endif
833 
834 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
835 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
836 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
837 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
838 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
839 
840 static inline enum zone_type page_zonenum(const struct page *page)
841 {
842 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
843 }
844 
845 #ifdef CONFIG_ZONE_DEVICE
846 static inline bool is_zone_device_page(const struct page *page)
847 {
848 	return page_zonenum(page) == ZONE_DEVICE;
849 }
850 #else
851 static inline bool is_zone_device_page(const struct page *page)
852 {
853 	return false;
854 }
855 #endif
856 
857 #ifdef CONFIG_DEV_PAGEMAP_OPS
858 void dev_pagemap_get_ops(void);
859 void dev_pagemap_put_ops(void);
860 void __put_devmap_managed_page(struct page *page);
861 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
862 static inline bool put_devmap_managed_page(struct page *page)
863 {
864 	if (!static_branch_unlikely(&devmap_managed_key))
865 		return false;
866 	if (!is_zone_device_page(page))
867 		return false;
868 	switch (page->pgmap->type) {
869 	case MEMORY_DEVICE_PRIVATE:
870 	case MEMORY_DEVICE_PUBLIC:
871 	case MEMORY_DEVICE_FS_DAX:
872 		__put_devmap_managed_page(page);
873 		return true;
874 	default:
875 		break;
876 	}
877 	return false;
878 }
879 
880 static inline bool is_device_private_page(const struct page *page)
881 {
882 	return is_zone_device_page(page) &&
883 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
884 }
885 
886 static inline bool is_device_public_page(const struct page *page)
887 {
888 	return is_zone_device_page(page) &&
889 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
890 }
891 
892 #else /* CONFIG_DEV_PAGEMAP_OPS */
893 static inline void dev_pagemap_get_ops(void)
894 {
895 }
896 
897 static inline void dev_pagemap_put_ops(void)
898 {
899 }
900 
901 static inline bool put_devmap_managed_page(struct page *page)
902 {
903 	return false;
904 }
905 
906 static inline bool is_device_private_page(const struct page *page)
907 {
908 	return false;
909 }
910 
911 static inline bool is_device_public_page(const struct page *page)
912 {
913 	return false;
914 }
915 #endif /* CONFIG_DEV_PAGEMAP_OPS */
916 
917 static inline void get_page(struct page *page)
918 {
919 	page = compound_head(page);
920 	/*
921 	 * Getting a normal page or the head of a compound page
922 	 * requires to already have an elevated page->_refcount.
923 	 */
924 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
925 	page_ref_inc(page);
926 }
927 
928 static inline void put_page(struct page *page)
929 {
930 	page = compound_head(page);
931 
932 	/*
933 	 * For devmap managed pages we need to catch refcount transition from
934 	 * 2 to 1, when refcount reach one it means the page is free and we
935 	 * need to inform the device driver through callback. See
936 	 * include/linux/memremap.h and HMM for details.
937 	 */
938 	if (put_devmap_managed_page(page))
939 		return;
940 
941 	if (put_page_testzero(page))
942 		__put_page(page);
943 }
944 
945 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
946 #define SECTION_IN_PAGE_FLAGS
947 #endif
948 
949 /*
950  * The identification function is mainly used by the buddy allocator for
951  * determining if two pages could be buddies. We are not really identifying
952  * the zone since we could be using the section number id if we do not have
953  * node id available in page flags.
954  * We only guarantee that it will return the same value for two combinable
955  * pages in a zone.
956  */
957 static inline int page_zone_id(struct page *page)
958 {
959 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
960 }
961 
962 static inline int zone_to_nid(struct zone *zone)
963 {
964 #ifdef CONFIG_NUMA
965 	return zone->node;
966 #else
967 	return 0;
968 #endif
969 }
970 
971 #ifdef NODE_NOT_IN_PAGE_FLAGS
972 extern int page_to_nid(const struct page *page);
973 #else
974 static inline int page_to_nid(const struct page *page)
975 {
976 	struct page *p = (struct page *)page;
977 
978 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
979 }
980 #endif
981 
982 #ifdef CONFIG_NUMA_BALANCING
983 static inline int cpu_pid_to_cpupid(int cpu, int pid)
984 {
985 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
986 }
987 
988 static inline int cpupid_to_pid(int cpupid)
989 {
990 	return cpupid & LAST__PID_MASK;
991 }
992 
993 static inline int cpupid_to_cpu(int cpupid)
994 {
995 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
996 }
997 
998 static inline int cpupid_to_nid(int cpupid)
999 {
1000 	return cpu_to_node(cpupid_to_cpu(cpupid));
1001 }
1002 
1003 static inline bool cpupid_pid_unset(int cpupid)
1004 {
1005 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1006 }
1007 
1008 static inline bool cpupid_cpu_unset(int cpupid)
1009 {
1010 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1011 }
1012 
1013 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1014 {
1015 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1016 }
1017 
1018 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1019 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1020 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1021 {
1022 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1023 }
1024 
1025 static inline int page_cpupid_last(struct page *page)
1026 {
1027 	return page->_last_cpupid;
1028 }
1029 static inline void page_cpupid_reset_last(struct page *page)
1030 {
1031 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1032 }
1033 #else
1034 static inline int page_cpupid_last(struct page *page)
1035 {
1036 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1037 }
1038 
1039 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1040 
1041 static inline void page_cpupid_reset_last(struct page *page)
1042 {
1043 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1044 }
1045 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1046 #else /* !CONFIG_NUMA_BALANCING */
1047 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1048 {
1049 	return page_to_nid(page); /* XXX */
1050 }
1051 
1052 static inline int page_cpupid_last(struct page *page)
1053 {
1054 	return page_to_nid(page); /* XXX */
1055 }
1056 
1057 static inline int cpupid_to_nid(int cpupid)
1058 {
1059 	return -1;
1060 }
1061 
1062 static inline int cpupid_to_pid(int cpupid)
1063 {
1064 	return -1;
1065 }
1066 
1067 static inline int cpupid_to_cpu(int cpupid)
1068 {
1069 	return -1;
1070 }
1071 
1072 static inline int cpu_pid_to_cpupid(int nid, int pid)
1073 {
1074 	return -1;
1075 }
1076 
1077 static inline bool cpupid_pid_unset(int cpupid)
1078 {
1079 	return 1;
1080 }
1081 
1082 static inline void page_cpupid_reset_last(struct page *page)
1083 {
1084 }
1085 
1086 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1087 {
1088 	return false;
1089 }
1090 #endif /* CONFIG_NUMA_BALANCING */
1091 
1092 static inline struct zone *page_zone(const struct page *page)
1093 {
1094 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1095 }
1096 
1097 static inline pg_data_t *page_pgdat(const struct page *page)
1098 {
1099 	return NODE_DATA(page_to_nid(page));
1100 }
1101 
1102 #ifdef SECTION_IN_PAGE_FLAGS
1103 static inline void set_page_section(struct page *page, unsigned long section)
1104 {
1105 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1106 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1107 }
1108 
1109 static inline unsigned long page_to_section(const struct page *page)
1110 {
1111 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1112 }
1113 #endif
1114 
1115 static inline void set_page_zone(struct page *page, enum zone_type zone)
1116 {
1117 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1118 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1119 }
1120 
1121 static inline void set_page_node(struct page *page, unsigned long node)
1122 {
1123 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1124 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1125 }
1126 
1127 static inline void set_page_links(struct page *page, enum zone_type zone,
1128 	unsigned long node, unsigned long pfn)
1129 {
1130 	set_page_zone(page, zone);
