1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 16 struct mempolicy; 17 struct anon_vma; 18 struct file_ra_state; 19 struct user_struct; 20 struct writeback_control; 21 22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23 extern unsigned long max_mapnr; 24 #endif 25 26 extern unsigned long num_physpages; 27 extern void * high_memory; 28 extern int page_cluster; 29 30 #ifdef CONFIG_SYSCTL 31 extern int sysctl_legacy_va_layout; 32 #else 33 #define sysctl_legacy_va_layout 0 34 #endif 35 36 extern unsigned long mmap_min_addr; 37 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44 /* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53 extern struct kmem_cache *vm_area_cachep; 54 55 /* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60 struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63 }; 64 65 #ifndef CONFIG_MMU 66 extern struct rb_root nommu_vma_tree; 67 extern struct rw_semaphore nommu_vma_sem; 68 69 extern unsigned int kobjsize(const void *objp); 70 #endif 71 72 /* 73 * vm_flags.. 74 */ 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_GROWSUP 0x00000200 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 111 112 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 113 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 114 #endif 115 116 #ifdef CONFIG_STACK_GROWSUP 117 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 118 #else 119 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 120 #endif 121 122 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 123 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 124 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 125 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 126 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 127 128 /* 129 * mapping from the currently active vm_flags protection bits (the 130 * low four bits) to a page protection mask.. 131 */ 132 extern pgprot_t protection_map[16]; 133 134 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 135 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 136 137 138 /* 139 * vm_fault is filled by the the pagefault handler and passed to the vma's 140 * ->fault function. The vma's ->fault is responsible for returning a bitmask 141 * of VM_FAULT_xxx flags that give details about how the fault was handled. 142 * 143 * pgoff should be used in favour of virtual_address, if possible. If pgoff 144 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 145 * mapping support. 146 */ 147 struct vm_fault { 148 unsigned int flags; /* FAULT_FLAG_xxx flags */ 149 pgoff_t pgoff; /* Logical page offset based on vma */ 150 void __user *virtual_address; /* Faulting virtual address */ 151 152 struct page *page; /* ->fault handlers should return a 153 * page here, unless VM_FAULT_NOPAGE 154 * is set (which is also implied by 155 * VM_FAULT_ERROR). 156 */ 157 }; 158 159 /* 160 * These are the virtual MM functions - opening of an area, closing and 161 * unmapping it (needed to keep files on disk up-to-date etc), pointer 162 * to the functions called when a no-page or a wp-page exception occurs. 163 */ 164 struct vm_operations_struct { 165 void (*open)(struct vm_area_struct * area); 166 void (*close)(struct vm_area_struct * area); 167 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 168 unsigned long (*nopfn)(struct vm_area_struct *area, 169 unsigned long address); 170 171 /* notification that a previously read-only page is about to become 172 * writable, if an error is returned it will cause a SIGBUS */ 173 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 174 #ifdef CONFIG_NUMA 175 /* 176 * set_policy() op must add a reference to any non-NULL @new mempolicy 177 * to hold the policy upon return. Caller should pass NULL @new to 178 * remove a policy and fall back to surrounding context--i.e. do not 179 * install a MPOL_DEFAULT policy, nor the task or system default 180 * mempolicy. 181 */ 182 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 183 184 /* 185 * get_policy() op must add reference [mpol_get()] to any policy at 186 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 187 * in mm/mempolicy.c will do this automatically. 188 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 189 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 190 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 191 * must return NULL--i.e., do not "fallback" to task or system default 192 * policy. 193 */ 194 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 195 unsigned long addr); 196 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 197 const nodemask_t *to, unsigned long flags); 198 #endif 199 }; 200 201 struct mmu_gather; 202 struct inode; 203 204 #define page_private(page) ((page)->private) 205 #define set_page_private(page, v) ((page)->private = (v)) 206 207 /* 208 * FIXME: take this include out, include page-flags.h in 209 * files which need it (119 of them) 210 */ 211 #include <linux/page-flags.h> 212 213 #ifdef CONFIG_DEBUG_VM 214 #define VM_BUG_ON(cond) BUG_ON(cond) 215 #else 216 #define VM_BUG_ON(condition) do { } while(0) 217 #endif 218 219 /* 220 * Methods to modify the page usage count. 221 * 222 * What counts for a page usage: 223 * - cache mapping (page->mapping) 224 * - private data (page->private) 225 * - page mapped in a task's page tables, each mapping 226 * is counted separately 227 * 228 * Also, many kernel routines increase the page count before a critical 229 * routine so they can be sure the page doesn't go away from under them. 230 */ 231 232 /* 233 * Drop a ref, return true if the refcount fell to zero (the page has no users) 234 */ 235 static inline int put_page_testzero(struct page *page) 236 { 237 VM_BUG_ON(atomic_read(&page->_count) == 0); 238 return atomic_dec_and_test(&page->_count); 239 } 240 241 /* 242 * Try to grab a ref unless the page has a refcount of zero, return false if 243 * that is the case. 244 */ 245 static inline int get_page_unless_zero(struct page *page) 246 { 247 VM_BUG_ON(PageTail(page)); 248 return atomic_inc_not_zero(&page->_count); 249 } 250 251 /* Support for virtually mapped pages */ 252 struct page *vmalloc_to_page(const void *addr); 253 unsigned long vmalloc_to_pfn(const void *addr); 254 255 /* 256 * Determine if an address is within the vmalloc range 257 * 258 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 259 * is no special casing required. 260 */ 261 static inline int is_vmalloc_addr(const void *x) 262 { 263 #ifdef CONFIG_MMU 264 unsigned long addr = (unsigned long)x; 265 266 return addr >= VMALLOC_START && addr < VMALLOC_END; 267 #else 268 return 0; 269 #endif 270 } 271 272 static inline struct page *compound_head(struct page *page) 273 { 274 if (unlikely(PageTail(page))) 275 return page->first_page; 276 return page; 277 } 278 279 static inline int page_count(struct page *page) 280 { 281 return atomic_read(&compound_head(page)->_count); 282 } 283 284 static inline void get_page(struct page *page) 285 { 286 page = compound_head(page); 287 VM_BUG_ON(atomic_read(&page->_count) == 0); 288 atomic_inc(&page->_count); 289 } 290 291 static inline struct page *virt_to_head_page(const void *x) 292 { 293 struct page *page = virt_to_page(x); 294 return compound_head(page); 295 } 296 297 /* 298 * Setup the page count before being freed into the page allocator for 299 * the first time (boot or memory hotplug) 300 */ 301 static inline void init_page_count(struct page *page) 302 { 303 atomic_set(&page->_count, 1); 304 } 305 306 void put_page(struct page *page); 307 void put_pages_list(struct list_head *pages); 308 309 void split_page(struct page *page, unsigned int order); 310 311 /* 312 * Compound pages have a destructor function. Provide a 313 * prototype for that function and accessor functions. 314 * These are _only_ valid on the head of a PG_compound page. 315 */ 316 typedef void compound_page_dtor(struct page *); 317 318 static inline void set_compound_page_dtor(struct page *page, 319 compound_page_dtor *dtor) 320 { 321 page[1].lru.next = (void *)dtor; 322 } 323 324 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 325 { 326 return (compound_page_dtor *)page[1].lru.next; 327 } 328 329 static inline int compound_order(struct page *page) 330 { 331 if (!PageHead(page)) 332 return 0; 333 return (unsigned long)page[1].lru.prev; 334 } 335 336 static inline void set_compound_order(struct page *page, unsigned long order) 337 { 338 page[1].lru.prev = (void *)order; 339 } 340 341 /* 342 * Multiple processes may "see" the same page. E.g. for untouched 343 * mappings of /dev/null, all processes see the same page full of 344 * zeroes, and text pages of executables and shared libraries have 345 * only one copy in memory, at most, normally. 346 * 347 * For the non-reserved pages, page_count(page) denotes a reference count. 348 * page_count() == 0 means the page is free. page->lru is then used for 349 * freelist management in the buddy allocator. 350 * page_count() > 0 means the page has been allocated. 351 * 352 * Pages are allocated by the slab allocator in order to provide memory 353 * to kmalloc and kmem_cache_alloc. In this case, the management of the 354 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 355 * unless a particular usage is carefully commented. (the responsibility of 356 * freeing the kmalloc memory is the caller's, of course). 357 * 358 * A page may be used by anyone else who does a __get_free_page(). 359 * In this case, page_count still tracks the references, and should only 360 * be used through the normal accessor functions. The top bits of page->flags 361 * and page->virtual store page management information, but all other fields 362 * are unused and could be used privately, carefully. The management of this 363 * page is the responsibility of the one who allocated it, and those who have 364 * subsequently been given references to it. 365 * 366 * The other pages (we may call them "pagecache pages") are completely 367 * managed by the Linux memory manager: I/O, buffers, swapping etc. 368 * The following discussion applies only to them. 369 * 370 * A pagecache page contains an opaque `private' member, which belongs to the 371 * page's address_space. Usually, this is the address of a circular list of 372 * the page's disk buffers. PG_private must be set to tell the VM to call 373 * into the filesystem to release these pages. 374 * 375 * A page may belong to an inode's memory mapping. In this case, page->mapping 376 * is the pointer to the inode, and page->index is the file offset of the page, 377 * in units of PAGE_CACHE_SIZE. 378 * 379 * If pagecache pages are not associated with an inode, they are said to be 380 * anonymous pages. These may become associated with the swapcache, and in that 381 * case PG_swapcache is set, and page->private is an offset into the swapcache. 