1131 	set_page_node(page, node);
1132 #ifdef SECTION_IN_PAGE_FLAGS
1133 	set_page_section(page, pfn_to_section_nr(pfn));
1134 #endif
1135 }
1136 
1137 #ifdef CONFIG_MEMCG
1138 static inline struct mem_cgroup *page_memcg(struct page *page)
1139 {
1140 	return page->mem_cgroup;
1141 }
1142 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1143 {
1144 	WARN_ON_ONCE(!rcu_read_lock_held());
1145 	return READ_ONCE(page->mem_cgroup);
1146 }
1147 #else
1148 static inline struct mem_cgroup *page_memcg(struct page *page)
1149 {
1150 	return NULL;
1151 }
1152 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1153 {
1154 	WARN_ON_ONCE(!rcu_read_lock_held());
1155 	return NULL;
1156 }
1157 #endif
1158 
1159 /*
1160  * Some inline functions in vmstat.h depend on page_zone()
1161  */
1162 #include <linux/vmstat.h>
1163 
1164 static __always_inline void *lowmem_page_address(const struct page *page)
1165 {
1166 	return page_to_virt(page);
1167 }
1168 
1169 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1170 #define HASHED_PAGE_VIRTUAL
1171 #endif
1172 
1173 #if defined(WANT_PAGE_VIRTUAL)
1174 static inline void *page_address(const struct page *page)
1175 {
1176 	return page->virtual;
1177 }
1178 static inline void set_page_address(struct page *page, void *address)
1179 {
1180 	page->virtual = address;
1181 }
1182 #define page_address_init()  do { } while(0)
1183 #endif
1184 
1185 #if defined(HASHED_PAGE_VIRTUAL)
1186 void *page_address(const struct page *page);
1187 void set_page_address(struct page *page, void *virtual);
1188 void page_address_init(void);
1189 #endif
1190 
1191 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1192 #define page_address(page) lowmem_page_address(page)
1193 #define set_page_address(page, address)  do { } while(0)
1194 #define page_address_init()  do { } while(0)
1195 #endif
1196 
1197 extern void *page_rmapping(struct page *page);
1198 extern struct anon_vma *page_anon_vma(struct page *page);
1199 extern struct address_space *page_mapping(struct page *page);
1200 
1201 extern struct address_space *__page_file_mapping(struct page *);
1202 
1203 static inline
1204 struct address_space *page_file_mapping(struct page *page)
1205 {
1206 	if (unlikely(PageSwapCache(page)))
1207 		return __page_file_mapping(page);
1208 
1209 	return page->mapping;
1210 }
1211 
1212 extern pgoff_t __page_file_index(struct page *page);
1213 
1214 /*
1215  * Return the pagecache index of the passed page.  Regular pagecache pages
1216  * use ->index whereas swapcache pages use swp_offset(->private)
1217  */
1218 static inline pgoff_t page_index(struct page *page)
1219 {
1220 	if (unlikely(PageSwapCache(page)))
1221 		return __page_file_index(page);
1222 	return page->index;
1223 }
1224 
1225 bool page_mapped(struct page *page);
1226 struct address_space *page_mapping(struct page *page);
1227 struct address_space *page_mapping_file(struct page *page);
1228 
1229 /*
1230  * Return true only if the page has been allocated with
1231  * ALLOC_NO_WATERMARKS and the low watermark was not
1232  * met implying that the system is under some pressure.
1233  */
1234 static inline bool page_is_pfmemalloc(struct page *page)
1235 {
1236 	/*
1237 	 * Page index cannot be this large so this must be
1238 	 * a pfmemalloc page.
1239 	 */
1240 	return page->index == -1UL;
1241 }
1242 
1243 /*
1244  * Only to be called by the page allocator on a freshly allocated
1245  * page.
1246  */
1247 static inline void set_page_pfmemalloc(struct page *page)
1248 {
1249 	page->index = -1UL;
1250 }
1251 
1252 static inline void clear_page_pfmemalloc(struct page *page)
1253 {
1254 	page->index = 0;
1255 }
1256 
1257 /*
1258  * Different kinds of faults, as returned by handle_mm_fault().
1259  * Used to decide whether a process gets delivered SIGBUS or
1260  * just gets major/minor fault counters bumped up.
1261  */
1262 
1263 #define VM_FAULT_OOM	0x0001
1264 #define VM_FAULT_SIGBUS	0x0002
1265 #define VM_FAULT_MAJOR	0x0004
1266 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1267 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1268 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1269 #define VM_FAULT_SIGSEGV 0x0040
1270 
1271 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1272 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1273 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1274 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1275 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1276 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1277 					 * and needs fsync() to complete (for
1278 					 * synchronous page faults in DAX) */
1279 
1280 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1281 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1282 			 VM_FAULT_FALLBACK)
1283 
1284 #define VM_FAULT_RESULT_TRACE \
1285 	{ VM_FAULT_OOM,			"OOM" }, \
1286 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1287 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1288 	{ VM_FAULT_WRITE,		"WRITE" }, \
1289 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1290 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1291 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1292 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1293 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1294 	{ VM_FAULT_RETRY,		"RETRY" }, \
1295 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1296 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1297 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1298 
1299 /* Encode hstate index for a hwpoisoned large page */
1300 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1301 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1302 
1303 /*
1304  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1305  */
1306 extern void pagefault_out_of_memory(void);
1307 
1308 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1309 
1310 /*
1311  * Flags passed to show_mem() and show_free_areas() to suppress output in
1312  * various contexts.
1313  */
1314 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1315 
1316 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1317 
1318 extern bool can_do_mlock(void);
1319 extern int user_shm_lock(size_t, struct user_struct *);
1320 extern void user_shm_unlock(size_t, struct user_struct *);
1321 
1322 /*
1323  * Parameter block passed down to zap_pte_range in exceptional cases.
1324  */
1325 struct zap_details {
1326 	struct address_space *check_mapping;	/* Check page->mapping if set */
1327 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1328 	pgoff_t last_index;			/* Highest page->index to unmap */
1329 };
1330 
1331 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1332 			     pte_t pte, bool with_public_device);
1333 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1334 
1335 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1336 				pmd_t pmd);
1337 
1338 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1339 		  unsigned long size);
1340 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1341 		    unsigned long size);
1342 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1343 		unsigned long start, unsigned long end);
1344 
1345 /**
1346  * mm_walk - callbacks for walk_page_range
1347  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1348  *	       this handler should only handle pud_trans_huge() puds.
1349  *	       the pmd_entry or pte_entry callbacks will be used for
1350  *	       regular PUDs.
1351  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1352  *	       this handler is required to be able to handle
1353  *	       pmd_trans_huge() pmds.  They may simply choose to
1354  *	       split_huge_page() instead of handling it explicitly.
1355  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1356  * @pte_hole: if set, called for each hole at all levels
1357  * @hugetlb_entry: if set, called for each hugetlb entry
1358  * @test_walk: caller specific callback function to determine whether
1359  *             we walk over the current vma or not. Returning 0
1360  *             value means "do page table walk over the current vma,"
1361  *             and a negative one means "abort current page table walk
1362  *             right now." 1 means "skip the current vma."
1363  * @mm:        mm_struct representing the target process of page table walk
1364  * @vma:       vma currently walked (NULL if walking outside vmas)
1365  * @private:   private data for callbacks' usage
1366  *
1367  * (see the comment on walk_page_range() for more details)
1368  */
1369 struct mm_walk {
1370 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1371 			 unsigned long next, struct mm_walk *walk);
1372 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1373 			 unsigned long next, struct mm_walk *walk);
1374 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1375 			 unsigned long next, struct mm_walk *walk);
1376 	int (*pte_hole)(unsigned long addr, unsigned long next,
1377 			struct mm_walk *walk);
1378 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1379 			     unsigned long addr, unsigned long next,
1380 			     struct mm_walk *walk);
1381 	int (*test_walk)(unsigned long addr, unsigned long next,
1382 			struct mm_walk *walk);
1383 	struct mm_struct *mm;
1384 	struct vm_area_struct *vma;
1385 	void *private;
1386 };
1387 
1388 int walk_page_range(unsigned long addr, unsigned long end,
1389 		struct mm_walk *walk);
1390 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1391 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1392 		unsigned long end, unsigned long floor, unsigned long ceiling);
1393 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1394 			struct vm_area_struct *vma);
1395 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1396 			     unsigned long *start, unsigned long *end,
1397 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1398 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1399 	unsigned long *pfn);
1400 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1401 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1403 			void *buf, int len, int write);
1404 
1405 extern void truncate_pagecache(struct inode *inode, loff_t new);
1406 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1407 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1408 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1409 int truncate_inode_page(struct address_space *mapping, struct page *page);
1410 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1411 int invalidate_inode_page(struct page *page);
1412 
1413 #ifdef CONFIG_MMU
1414 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1415 		unsigned int flags);
1416 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1417 			    unsigned long address, unsigned int fault_flags,
1418 			    bool *unlocked);
1419 void unmap_mapping_pages(struct address_space *mapping,
1420 		pgoff_t start, pgoff_t nr, bool even_cows);
1421 void unmap_mapping_range(struct address_space *mapping,
1422 		loff_t const holebegin, loff_t const holelen, int even_cows);
1423 #else
1424 static inline int handle_mm_fault(struct vm_area_struct *vma,
1425 		unsigned long address, unsigned int flags)
1426 {
1427 	/* should never happen if there's no MMU */
1428 	BUG();
1429 	return VM_FAULT_SIGBUS;
1430 }
1431 static inline int fixup_user_fault(struct task_struct *tsk,
1432 		struct mm_struct *mm, unsigned long address,
1433 		unsigned int fault_flags, bool *unlocked)
1434 {
1435 	/* should never happen if there's no MMU */
1436 	BUG();
1437 	return -EFAULT;
1438 }
1439 static inline void unmap_mapping_pages(struct address_space *mapping,
1440 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1441 static inline void unmap_mapping_range(struct address_space *mapping,
1442 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1443 #endif
1444 
1445 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1446 		loff_t const holebegin, loff_t const holelen)
1447 {
1448 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1449 }
1450 
1451 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1452 		void *buf, int len, unsigned int gup_flags);
1453 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1454 		void *buf, int len, unsigned int gup_flags);
1455 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1456 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1457 
1458 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1459 			    unsigned long start, unsigned long nr_pages,
1460 			    unsigned int gup_flags, struct page **pages,
1461 			    struct vm_area_struct **vmas, int *locked);
1462 long get_user_pages(unsigned long start, unsigned long nr_pages,
1463 			    unsigned int gup_flags, struct page **pages,
1464 			    struct vm_area_struct **vmas);
1465 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1466 		    unsigned int gup_flags, struct page **pages, int *locked);
1467 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1468 		    struct page **pages, unsigned int gup_flags);
1469 #ifdef CONFIG_FS_DAX
1470 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1471 			    unsigned int gup_flags, struct page **pages,
1472 			    struct vm_area_struct **vmas);
1473 #else
1474 static inline long get_user_pages_longterm(unsigned long start,
1475 		unsigned long nr_pages, unsigned int gup_flags,
1476 		struct page **pages, struct vm_area_struct **vmas)
1477 {
1478 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1479 }
1480 #endif /* CONFIG_FS_DAX */
1481 
1482 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1483 			struct page **pages);
1484 
1485 /* Container for pinned pfns / pages */
1486 struct frame_vector {
1487 	unsigned int nr_allocated;	/* Number of frames we have space for */
1488 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1489 	bool got_ref;		/* Did we pin pages by getting page ref? */
1490 	bool is_pfns;		/* Does array contain pages or pfns? */
1491 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1492 				 * pfns_vector_pages() or pfns_vector_pfns()
1493 				 * for access */
1494 };
1495 
1496 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1497 void frame_vector_destroy(struct frame_vector *vec);
1498 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1499 		     unsigned int gup_flags, struct frame_vector *vec);
1500 void put_vaddr_frames(struct frame_vector *vec);
1501 int frame_vector_to_pages(struct frame_vector *vec);
1502 void frame_vector_to_pfns(struct frame_vector *vec);
1503 
1504 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1505 {
1506 	return vec->nr_frames;
1507 }
1508 
1509 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1510 {
1511 	if (vec->is_pfns) {
1512 		int err = frame_vector_to_pages(vec);
1513 
1514 		if (err)
1515 			return ERR_PTR(err);
1516 	}
1517 	return (struct page **)(vec->ptrs);
1518 }
1519 
1520 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1521 {
1522 	if (!vec->is_pfns)
1523 		frame_vector_to_pfns(vec);
1524 	return (unsigned long *)(vec->ptrs);
1525 }
1526 
1527 struct kvec;
1528 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1529 			struct page **pages);
1530 int get_kernel_page(unsigned long start, int write, struct page **pages);
1531 struct page *get_dump_page(unsigned long addr);
1532 
1533 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1534 extern void do_invalidatepage(struct page *page, unsigned int offset,
1535 			      unsigned int length);
1536 
1537 void __set_page_dirty(struct page *, struct address_space *, int warn);
1538 int __set_page_dirty_nobuffers(struct page *page);
1539 int __set_page_dirty_no_writeback(struct page *page);
1540 int redirty_page_for_writepage(struct writeback_control *wbc,
1541 				struct page *page);
1542 void account_page_dirtied(struct page *page, struct address_space *mapping);
1543 void account_page_cleaned(struct page *page, struct address_space *mapping,
1544 			  struct bdi_writeback *wb);
1545 int set_page_dirty(struct page *page);
1546 int set_page_dirty_lock(struct page *page);
1547 void __cancel_dirty_page(struct page *page);
1548 static inline void cancel_dirty_page(struct page *page)
1549 {
1550 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1551 	if (PageDirty(page))
1552 		__cancel_dirty_page(page);
1553 }
1554 int clear_page_dirty_for_io(struct page *page);
1555 
1556 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1557 
1558 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1559 {
1560 	return !vma->vm_ops;
1561 }
1562 
1563 #ifdef CONFIG_SHMEM
1564 /*
1565  * The vma_is_shmem is not inline because it is used only by slow
1566  * paths in userfault.