382 * 383 * In either case (swapcache or inode backed), the pagecache itself holds one 384 * reference to the page. Setting PG_private should also increment the 385 * refcount. The each user mapping also has a reference to the page. 386 * 387 * The pagecache pages are stored in a per-mapping radix tree, which is 388 * rooted at mapping->page_tree, and indexed by offset. 389 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 390 * lists, we instead now tag pages as dirty/writeback in the radix tree. 391 * 392 * All pagecache pages may be subject to I/O: 393 * - inode pages may need to be read from disk, 394 * - inode pages which have been modified and are MAP_SHARED may need 395 * to be written back to the inode on disk, 396 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 397 * modified may need to be swapped out to swap space and (later) to be read 398 * back into memory. 399 */ 400 401 /* 402 * The zone field is never updated after free_area_init_core() 403 * sets it, so none of the operations on it need to be atomic. 404 */ 405 406 407 /* 408 * page->flags layout: 409 * 410 * There are three possibilities for how page->flags get 411 * laid out. The first is for the normal case, without 412 * sparsemem. The second is for sparsemem when there is 413 * plenty of space for node and section. The last is when 414 * we have run out of space and have to fall back to an 415 * alternate (slower) way of determining the node. 416 * 417 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 418 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 419 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 420 */ 421 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 422 #define SECTIONS_WIDTH SECTIONS_SHIFT 423 #else 424 #define SECTIONS_WIDTH 0 425 #endif 426 427 #define ZONES_WIDTH ZONES_SHIFT 428 429 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 430 #define NODES_WIDTH NODES_SHIFT 431 #else 432 #ifdef CONFIG_SPARSEMEM_VMEMMAP 433 #error "Vmemmap: No space for nodes field in page flags" 434 #endif 435 #define NODES_WIDTH 0 436 #endif 437 438 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 439 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 440 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 441 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 442 443 /* 444 * We are going to use the flags for the page to node mapping if its in 445 * there. This includes the case where there is no node, so it is implicit. 446 */ 447 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 448 #define NODE_NOT_IN_PAGE_FLAGS 449 #endif 450 451 #ifndef PFN_SECTION_SHIFT 452 #define PFN_SECTION_SHIFT 0 453 #endif 454 455 /* 456 * Define the bit shifts to access each section. For non-existant 457 * sections we define the shift as 0; that plus a 0 mask ensures 458 * the compiler will optimise away reference to them. 459 */ 460 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 461 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 462 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 463 464 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 465 #ifdef NODE_NOT_IN_PAGEFLAGS 466 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 467 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 468 SECTIONS_PGOFF : ZONES_PGOFF) 469 #else 470 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 471 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 472 NODES_PGOFF : ZONES_PGOFF) 473 #endif 474 475 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 476 477 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 478 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 479 #endif 480 481 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 482 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 483 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 484 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 485 486 static inline enum zone_type page_zonenum(struct page *page) 487 { 488 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 489 } 490 491 /* 492 * The identification function is only used by the buddy allocator for 493 * determining if two pages could be buddies. We are not really 494 * identifying a zone since we could be using a the section number 495 * id if we have not node id available in page flags. 496 * We guarantee only that it will return the same value for two 497 * combinable pages in a zone. 498 */ 499 static inline int page_zone_id(struct page *page) 500 { 501 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 502 } 503 504 static inline int zone_to_nid(struct zone *zone) 505 { 506 #ifdef CONFIG_NUMA 507 return zone->node; 508 #else 509 return 0; 510 #endif 511 } 512 513 #ifdef NODE_NOT_IN_PAGE_FLAGS 514 extern int page_to_nid(struct page *page); 515 #else 516 static inline int page_to_nid(struct page *page) 517 { 518 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 519 } 520 #endif 521 522 static inline struct zone *page_zone(struct page *page) 523 { 524 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 525 } 526 527 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 528 static inline unsigned long page_to_section(struct page *page) 529 { 530 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 531 } 532 #endif 533 534 static inline void set_page_zone(struct page *page, enum zone_type zone) 535 { 536 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 537 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 538 } 539 540 static inline void set_page_node(struct page *page, unsigned long node) 541 { 542 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 543 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 544 } 545 546 static inline void set_page_section(struct page *page, unsigned long section) 547 { 548 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 549 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 550 } 551 552 static inline void set_page_links(struct page *page, enum zone_type zone, 553 unsigned long node, unsigned long pfn) 554 { 555 set_page_zone(page, zone); 556 set_page_node(page, node); 557 set_page_section(page, pfn_to_section_nr(pfn)); 558 } 559 560 /* 561 * If a hint addr is less than mmap_min_addr change hint to be as 562 * low as possible but still greater than mmap_min_addr 563 */ 564 static inline unsigned long round_hint_to_min(unsigned long hint) 565 { 566 #ifdef CONFIG_SECURITY 567 hint &= PAGE_MASK; 568 if (((void *)hint != NULL) && 569 (hint < mmap_min_addr)) 570 return PAGE_ALIGN(mmap_min_addr); 571 #endif 572 return hint; 573 } 574 575 /* 576 * Some inline functions in vmstat.h depend on page_zone() 577 */ 578 #include <linux/vmstat.h> 579 580 static __always_inline void *lowmem_page_address(struct page *page) 581 { 582 return __va(page_to_pfn(page) << PAGE_SHIFT); 583 } 584 585 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 586 #define HASHED_PAGE_VIRTUAL 587 #endif 588 589 #if defined(WANT_PAGE_VIRTUAL) 590 #define page_address(page) ((page)->virtual) 591 #define set_page_address(page, address) \ 592 do { \ 593 (page)->virtual = (address); \ 594 } while(0) 595 #define page_address_init() do { } while(0) 596 #endif 597 598 #if defined(HASHED_PAGE_VIRTUAL) 599 void *page_address(struct page *page); 600 void set_page_address(struct page *page, void *virtual); 601 void page_address_init(void); 602 #endif 603 604 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 605 #define page_address(page) lowmem_page_address(page) 606 #define set_page_address(page, address) do { } while(0) 607 #define page_address_init() do { } while(0) 608 #endif 609 610 /* 611 * On an anonymous page mapped into a user virtual memory area, 612 * page->mapping points to its anon_vma, not to a struct address_space; 613 * with the PAGE_MAPPING_ANON bit set to distinguish it. 614 * 615 * Please note that, confusingly, "page_mapping" refers to the inode 616 * address_space which maps the page from disk; whereas "page_mapped" 617 * refers to user virtual address space into which the page is mapped. 618 */ 619 #define PAGE_MAPPING_ANON 1 620 621 extern struct address_space swapper_space; 622 static inline struct address_space *page_mapping(struct page *page) 623 { 624 struct address_space *mapping = page->mapping; 625 626 VM_BUG_ON(PageSlab(page)); 627 #ifdef CONFIG_SWAP 628 if (unlikely(PageSwapCache(page))) 629 mapping = &swapper_space; 630 else 631 #endif 632 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 633 mapping = NULL; 634 return mapping; 635 } 636 637 static inline int PageAnon(struct page *page) 638 { 639 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 640 } 641 642 /* 643 * Return the pagecache index of the passed page. Regular pagecache pages 644 * use ->index whereas swapcache pages use ->private 645 */ 646 static inline pgoff_t page_index(struct page *page) 647 { 648 if (unlikely(PageSwapCache(page))) 649 return page_private(page); 650 return page->index; 651 } 652 653 /* 654 * The atomic page->_mapcount, like _count, starts from -1: 655 * so that transitions both from it and to it can be tracked, 656 * using atomic_inc_and_test and atomic_add_negative(-1). 657 */ 658 static inline void reset_page_mapcount(struct page *page) 659 { 660 atomic_set(&(page)->_mapcount, -1); 661 } 662 663 static inline int page_mapcount(struct page *page) 664 { 665 return atomic_read(&(page)->_mapcount) + 1; 666 } 667 668 /* 669 * Return true if this page is mapped into pagetables. 670 */ 671 static inline int page_mapped(struct page *page) 672 { 673 return atomic_read(&(page)->_mapcount) >= 0; 674 } 675 676 /* 677 * Error return values for the *_nopfn functions 678 */ 679 #define NOPFN_SIGBUS ((unsigned long) -1) 680 #define NOPFN_OOM ((unsigned long) -2) 681 #define NOPFN_REFAULT ((unsigned long) -3) 682 683 /* 684 * Different kinds of faults, as returned by handle_mm_fault(). 