1567  */
1568 bool vma_is_shmem(struct vm_area_struct *vma);
1569 #else
1570 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1571 #endif
1572 
1573 int vma_is_stack_for_current(struct vm_area_struct *vma);
1574 
1575 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1576 		unsigned long old_addr, struct vm_area_struct *new_vma,
1577 		unsigned long new_addr, unsigned long len,
1578 		bool need_rmap_locks);
1579 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1580 			      unsigned long end, pgprot_t newprot,
1581 			      int dirty_accountable, int prot_numa);
1582 extern int mprotect_fixup(struct vm_area_struct *vma,
1583 			  struct vm_area_struct **pprev, unsigned long start,
1584 			  unsigned long end, unsigned long newflags);
1585 
1586 /*
1587  * doesn't attempt to fault and will return short.
1588  */
1589 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1590 			  struct page **pages);
1591 /*
1592  * per-process(per-mm_struct) statistics.
1593  */
1594 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1595 {
1596 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1597 
1598 #ifdef SPLIT_RSS_COUNTING
1599 	/*
1600 	 * counter is updated in asynchronous manner and may go to minus.
1601 	 * But it's never be expected number for users.
1602 	 */
1603 	if (val < 0)
1604 		val = 0;
1605 #endif
1606 	return (unsigned long)val;
1607 }
1608 
1609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1610 {
1611 	atomic_long_add(value, &mm->rss_stat.count[member]);
1612 }
1613 
1614 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1615 {
1616 	atomic_long_inc(&mm->rss_stat.count[member]);
1617 }
1618 
1619 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1620 {
1621 	atomic_long_dec(&mm->rss_stat.count[member]);
1622 }
1623 
1624 /* Optimized variant when page is already known not to be PageAnon */
1625 static inline int mm_counter_file(struct page *page)
1626 {
1627 	if (PageSwapBacked(page))
1628 		return MM_SHMEMPAGES;
1629 	return MM_FILEPAGES;
1630 }
1631 
1632 static inline int mm_counter(struct page *page)
1633 {
1634 	if (PageAnon(page))
1635 		return MM_ANONPAGES;
1636 	return mm_counter_file(page);
1637 }
1638 
1639 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1640 {
1641 	return get_mm_counter(mm, MM_FILEPAGES) +
1642 		get_mm_counter(mm, MM_ANONPAGES) +
1643 		get_mm_counter(mm, MM_SHMEMPAGES);
1644 }
1645 
1646 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1647 {
1648 	return max(mm->hiwater_rss, get_mm_rss(mm));
1649 }
1650 
1651 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1652 {
1653 	return max(mm->hiwater_vm, mm->total_vm);
1654 }
1655 
1656 static inline void update_hiwater_rss(struct mm_struct *mm)
1657 {
1658 	unsigned long _rss = get_mm_rss(mm);
1659 
1660 	if ((mm)->hiwater_rss < _rss)
1661 		(mm)->hiwater_rss = _rss;
1662 }
1663 
1664 static inline void update_hiwater_vm(struct mm_struct *mm)
1665 {
1666 	if (mm->hiwater_vm < mm->total_vm)
1667 		mm->hiwater_vm = mm->total_vm;
1668 }
1669 
1670 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1671 {
1672 	mm->hiwater_rss = get_mm_rss(mm);
1673 }
1674 
1675 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1676 					 struct mm_struct *mm)
1677 {
1678 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1679 
1680 	if (*maxrss < hiwater_rss)
1681 		*maxrss = hiwater_rss;
1682 }
1683 
1684 #if defined(SPLIT_RSS_COUNTING)
1685 void sync_mm_rss(struct mm_struct *mm);
1686 #else
1687 static inline void sync_mm_rss(struct mm_struct *mm)
1688 {
1689 }
1690 #endif
1691 
1692 #ifndef __HAVE_ARCH_PTE_DEVMAP
1693 static inline int pte_devmap(pte_t pte)
1694 {
1695 	return 0;
1696 }
1697 #endif
1698 
1699 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1700 
1701 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1702 			       spinlock_t **ptl);
1703 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1704 				    spinlock_t **ptl)
1705 {
1706 	pte_t *ptep;
1707 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1708 	return ptep;
1709 }
1710 
1711 #ifdef __PAGETABLE_P4D_FOLDED
1712 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1713 						unsigned long address)
1714 {
1715 	return 0;
1716 }
1717 #else
1718 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1719 #endif
1720 
1721 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1722 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1723 						unsigned long address)
1724 {
1725 	return 0;
1726 }
1727 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1728 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1729 
1730 #else
1731 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1732 
1733 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1734 {
1735 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1736 }
1737 
1738 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1739 {
1740 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1741 }
1742 #endif
1743 
1744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1746 						unsigned long address)
1747 {
1748 	return 0;
1749 }
1750 
1751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1753 
1754 #else
1755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1756 
1757 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1758 {
1759 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1760 }
1761 
1762 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1763 {
1764 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1765 }
1766 #endif
1767 
1768 #ifdef CONFIG_MMU
1769 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1770 {
1771 	atomic_long_set(&mm->pgtables_bytes, 0);
1772 }
1773 
1774 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1775 {
1776 	return atomic_long_read(&mm->pgtables_bytes);
1777 }
1778 
1779 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1780 {
1781 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1782 }
1783 
1784 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1785 {
1786 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1787 }
1788 #else
1789 
1790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1791 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1792 {
1793 	return 0;
1794 }
1795 
1796 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1797 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1798 #endif
1799 
1800 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1801 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1802 
1803 /*
1804  * The following ifdef needed to get the 4level-fixup.h header to work.
1805  * Remove it when 4level-fixup.h has been removed.
1806  */
1807 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1808 
1809 #ifndef __ARCH_HAS_5LEVEL_HACK
1810 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1811 		unsigned long address)
1812 {
1813 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1814 		NULL : p4d_offset(pgd, address);
1815 }
1816 
1817 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1818 		unsigned long address)
1819 {
1820 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1821 		NULL : pud_offset(p4d, address);
1822 }
1823 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1824 
1825 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1826 {
1827 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1828 		NULL: pmd_offset(pud, address);
1829 }
1830 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1831 
1832 #if USE_SPLIT_PTE_PTLOCKS
1833 #if ALLOC_SPLIT_PTLOCKS
1834 void __init ptlock_cache_init(void);
1835 extern bool ptlock_alloc(struct page *page);
1836 extern void ptlock_free(struct page *page);
1837 
1838 static inline spinlock_t *ptlock_ptr(struct page *page)
1839 {
1840 	return page->ptl;
1841 }
1842 #else /* ALLOC_SPLIT_PTLOCKS */
1843 static inline void ptlock_cache_init(void)
1844 {
1845 }
1846 
1847 static inline bool ptlock_alloc(struct page *page)
1848 {
1849 	return true;
1850 }
1851 
1852 static inline void ptlock_free(struct page *page)
1853 {
1854 }
1855 
1856 static inline spinlock_t *ptlock_ptr(struct page *page)
1857 {
1858 	return &page->ptl;
1859 }
1860 #endif /* ALLOC_SPLIT_PTLOCKS */
1861 
1862 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1863 {
1864 	return ptlock_ptr(pmd_page(*pmd));
1865 }
1866 
1867 static inline bool ptlock_init(struct page *page)
1868 {
1869 	/*
1870 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1871 	 * with 0. Make sure nobody took it in use in between.