685 * Used to decide whether a process gets delivered SIGBUS or 686 * just gets major/minor fault counters bumped up. 687 */ 688 689 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 690 691 #define VM_FAULT_OOM 0x0001 692 #define VM_FAULT_SIGBUS 0x0002 693 #define VM_FAULT_MAJOR 0x0004 694 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 695 696 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 697 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 698 699 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 700 701 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 702 703 extern void show_free_areas(void); 704 705 #ifdef CONFIG_SHMEM 706 int shmem_lock(struct file *file, int lock, struct user_struct *user); 707 #else 708 static inline int shmem_lock(struct file *file, int lock, 709 struct user_struct *user) 710 { 711 return 0; 712 } 713 #endif 714 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 715 716 int shmem_zero_setup(struct vm_area_struct *); 717 718 #ifndef CONFIG_MMU 719 extern unsigned long shmem_get_unmapped_area(struct file *file, 720 unsigned long addr, 721 unsigned long len, 722 unsigned long pgoff, 723 unsigned long flags); 724 #endif 725 726 extern int can_do_mlock(void); 727 extern int user_shm_lock(size_t, struct user_struct *); 728 extern void user_shm_unlock(size_t, struct user_struct *); 729 730 /* 731 * Parameter block passed down to zap_pte_range in exceptional cases. 732 */ 733 struct zap_details { 734 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 735 struct address_space *check_mapping; /* Check page->mapping if set */ 736 pgoff_t first_index; /* Lowest page->index to unmap */ 737 pgoff_t last_index; /* Highest page->index to unmap */ 738 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 739 unsigned long truncate_count; /* Compare vm_truncate_count */ 740 }; 741 742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 pte_t pte); 744 745 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 746 unsigned long size, struct zap_details *); 747 unsigned long unmap_vmas(struct mmu_gather **tlb, 748 struct vm_area_struct *start_vma, unsigned long start_addr, 749 unsigned long end_addr, unsigned long *nr_accounted, 750 struct zap_details *); 751 752 /** 753 * mm_walk - callbacks for walk_page_range 754 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 755 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 756 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 757 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 758 * @pte_hole: if set, called for each hole at all levels 759 * 760 * (see walk_page_range for more details) 761 */ 762 struct mm_walk { 763 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *); 764 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *); 765 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *); 766 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *); 767 int (*pte_hole)(unsigned long, unsigned long, void *); 768 }; 769 770 int walk_page_range(const struct mm_struct *, unsigned long addr, 771 unsigned long end, const struct mm_walk *walk, 772 void *private); 773 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 774 unsigned long end, unsigned long floor, unsigned long ceiling); 775 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 776 unsigned long floor, unsigned long ceiling); 777 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 778 struct vm_area_struct *vma); 779 void unmap_mapping_range(struct address_space *mapping, 780 loff_t const holebegin, loff_t const holelen, int even_cows); 781 782 static inline void unmap_shared_mapping_range(struct address_space *mapping, 783 loff_t const holebegin, loff_t const holelen) 784 { 785 unmap_mapping_range(mapping, holebegin, holelen, 0); 786 } 787 788 extern int vmtruncate(struct inode * inode, loff_t offset); 789 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 790 791 #ifdef CONFIG_MMU 792 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 793 unsigned long address, int write_access); 794 #else 795 static inline int handle_mm_fault(struct mm_struct *mm, 796 struct vm_area_struct *vma, unsigned long address, 797 int write_access) 798 { 799 /* should never happen if there's no MMU */ 800 BUG(); 801 return VM_FAULT_SIGBUS; 802 } 803 #endif 804 805 extern int make_pages_present(unsigned long addr, unsigned long end); 806 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 807 808 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 809 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 810 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 811 812 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 813 extern void do_invalidatepage(struct page *page, unsigned long offset); 814 815 int __set_page_dirty_nobuffers(struct page *page); 816 int __set_page_dirty_no_writeback(struct page *page); 817 int redirty_page_for_writepage(struct writeback_control *wbc, 818 struct page *page); 819 int set_page_dirty(struct page *page); 820 int set_page_dirty_lock(struct page *page); 821 int clear_page_dirty_for_io(struct page *page); 822 823 extern unsigned long move_page_tables(struct vm_area_struct *vma, 824 unsigned long old_addr, struct vm_area_struct *new_vma, 825 unsigned long new_addr, unsigned long len); 826 extern unsigned long do_mremap(unsigned long addr, 827 unsigned long old_len, unsigned long new_len, 828 unsigned long flags, unsigned long new_addr); 829 extern int mprotect_fixup(struct vm_area_struct *vma, 830 struct vm_area_struct **pprev, unsigned long start, 831 unsigned long end, unsigned long newflags); 832 833 /* 834 * A callback you can register to apply pressure to ageable caches. 835 * 836 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 837 * look through the least-recently-used 'nr_to_scan' entries and 838 * attempt to free them up. It should return the number of objects 839 * which remain in the cache. If it returns -1, it means it cannot do 840 * any scanning at this time (eg. there is a risk of deadlock). 841 * 842 * The 'gfpmask' refers to the allocation we are currently trying to 843 * fulfil. 844 * 845 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 846 * querying the cache size, so a fastpath for that case is appropriate. 847 */ 848 struct shrinker { 849 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 850 int seeks; /* seeks to recreate an obj */ 851 852 /* These are for internal use */ 853 struct list_head list; 854 long nr; /* objs pending delete */ 855 }; 856 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 857 extern void register_shrinker(struct shrinker *); 858 extern void unregister_shrinker(struct shrinker *); 859 860 int vma_wants_writenotify(struct vm_area_struct *vma); 861 862 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 863 864 #ifdef __PAGETABLE_PUD_FOLDED 865 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 866 unsigned long address) 867 { 868 return 0; 869 } 870 #else 871 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 872 #endif 873 874 #ifdef __PAGETABLE_PMD_FOLDED 875 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 876 unsigned long address) 877 { 878 return 0; 879 } 880 #else 881 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 882 #endif 883 884 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 885 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 886 887 /* 888 * The following ifdef needed to get the 4level-fixup.h header to work. 889 * Remove it when 4level-fixup.h has been removed. 890 */ 891 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 892 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 893 { 894 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 895 NULL: pud_offset(pgd, address); 896 } 897 898 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 899 { 900 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 901 NULL: pmd_offset(pud, address); 902 } 903 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 904 905 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 906 /* 907 * We tuck a spinlock to guard each pagetable page into its struct page, 908 * at page->private, with BUILD_BUG_ON to make sure that this will not 909 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 910 * When freeing, reset page->mapping so free_pages_check won't complain. 911 */ 912 #define __pte_lockptr(page) &((page)->ptl) 913 #define pte_lock_init(_page) do { \ 914 spin_lock_init(__pte_lockptr(_page)); \ 915 } while (0) 916 #define pte_lock_deinit(page) ((page)->mapping = NULL) 917 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 918 #else 919 /* 920 * We use mm->page_table_lock to guard all pagetable pages of the mm. 921 */ 922 #define pte_lock_init(page) do {} while (0) 923 #define pte_lock_deinit(page) do {} while (0) 924 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 925 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 926 927 static inline void pgtable_page_ctor(struct page *page) 928 { 929 pte_lock_init(page); 930 inc_zone_page_state(page, NR_PAGETABLE); 931 } 932 933 static inline void pgtable_page_dtor(struct page *page) 934 { 935 pte_lock_deinit(page); 936 dec_zone_page_state(page, NR_PAGETABLE); 937 } 938 939 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 940 ({ \ 941 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 942 pte_t *__pte = pte_offset_map(pmd, address); \ 943 *(ptlp) = __ptl; \ 944 spin_lock(__ptl); \ 945 __pte; \ 946 }) 947 948 #define pte_unmap_unlock(pte, ptl) do { \ 949 spin_unlock(ptl); \ 950 pte_unmap(pte); \ 951 } while (0) 952 953 #define pte_alloc_map(mm, pmd, address) \ 954 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 955 NULL: pte_offset_map(pmd, address)) 956 957 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 958 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 959 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 960 961 #define pte_alloc_kernel(pmd, address) \ 962 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 963 NULL: pte_offset_kernel(pmd, address)) 964 965 extern void free_area_init(unsigned long * zones_size); 966 extern void free_area_init_node(int nid, pg_data_t *pgdat, 967 unsigned long * zones_size, unsigned long zone_start_pfn, 968 unsigned long *zholes_size); 969 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 970 /* 971 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 972 * zones, allocate the backing mem_map and account for memory holes in a more 973 * architecture independent manner. This is a substitute for creating the 974 * zone_sizes[] and zholes_size[] arrays and passing them to 975 * free_area_init_node() 976 * 977 * An architecture is expected to register range of page frames backed by 978 * physical memory with add_active_range() before calling 979 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 980 * usage, an architecture is expected to do something like 981 * 982 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 983 * max_highmem_pfn}; 984 * for_each_valid_physical_page_range() 985 * add_active_range(node_id, start_pfn, end_pfn) 986 * free_area_init_nodes(max_zone_pfns); 987 * 988 * If the architecture guarantees that there are no holes in the ranges 989 * registered with add_active_range(), free_bootmem_active_regions() 990 * will call free_bootmem_node() for each registered physical page range. 