1872 	 *
1873 	 * It can happen if arch try to use slab for page table allocation:
1874 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1875 	 */
1876 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1877 	if (!ptlock_alloc(page))
1878 		return false;
1879 	spin_lock_init(ptlock_ptr(page));
1880 	return true;
1881 }
1882 
1883 /* Reset page->mapping so free_pages_check won't complain. */
1884 static inline void pte_lock_deinit(struct page *page)
1885 {
1886 	page->mapping = NULL;
1887 	ptlock_free(page);
1888 }
1889 
1890 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1891 /*
1892  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1893  */
1894 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1895 {
1896 	return &mm->page_table_lock;
1897 }
1898 static inline void ptlock_cache_init(void) {}
1899 static inline bool ptlock_init(struct page *page) { return true; }
1900 static inline void pte_lock_deinit(struct page *page) {}
1901 #endif /* USE_SPLIT_PTE_PTLOCKS */
1902 
1903 static inline void pgtable_init(void)
1904 {
1905 	ptlock_cache_init();
1906 	pgtable_cache_init();
1907 }
1908 
1909 static inline bool pgtable_page_ctor(struct page *page)
1910 {
1911 	if (!ptlock_init(page))
1912 		return false;
1913 	__SetPageTable(page);
1914 	inc_zone_page_state(page, NR_PAGETABLE);
1915 	return true;
1916 }
1917 
1918 static inline void pgtable_page_dtor(struct page *page)
1919 {
1920 	pte_lock_deinit(page);
1921 	__ClearPageTable(page);
1922 	dec_zone_page_state(page, NR_PAGETABLE);
1923 }
1924 
1925 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1926 ({							\
1927 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1928 	pte_t *__pte = pte_offset_map(pmd, address);	\
1929 	*(ptlp) = __ptl;				\
1930 	spin_lock(__ptl);				\
1931 	__pte;						\
1932 })
1933 
1934 #define pte_unmap_unlock(pte, ptl)	do {		\
1935 	spin_unlock(ptl);				\
1936 	pte_unmap(pte);					\
1937 } while (0)
1938 
1939 #define pte_alloc(mm, pmd, address)			\
1940 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1941 
1942 #define pte_alloc_map(mm, pmd, address)			\
1943 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1944 
1945 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1946 	(pte_alloc(mm, pmd, address) ?			\
1947 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1948 
1949 #define pte_alloc_kernel(pmd, address)			\
1950 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1951 		NULL: pte_offset_kernel(pmd, address))
1952 
1953 #if USE_SPLIT_PMD_PTLOCKS
1954 
1955 static struct page *pmd_to_page(pmd_t *pmd)
1956 {
1957 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1958 	return virt_to_page((void *)((unsigned long) pmd & mask));
1959 }
1960 
1961 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1962 {
1963 	return ptlock_ptr(pmd_to_page(pmd));
1964 }
1965 
1966 static inline bool pgtable_pmd_page_ctor(struct page *page)
1967 {
1968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1969 	page->pmd_huge_pte = NULL;
1970 #endif
1971 	return ptlock_init(page);
1972 }
1973 
1974 static inline void pgtable_pmd_page_dtor(struct page *page)
1975 {
1976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1977 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1978 #endif
1979 	ptlock_free(page);
1980 }
1981 
1982 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1983 
1984 #else
1985 
1986 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1987 {
1988 	return &mm->page_table_lock;
1989 }
1990 
1991 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1992 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1993 
1994 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1995 
1996 #endif
1997 
1998 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1999 {
2000 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2001 	spin_lock(ptl);
2002 	return ptl;
2003 }
2004 
2005 /*
2006  * No scalability reason to split PUD locks yet, but follow the same pattern
2007  * as the PMD locks to make it easier if we decide to.  The VM should not be
2008  * considered ready to switch to split PUD locks yet; there may be places
2009  * which need to be converted from page_table_lock.
2010  */
2011 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2012 {
2013 	return &mm->page_table_lock;
2014 }
2015 
2016 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2017 {
2018 	spinlock_t *ptl = pud_lockptr(mm, pud);
2019 
2020 	spin_lock(ptl);
2021 	return ptl;
2022 }
2023 
2024 extern void __init pagecache_init(void);
2025 extern void free_area_init(unsigned long * zones_size);
2026 extern void free_area_init_node(int nid, unsigned long * zones_size,
2027 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2028 extern void free_initmem(void);
2029 
2030 /*
2031  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2032  * into the buddy system. The freed pages will be poisoned with pattern
2033  * "poison" if it's within range [0, UCHAR_MAX].
2034  * Return pages freed into the buddy system.
2035  */
2036 extern unsigned long free_reserved_area(void *start, void *end,
2037 					int poison, char *s);
2038 
2039 #ifdef	CONFIG_HIGHMEM
2040 /*
2041  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2042  * and totalram_pages.
2043  */
2044 extern void free_highmem_page(struct page *page);
2045 #endif
2046 
2047 extern void adjust_managed_page_count(struct page *page, long count);
2048 extern void mem_init_print_info(const char *str);
2049 
2050 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2051 
2052 /* Free the reserved page into the buddy system, so it gets managed. */
2053 static inline void __free_reserved_page(struct page *page)
2054 {
2055 	ClearPageReserved(page);
2056 	init_page_count(page);
2057 	__free_page(page);
2058 }
2059 
2060 static inline void free_reserved_page(struct page *page)
2061 {
2062 	__free_reserved_page(page);
2063 	adjust_managed_page_count(page, 1);
2064 }
2065 
2066 static inline void mark_page_reserved(struct page *page)
2067 {
2068 	SetPageReserved(page);
2069 	adjust_managed_page_count(page, -1);
2070 }
2071 
2072 /*
2073  * Default method to free all the __init memory into the buddy system.
2074  * The freed pages will be poisoned with pattern "poison" if it's within
2075  * range [0, UCHAR_MAX].
2076  * Return pages freed into the buddy system.
2077  */
2078 static inline unsigned long free_initmem_default(int poison)
2079 {
2080 	extern char __init_begin[], __init_end[];
2081 
2082 	return free_reserved_area(&__init_begin, &__init_end,
2083 				  poison, "unused kernel");
2084 }
2085 
2086 static inline unsigned long get_num_physpages(void)
2087 {
2088 	int nid;
2089 	unsigned long phys_pages = 0;
2090 
2091 	for_each_online_node(nid)
2092 		phys_pages += node_present_pages(nid);
2093 
2094 	return phys_pages;
2095 }
2096 
2097 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2098 /*
2099  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2100  * zones, allocate the backing mem_map and account for memory holes in a more
2101  * architecture independent manner. This is a substitute for creating the
2102  * zone_sizes[] and zholes_size[] arrays and passing them to
2103  * free_area_init_node()
2104  *
2105  * An architecture is expected to register range of page frames backed by
2106  * physical memory with memblock_add[_node]() before calling
2107  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2108  * usage, an architecture is expected to do something like
2109  *
2110  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2111  * 							 max_highmem_pfn};
2112  * for_each_valid_physical_page_range()
2113  * 	memblock_add_node(base, size, nid)
2114  * free_area_init_nodes(max_zone_pfns);
2115  *
2116  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2117  * registered physical page range.  Similarly
2118  * sparse_memory_present_with_active_regions() calls memory_present() for
2119  * each range when SPARSEMEM is enabled.