991 * Similarly sparse_memory_present_with_active_regions() calls 992 * memory_present() for each range when SPARSEMEM is enabled. 993 * 994 * See mm/page_alloc.c for more information on each function exposed by 995 * CONFIG_ARCH_POPULATES_NODE_MAP 996 */ 997 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 998 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 999 unsigned long end_pfn); 1000 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 1001 unsigned long new_end_pfn); 1002 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1003 unsigned long end_pfn); 1004 extern void remove_all_active_ranges(void); 1005 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1006 unsigned long end_pfn); 1007 extern void get_pfn_range_for_nid(unsigned int nid, 1008 unsigned long *start_pfn, unsigned long *end_pfn); 1009 extern unsigned long find_min_pfn_with_active_regions(void); 1010 extern unsigned long find_max_pfn_with_active_regions(void); 1011 extern void free_bootmem_with_active_regions(int nid, 1012 unsigned long max_low_pfn); 1013 extern void sparse_memory_present_with_active_regions(int nid); 1014 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1015 extern int early_pfn_to_nid(unsigned long pfn); 1016 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1017 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1018 extern void set_dma_reserve(unsigned long new_dma_reserve); 1019 extern void memmap_init_zone(unsigned long, int, unsigned long, 1020 unsigned long, enum memmap_context); 1021 extern void setup_per_zone_pages_min(void); 1022 extern void mem_init(void); 1023 extern void show_mem(void); 1024 extern void si_meminfo(struct sysinfo * val); 1025 extern void si_meminfo_node(struct sysinfo *val, int nid); 1026 1027 #ifdef CONFIG_NUMA 1028 extern void setup_per_cpu_pageset(void); 1029 #else 1030 static inline void setup_per_cpu_pageset(void) {} 1031 #endif 1032 1033 /* prio_tree.c */ 1034 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1035 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1036 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1037 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1038 struct prio_tree_iter *iter); 1039 1040 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1041 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1042 (vma = vma_prio_tree_next(vma, iter)); ) 1043 1044 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1045 struct list_head *list) 1046 { 1047 vma->shared.vm_set.parent = NULL; 1048 list_add_tail(&vma->shared.vm_set.list, list); 1049 } 1050 1051 /* mmap.c */ 1052 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1053 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1054 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1055 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1056 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1057 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1058 struct mempolicy *); 1059 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1060 extern int split_vma(struct mm_struct *, 1061 struct vm_area_struct *, unsigned long addr, int new_below); 1062 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1063 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1064 struct rb_node **, struct rb_node *); 1065 extern void unlink_file_vma(struct vm_area_struct *); 1066 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1067 unsigned long addr, unsigned long len, pgoff_t pgoff); 1068 extern void exit_mmap(struct mm_struct *); 1069 1070 #ifdef CONFIG_PROC_FS 1071 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1072 extern void added_exe_file_vma(struct mm_struct *mm); 1073 extern void removed_exe_file_vma(struct mm_struct *mm); 1074 #else 1075 static inline void added_exe_file_vma(struct mm_struct *mm) 1076 {} 1077 1078 static inline void removed_exe_file_vma(struct mm_struct *mm) 1079 {} 1080 #endif /* CONFIG_PROC_FS */ 1081 1082 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1083 extern int install_special_mapping(struct mm_struct *mm, 1084 unsigned long addr, unsigned long len, 1085 unsigned long flags, struct page **pages); 1086 1087 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1088 1089 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1090 unsigned long len, unsigned long prot, 1091 unsigned long flag, unsigned long pgoff); 1092 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1093 unsigned long len, unsigned long flags, 1094 unsigned int vm_flags, unsigned long pgoff, 1095 int accountable); 1096 1097 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1098 unsigned long len, unsigned long prot, 1099 unsigned long flag, unsigned long offset) 1100 { 1101 unsigned long ret = -EINVAL; 1102 if ((offset + PAGE_ALIGN(len)) < offset) 1103 goto out; 1104 if (!