2120  *
2121  * See mm/page_alloc.c for more information on each function exposed by
2122  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2123  */
2124 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2125 unsigned long node_map_pfn_alignment(void);
2126 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2127 						unsigned long end_pfn);
2128 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2129 						unsigned long end_pfn);
2130 extern void get_pfn_range_for_nid(unsigned int nid,
2131 			unsigned long *start_pfn, unsigned long *end_pfn);
2132 extern unsigned long find_min_pfn_with_active_regions(void);
2133 extern void free_bootmem_with_active_regions(int nid,
2134 						unsigned long max_low_pfn);
2135 extern void sparse_memory_present_with_active_regions(int nid);
2136 
2137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2138 
2139 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2140     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2141 static inline int __early_pfn_to_nid(unsigned long pfn,
2142 					struct mminit_pfnnid_cache *state)
2143 {
2144 	return 0;
2145 }
2146 #else
2147 /* please see mm/page_alloc.c */
2148 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2149 /* there is a per-arch backend function. */
2150 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2151 					struct mminit_pfnnid_cache *state);
2152 #endif
2153 
2154 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2155 void zero_resv_unavail(void);
2156 #else
2157 static inline void zero_resv_unavail(void) {}
2158 #endif
2159 
2160 extern void set_dma_reserve(unsigned long new_dma_reserve);
2161 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2162 		enum memmap_context, struct vmem_altmap *);
2163 extern void setup_per_zone_wmarks(void);
2164 extern int __meminit init_per_zone_wmark_min(void);
2165 extern void mem_init(void);
2166 extern void __init mmap_init(void);
2167 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2168 extern long si_mem_available(void);
2169 extern void si_meminfo(struct sysinfo * val);
2170 extern void si_meminfo_node(struct sysinfo *val, int nid);
2171 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2172 extern unsigned long arch_reserved_kernel_pages(void);
2173 #endif
2174 
2175 extern __printf(3, 4)
2176 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2177 
2178 extern void setup_per_cpu_pageset(void);
2179 
2180 extern void zone_pcp_update(struct zone *zone);
2181 extern void zone_pcp_reset(struct zone *zone);
2182 
2183 /* page_alloc.c */
2184 extern int min_free_kbytes;
2185 extern int watermark_scale_factor;
2186 
2187 /* nommu.c */
2188 extern atomic_long_t mmap_pages_allocated;
2189 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2190 
2191 /* interval_tree.c */
2192 void vma_interval_tree_insert(struct vm_area_struct *node,
2193 			      struct rb_root_cached *root);
2194 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2195 				    struct vm_area_struct *prev,
2196 				    struct rb_root_cached *root);
2197 void vma_interval_tree_remove(struct vm_area_struct *node,
2198 			      struct rb_root_cached *root);
2199 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2200 				unsigned long start, unsigned long last);
2201 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2202 				unsigned long start, unsigned long last);
2203 
2204 #define vma_interval_tree_foreach(vma, root, start, last)		\
2205 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2206 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2207 
2208 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2209 				   struct rb_root_cached *root);
2210 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2211 				   struct rb_root_cached *root);
2212 struct anon_vma_chain *
2213 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2214 				  unsigned long start, unsigned long last);
2215 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2216 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2217 #ifdef CONFIG_DEBUG_VM_RB
2218 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2219 #endif
2220 
2221 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2222 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2223 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2224 
2225 /* mmap.c */
2226 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2227 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2228 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2229 	struct vm_area_struct *expand);
2230 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2231 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2232 {
2233 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2234 }
2235 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2236 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2237 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2238 	struct mempolicy *, struct vm_userfaultfd_ctx);
2239 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2240 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2241 	unsigned long addr, int new_below);
2242 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2243 	unsigned long addr, int new_below);
2244 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2245 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2246 	struct rb_node **, struct rb_node *);
2247 extern void unlink_file_vma(struct vm_area_struct *);
2248 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2249 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2250 	bool *need_rmap_locks);
2251 extern void exit_mmap(struct mm_struct *);
2252 
2253 static inline int check_data_rlimit(unsigned long rlim,
2254 				    unsigned long new,
2255 				    unsigned long start,
2256 				    unsigned long end_data,
2257 				    unsigned long start_data)
2258 {
2259 	if (rlim < RLIM_INFINITY) {
2260 		if (((new - start) + (end_data - start_data)) > rlim)
2261 			return -ENOSPC;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 extern int mm_take_all_locks(struct mm_struct *mm);
2268 extern void mm_drop_all_locks(struct mm_struct *mm);
2269 
2270 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2271 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2272 extern struct file *get_task_exe_file(struct task_struct *task);
2273 
2274 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2275 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2276 
2277 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2278 				   const struct vm_special_mapping *sm);
2279 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2280 				   unsigned long addr, unsigned long len,
2281 				   unsigned long flags,
2282 				   const struct vm_special_mapping *spec);
2283 /* This is an obsolete alternative to _install_special_mapping. */
2284 extern int install_special_mapping(struct mm_struct *mm,
2285 				   unsigned long addr, unsigned long len,
2286 				   unsigned long flags, struct page **pages);
2287 
2288 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2289 
2290 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2291 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2292 	struct list_head *uf);
2293 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2294 	unsigned long len, unsigned long prot, unsigned long flags,
2295 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2296 	struct list_head *uf);
2297 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2298 		     struct list_head *uf);
2299 
2300 static inline unsigned long
2301 do_mmap_pgoff(struct file *file, unsigned long addr,
2302 	unsigned long len, unsigned long prot, unsigned long flags,
2303 	unsigned long pgoff, unsigned long *populate,
2304 	struct list_head *uf)
2305 {
2306 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2307 }
2308 
2309 #ifdef CONFIG_MMU
2310 extern int __mm_populate(unsigned long addr, unsigned long len,
2311 			 int ignore_errors);
2312 static inline void mm_populate(unsigned long addr, unsigned long len)
2313 {
2314 	/* Ignore errors */
2315 	(void) __mm_populate(addr, len, 1);
2316 }
2317 #else
2318 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2319 #endif
2320 
2321 /* These take the mm semaphore themselves */
2322 extern int __must_check vm_brk(unsigned long, unsigned long);
2323 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2324 extern int vm_munmap(unsigned long, size_t);
2325 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2326         unsigned long, unsigned long,
2327         unsigned long, unsigned long);
2328 
2329 struct vm_unmapped_area_info {
2330 #define VM_UNMAPPED_AREA_TOPDOWN 1
2331 	unsigned long flags;
2332 	unsigned long length;
2333 	unsigned long low_limit;
2334 	unsigned long high_limit;
2335 	unsigned long align_mask;
2336 	unsigned long align_offset;
2337 };
2338 
2339 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2340 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2341 
2342 /*
2343  * Search for an unmapped address range.
2344  *
2345  * We are looking for a range that:
2346  * - does not intersect with any VMA;
2347  * - is contained within the [low_limit, high_limit) interval;
2348  * - is at least the desired size.
2349  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2350  */
2351 static inline unsigned long
2352 vm_unmapped_area(struct vm_unmapped_area_info *info)
2353 {
2354 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2355 		return unmapped_area_topdown(info);
2356 	else
2357 		return unmapped_area(info);
2358 }
2359 
2360 /* truncate.c */
2361 extern void truncate_inode_pages(struct address_space *, loff_t);
2362 extern void truncate_inode_pages_range(struct address_space *,
2363 				       loff_t lstart, loff_t lend);
2364 extern void truncate_inode_pages_final(struct address_space *);
2365 
2366 /* generic vm_area_ops exported for stackable file systems */
2367 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2368 extern void filemap_map_pages(struct vm_fault *vmf,
2369 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2370 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2371 
2372 /* mm/page-writeback.c */
2373 int __must_check write_one_page(struct page *page);
2374 void task_dirty_inc(struct task_struct *tsk);
2375 
2376 /* readahead.c */
2377 #define VM_MAX_READAHEAD	128	/* kbytes */
2378 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2379 
2380 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2381 			pgoff_t offset, unsigned long nr_to_read);
2382 
2383 void page_cache_sync_readahead(struct address_space *mapping,
2384 			       struct file_ra_state *ra,
2385 			       struct file *filp,
2386 			       pgoff_t offset,
2387 			       unsigned long size);
2388 
2389 void page_cache_async_readahead(struct address_space *mapping,
2390 				struct file_ra_state *ra,
2391 				struct file *filp,
2392 				struct page *pg,
2393 				pgoff_t offset,
2394 				unsigned long size);
2395 
2396 extern unsigned long stack_guard_gap;
2397 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2398 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2399 
2400 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2401 extern int expand_downwards(struct vm_area_struct *vma,
2402 		unsigned long address);
2403 #if VM_GROWSUP
2404 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2405 #else
2406   #define expand_upwards(vma, address) (0)
2407 #endif
2408 
2409 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2410 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2411 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2412 					     struct vm_area_struct **pprev);
2413 
2414 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2415    NULL if none.  Assume start_addr < end_addr. */
2416 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2417 {
2418 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2419 
2420 	if (vma && end_addr <= vma->vm_start)
2421 		vma = NULL;
2422 	return vma;
2423 }
2424 
2425 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2426 {
2427 	unsigned long vm_start = vma->vm_start;
2428 
2429 	if (vma->vm_flags & VM_GROWSDOWN) {
2430 		vm_start -= stack_guard_gap;
2431 		if (vm_start > vma->vm_start)
2432 			vm_start = 0;
2433 	}
2434 	return vm_start;
2435 }
2436 
2437 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2438 {
2439 	unsigned long vm_end = vma->vm_end;
2440 
2441 	if (vma->vm_flags & VM_GROWSUP) {
2442 		vm_end += stack_guard_gap;
2443 		if (vm_end < vma->vm_end)
2444 			vm_end = -PAGE_SIZE;
2445 	}
2446 	return vm_end;
2447 }
2448 
2449 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2450 {
2451 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2452 }
2453 
2454 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2455 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2456 				unsigned long vm_start, unsigned long vm_end)
2457 {
2458 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2459 
2460 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2461 		vma = NULL;
2462 
2463 	return vma;
2464 }
2465 
2466 #ifdef CONFIG_MMU
2467 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2468 void vma_set_page_prot(struct vm_area_struct *vma);
2469 #else
2470 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2471 {
2472 	return __pgprot(0);
2473 }
2474 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2475 {
2476 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2477 }
2478 #endif
2479 
2480 #ifdef CONFIG_NUMA_BALANCING
2481 unsigned long change_prot_numa(struct vm_area_struct *vma,
2482 			unsigned long start, unsigned long end);
2483 #endif
2484 
2485 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2486 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2487 			unsigned long pfn, unsigned long size, pgprot_t);
2488 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2489 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2490 			unsigned long pfn);
2491 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2492 			unsigned long pfn, pgprot_t pgprot);
2493 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2494 			pfn_t pfn);
2495 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2496 		unsigned long addr, pfn_t pfn);
2497 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2498 
2499 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2500 				unsigned long addr, struct page *page)
2501 {
2502 	int err = vm_insert_page(vma, addr, page);
2503 
2504 	if (err == -ENOMEM)
2505 		return VM_FAULT_OOM;
2506 	if (err < 0 && err != -EBUSY)
2507 		return VM_FAULT_SIGBUS;
2508 
2509 	return VM_FAULT_NOPAGE;
2510 }
2511 
2512 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2513 				unsigned long addr, pfn_t pfn)
2514 {
2515 	int err = vm_insert_mixed(vma, addr, pfn);
2516 
2517 	if (err == -ENOMEM)
2518 		return VM_FAULT_OOM;
2519 	if (err < 0 && err != -EBUSY)
2520 		return VM_FAULT_SIGBUS;
2521 
2522 	return VM_FAULT_NOPAGE;
2523 }
2524 
2525 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2526 			unsigned long addr, unsigned long pfn)
2527 {
2528 	int err = vm_insert_pfn(vma, addr, pfn);
2529 
2530 	if (err == -ENOMEM)
2531 		return VM_FAULT_OOM;
2532 	if (err < 0 && err != -EBUSY)
2533 		return VM_FAULT_SIGBUS;
2534 
2535 	return VM_FAULT_NOPAGE;
2536 }
2537 
2538 static inline vm_fault_t vmf_error(int err)
2539 {
2540 	if (err == -ENOMEM)
2541 		return VM_FAULT_OOM;
2542 	return VM_FAULT_SIGBUS;
2543 }
2544 
2545 struct page *follow_page_mask(struct vm_area_struct *vma,
2546 			      unsigned long address, unsigned int foll_flags,
2547 			      unsigned int *page_mask);
2548 
2549 static inline struct page *follow_page(struct vm_area_struct *vma,
2550 		unsigned long address, unsigned int foll_flags)
2551 {
2552 	unsigned int unused_page_mask;
2553 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2554 }
2555 
2556 #define FOLL_WRITE	0x01	/* check pte is writable */
2557 #define FOLL_TOUCH	0x02	/* mark page accessed */
2558 #define FOLL_GET	0x04	/* do get_page on page */
2559 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2560 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2561 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2562 				 * and return without waiting upon it */
2563 #define FOLL_POPULATE	0x40	/* fault in page */
2564 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2565 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2566 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2567 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2568 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2569 #define FOLL_MLOCK	0x1000	/* lock present pages */
2570 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2571 #define FOLL_COW	0x4000	/* internal GUP flag */
2572 #define FOLL_ANON	0x8000	/* don't do file mappings */
2573 
2574 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2575 {
2576 	if (vm_fault & VM_FAULT_OOM)
2577 		return -ENOMEM;