(offset & ~PAGE_MASK)) 1105 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1106 out: 1107 return ret; 1108 } 1109 1110 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1111 1112 extern unsigned long do_brk(unsigned long, unsigned long); 1113 1114 /* filemap.c */ 1115 extern unsigned long page_unuse(struct page *); 1116 extern void truncate_inode_pages(struct address_space *, loff_t); 1117 extern void truncate_inode_pages_range(struct address_space *, 1118 loff_t lstart, loff_t lend); 1119 1120 /* generic vm_area_ops exported for stackable file systems */ 1121 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1122 1123 /* mm/page-writeback.c */ 1124 int write_one_page(struct page *page, int wait); 1125 1126 /* readahead.c */ 1127 #define VM_MAX_READAHEAD 128 /* kbytes */ 1128 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1129 1130 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1131 pgoff_t offset, unsigned long nr_to_read); 1132 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1133 pgoff_t offset, unsigned long nr_to_read); 1134 1135 void page_cache_sync_readahead(struct address_space *mapping, 1136 struct file_ra_state *ra, 1137 struct file *filp, 1138 pgoff_t offset, 1139 unsigned long size); 1140 1141 void page_cache_async_readahead(struct address_space *mapping, 1142 struct file_ra_state *ra, 1143 struct file *filp, 1144 struct page *pg, 1145 pgoff_t offset, 1146 unsigned long size); 1147 1148 unsigned long max_sane_readahead(unsigned long nr); 1149 1150 /* Do stack extension */ 1151 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1152 #ifdef CONFIG_IA64 1153 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1154 #endif 1155 extern int expand_stack_downwards(struct vm_area_struct *vma, 1156 unsigned long address); 1157 1158 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1159 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1160 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1161 struct vm_area_struct **pprev); 1162 1163 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1164 NULL if none. Assume start_addr < end_addr. */ 1165 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1166 { 1167 struct vm_area_struct * vma = find_vma(mm,start_addr); 1168 1169 if (vma && end_addr <= vma->vm_start) 1170 vma = NULL; 1171 return vma; 1172 } 1173 1174 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1175 { 1176 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1177 } 1178 1179 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1180 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1181 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1182 unsigned long pfn, unsigned long size, pgprot_t); 1183 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1184 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1185 unsigned long pfn); 1186 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1187 unsigned long pfn); 1188 1189 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1190 unsigned int foll_flags); 1191 #define FOLL_WRITE 0x01 /* check pte is writable */ 1192 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1193 #define FOLL_GET 0x04 /* do get_page on page */ 1194 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1195 1196 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1197 void *data); 1198 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1199 unsigned long size, pte_fn_t fn, void *data); 1200 1201 #ifdef CONFIG_PROC_FS 1202 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1203 #else 1204 static inline void vm_stat_account(struct mm_struct *mm, 1205 unsigned long flags, struct file *file, long pages) 1206 { 1207 } 1208 #endif /* CONFIG_PROC_FS */ 1209 1210 #ifdef CONFIG_DEBUG_PAGEALLOC 1211 extern int debug_pagealloc_enabled; 1212 1213 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1214 1215 static inline void enable_debug_pagealloc(void) 1216 { 1217 debug_pagealloc_enabled = 1; 1218 } 1219 #ifdef CONFIG_HIBERNATION 1220 extern bool kernel_page_present(struct page *page); 1221 #endif /* CONFIG_HIBERNATION */ 1222 #else 1223 static inline void 1224 kernel_map_pages(struct page *page, int numpages, int enable) {} 1225 static inline void enable_debug_pagealloc(void) 1226 { 1227 } 1228 #ifdef CONFIG_HIBERNATION 1229 static inline bool kernel_page_present(struct page *page) { return true; } 1230 #endif /* CONFIG_HIBERNATION */ 1231 #endif 1232 1233 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1234 #ifdef __HAVE_ARCH_GATE_AREA 1235 int in_gate_area_no_task(unsigned long addr); 1236 int in_gate_area(struct task_struct *task, unsigned long addr); 1237 #else 1238 int in_gate_area_no_task(unsigned long addr); 1239 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1240 #endif /* __HAVE_ARCH_GATE_AREA */ 1241 1242 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1243 void __user *, size_t *, loff_t *); 1244 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1245 unsigned long lru_pages); 1246 1247 #ifndef CONFIG_MMU 1248 #define randomize_va_space 0 1249 #else 1250 extern int randomize_va_space; 1251 #endif 1252 1253 const char * arch_vma_name(struct vm_area_struct *vma); 1254 void print_vma_addr(char *prefix, unsigned long rip); 1255 1256 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1257 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1258 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1259 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1260 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1261 void *vmemmap_alloc_block(unsigned long size, int node); 1262 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1263 int vmemmap_populate_basepages(struct page *start_page, 1264 unsigned long pages, int node); 1265 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1266 void vmemmap_populate_print_last(void); 1267 1268 #endif /* __KERNEL__ */ 1269 #endif /* _LINUX_MM_H */ 1270