2578 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2579 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2580 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2581 		return -EFAULT;
2582 	return 0;
2583 }
2584 
2585 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2586 			void *data);
2587 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2588 			       unsigned long size, pte_fn_t fn, void *data);
2589 
2590 
2591 #ifdef CONFIG_PAGE_POISONING
2592 extern bool page_poisoning_enabled(void);
2593 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2594 #else
2595 static inline bool page_poisoning_enabled(void) { return false; }
2596 static inline void kernel_poison_pages(struct page *page, int numpages,
2597 					int enable) { }
2598 #endif
2599 
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601 extern bool _debug_pagealloc_enabled;
2602 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2603 
2604 static inline bool debug_pagealloc_enabled(void)
2605 {
2606 	return _debug_pagealloc_enabled;
2607 }
2608 
2609 static inline void
2610 kernel_map_pages(struct page *page, int numpages, int enable)
2611 {
2612 	if (!debug_pagealloc_enabled())
2613 		return;
2614 
2615 	__kernel_map_pages(page, numpages, enable);
2616 }
2617 #ifdef CONFIG_HIBERNATION
2618 extern bool kernel_page_present(struct page *page);
2619 #endif	/* CONFIG_HIBERNATION */
2620 #else	/* CONFIG_DEBUG_PAGEALLOC */
2621 static inline void
2622 kernel_map_pages(struct page *page, int numpages, int enable) {}
2623 #ifdef CONFIG_HIBERNATION
2624 static inline bool kernel_page_present(struct page *page) { return true; }
2625 #endif	/* CONFIG_HIBERNATION */
2626 static inline bool debug_pagealloc_enabled(void)
2627 {
2628 	return false;
2629 }
2630 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2631 
2632 #ifdef __HAVE_ARCH_GATE_AREA
2633 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2634 extern int in_gate_area_no_mm(unsigned long addr);
2635 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2636 #else
2637 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2638 {
2639 	return NULL;
2640 }
2641 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2642 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2643 {
2644 	return 0;
2645 }
2646 #endif	/* __HAVE_ARCH_GATE_AREA */
2647 
2648 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2649 
2650 #ifdef CONFIG_SYSCTL
2651 extern int sysctl_drop_caches;
2652 int drop_caches_sysctl_handler(struct ctl_table *, int,
2653 					void __user *, size_t *, loff_t *);
2654 #endif
2655 
2656 void drop_slab(void);
2657 void drop_slab_node(int nid);
2658 
2659 #ifndef CONFIG_MMU
2660 #define randomize_va_space 0
2661 #else
2662 extern int randomize_va_space;
2663 #endif
2664 
2665 const char * arch_vma_name(struct vm_area_struct *vma);
2666 void print_vma_addr(char *prefix, unsigned long rip);
2667 
2668 void sparse_mem_maps_populate_node(struct page **map_map,
2669 				   unsigned long pnum_begin,
2670 				   unsigned long pnum_end,
2671 				   unsigned long map_count,
2672 				   int nodeid);
2673 
2674 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2675 		struct vmem_altmap *altmap);
2676 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2677 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2678 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2679 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2680 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2681 void *vmemmap_alloc_block(unsigned long size, int node);
2682 struct vmem_altmap;
2683 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2684 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2685 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2686 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2687 			       int node);
2688 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2689 		struct vmem_altmap *altmap);
2690 void vmemmap_populate_print_last(void);
2691 #ifdef CONFIG_MEMORY_HOTPLUG
2692 void vmemmap_free(unsigned long start, unsigned long end,
2693 		struct vmem_altmap *altmap);
2694 #endif
2695 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2696 				  unsigned long nr_pages);
2697 
2698 enum mf_flags {
2699 	MF_COUNT_INCREASED = 1 << 0,
2700 	MF_ACTION_REQUIRED = 1 << 1,
2701 	MF_MUST_KILL = 1 << 2,
2702 	MF_SOFT_OFFLINE = 1 << 3,
2703 };
2704 extern int memory_failure(unsigned long pfn, int flags);
2705 extern void memory_failure_queue(unsigned long pfn, int flags);
2706 extern int unpoison_memory(unsigned long pfn);
2707 extern int get_hwpoison_page(struct page *page);
2708 #define put_hwpoison_page(page)	put_page(page)
2709 extern int sysctl_memory_failure_early_kill;
2710 extern int sysctl_memory_failure_recovery;
2711 extern void shake_page(struct page *p, int access);
2712 extern atomic_long_t num_poisoned_pages __read_mostly;
2713 extern int soft_offline_page(struct page *page, int flags);
2714 
2715 
2716 /*
2717  * Error handlers for various types of pages.
2718  */
2719 enum mf_result {
2720 	MF_IGNORED,	/* Error: cannot be handled */
2721 	MF_FAILED,	/* Error: handling failed */
2722 	MF_DELAYED,	/* Will be handled later */
2723 	MF_RECOVERED,	/* Successfully recovered */
2724 };
2725 
2726 enum mf_action_page_type {
2727 	MF_MSG_KERNEL,
2728 	MF_MSG_KERNEL_HIGH_ORDER,
2729 	MF_MSG_SLAB,
2730 	MF_MSG_DIFFERENT_COMPOUND,
2731 	MF_MSG_POISONED_HUGE,
2732 	MF_MSG_HUGE,
2733 	MF_MSG_FREE_HUGE,
2734 	MF_MSG_NON_PMD_HUGE,
2735 	MF_MSG_UNMAP_FAILED,
2736 	MF_MSG_DIRTY_SWAPCACHE,
2737 	MF_MSG_CLEAN_SWAPCACHE,
2738 	MF_MSG_DIRTY_MLOCKED_LRU,
2739 	MF_MSG_CLEAN_MLOCKED_LRU,
2740 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2741 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2742 	MF_MSG_DIRTY_LRU,
2743 	MF_MSG_CLEAN_LRU,
2744 	MF_MSG_TRUNCATED_LRU,
2745 	MF_MSG_BUDDY,
2746 	MF_MSG_BUDDY_2ND,
2747 	MF_MSG_UNKNOWN,
2748 };
2749 
2750 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2751 extern void clear_huge_page(struct page *page,
2752 			    unsigned long addr_hint,
2753 			    unsigned int pages_per_huge_page);
2754 extern void copy_user_huge_page(struct page *dst, struct page *src,
2755 				unsigned long addr, struct vm_area_struct *vma,
2756 				unsigned int pages_per_huge_page);
2757 extern long copy_huge_page_from_user(struct page *dst_page,
2758 				const void __user *usr_src,
2759 				unsigned int pages_per_huge_page,
2760 				bool allow_pagefault);
2761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2762 
2763 extern struct page_ext_operations debug_guardpage_ops;
2764 
2765 #ifdef CONFIG_DEBUG_PAGEALLOC
2766 extern unsigned int _debug_guardpage_minorder;
2767 extern bool _debug_guardpage_enabled;
2768 
2769 static inline unsigned int debug_guardpage_minorder(void)
2770 {
2771 	return _debug_guardpage_minorder;
2772 }
2773 
2774 static inline bool debug_guardpage_enabled(void)
2775 {
2776 	return _debug_guardpage_enabled;
2777 }
2778 
2779 static inline bool page_is_guard(struct page *page)
2780 {
2781 	struct page_ext *page_ext;
2782 
2783 	if (!debug_guardpage_enabled())
2784 		return false;
2785 
2786 	page_ext = lookup_page_ext(page);
2787 	if (unlikely(!page_ext))
2788 		return false;
2789 
2790 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2791 }
2792 #else
2793 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2794 static inline bool debug_guardpage_enabled(void) { return false; }
2795 static inline bool page_is_guard(struct page *page) { return false; }
2796 #endif /* CONFIG_DEBUG_PAGEALLOC */
2797 
2798 #if MAX_NUMNODES > 1
2799 void __init setup_nr_node_ids(void);
2800 #else
2801 static inline void setup_nr_node_ids(void) {}
2802 #endif
2803 
2804 #endif /* __KERNEL__ */
2805 #endif /* _LINUX_MM_H */
2806