1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmdebug.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/prio_tree.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 17 struct mempolicy; 18 struct anon_vma; 19 struct file_ra_state; 20 struct user_struct; 21 struct writeback_control; 22 23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24 extern unsigned long max_mapnr; 25 #endif 26 27 extern unsigned long num_physpages; 28 extern void * high_memory; 29 extern int page_cluster; 30 31 #ifdef CONFIG_SYSCTL 32 extern int sysctl_legacy_va_layout; 33 #else 34 #define sysctl_legacy_va_layout 0 35 #endif 36 37 extern unsigned long mmap_min_addr; 38 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45 /* to align the pointer to the (next) page boundary */ 46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48 /* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57 extern struct kmem_cache *vm_area_cachep; 58 59 /* 60 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 61 * disabled, then there's a single shared list of VMAs maintained by the 62 * system, and mm's subscribe to these individually 63 */ 64 struct vm_list_struct { 65 struct vm_list_struct *next; 66 struct vm_area_struct *vma; 67 }; 68 69 #ifndef CONFIG_MMU 70 extern struct rb_root nommu_vma_tree; 71 extern struct rw_semaphore nommu_vma_sem; 72 73 extern unsigned int kobjsize(const void *objp); 74 #endif 75 76 /* 77 * vm_flags in vm_area_struct, see mm_types.h. 78 */ 79 #define VM_READ 0x00000001 /* currently active flags */ 80 #define VM_WRITE 0x00000002 81 #define VM_EXEC 0x00000004 82 #define VM_SHARED 0x00000008 83 84 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 85 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 86 #define VM_MAYWRITE 0x00000020 87 #define VM_MAYEXEC 0x00000040 88 #define VM_MAYSHARE 0x00000080 89 90 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 91 #define VM_GROWSUP 0x00000200 92 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 93 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 94 95 #define VM_EXECUTABLE 0x00001000 96 #define VM_LOCKED 0x00002000 97 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 98 99 /* Used by sys_madvise() */ 100 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 101 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 102 103 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 104 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 105 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 106 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 107 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 108 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 109 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 110 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117 118 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 119 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 120 #endif 121 122 #ifdef CONFIG_STACK_GROWSUP 123 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 124 #else 125 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 126 #endif 127 128 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 129 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 130 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 131 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 132 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 133 134 /* 135 * mapping from the currently active vm_flags protection bits (the 136 * low four bits) to a page protection mask.. 137 */ 138 extern pgprot_t protection_map[16]; 139 140 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 141 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 142 143 144 /* 145 * vm_fault is filled by the the pagefault handler and passed to the vma's 146 * ->fault function. The vma's ->fault is responsible for returning a bitmask 147 * of VM_FAULT_xxx flags that give details about how the fault was handled. 148 * 149 * pgoff should be used in favour of virtual_address, if possible. If pgoff 150 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 151 * mapping support. 152 */ 153 struct vm_fault { 154 unsigned int flags; /* FAULT_FLAG_xxx flags */ 155 pgoff_t pgoff; /* Logical page offset based on vma */ 156 void __user *virtual_address; /* Faulting virtual address */ 157 158 struct page *page; /* ->fault handlers should return a 159 * page here, unless VM_FAULT_NOPAGE 160 * is set (which is also implied by 161 * VM_FAULT_ERROR). 162 */ 163 }; 164 165 /* 166 * These are the virtual MM functions - opening of an area, closing and 167 * unmapping it (needed to keep files on disk up-to-date etc), pointer 168 * to the functions called when a no-page or a wp-page exception occurs. 169 */ 170 struct vm_operations_struct { 171 void (*open)(struct vm_area_struct * area); 172 void (*close)(struct vm_area_struct * area); 173 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 174 175 /* notification that a previously read-only page is about to become 176 * writable, if an error is returned it will cause a SIGBUS */ 177 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 178 179 /* called by access_process_vm when get_user_pages() fails, typically 180 * for use by special VMAs that can switch between memory and hardware 181 */ 182 int (*access)(struct vm_area_struct *vma, unsigned long addr, 183 void *buf, int len, int write); 184 #ifdef CONFIG_NUMA 185 /* 186 * set_policy() op must add a reference to any non-NULL @new mempolicy 187 * to hold the policy upon return. Caller should pass NULL @new to 188 * remove a policy and fall back to surrounding context--i.e. do not 189 * install a MPOL_DEFAULT policy, nor the task or system default 190 * mempolicy. 191 */ 192 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 193 194 /* 195 * get_policy() op must add reference [mpol_get()] to any policy at 196 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 197 * in mm/mempolicy.c will do this automatically. 198 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 199 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 200 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 201 * must return NULL--i.e., do not "fallback" to task or system default 202 * policy. 203 */ 204 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 205 unsigned long addr); 206 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 207 const nodemask_t *to, unsigned long flags); 208 #endif 209 }; 210 211 struct mmu_gather; 212 struct inode; 213 214 #define page_private(page) ((page)->private) 215 #define set_page_private(page, v) ((page)->private = (v)) 216 217 /* 218 * FIXME: take this include out, include page-flags.h in 219 * files which need it (119 of them) 220 */ 221 #include <linux/page-flags.h> 222 223 /* 224 * Methods to modify the page usage count. 225 * 226 * What counts for a page usage: 227 * - cache mapping (page->mapping) 228 * - private data (page->private) 229 * - page mapped in a task's page tables, each mapping 230 * is counted separately 231 * 232 * Also, many kernel routines increase the page count before a critical 233 * routine so they can be sure the page doesn't go away from under them. 234 */ 235 236 /* 237 * Drop a ref, return true if the refcount fell to zero (the page has no users) 238 */ 239 static inline int put_page_testzero(struct page *page) 240 { 241 VM_BUG_ON(atomic_read(&page->_count) == 0); 242 return atomic_dec_and_test(&page->_count); 243 } 244 245 /* 246 * Try to grab a ref unless the page has a refcount of zero, return false if 247 * that is the case. 248 */ 249 static inline int get_page_unless_zero(struct page *page) 250 { 251 VM_BUG_ON(PageTail(page)); 252 return atomic_inc_not_zero(&page->_count); 253 } 254 255 /* Support for virtually mapped pages */ 256 struct page *vmalloc_to_page(const void *addr); 257 unsigned long vmalloc_to_pfn(const void *addr); 258 259 /* 260 * Determine if an address is within the vmalloc range 261 * 262 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 263 * is no special casing required. 264 */ 265 static inline int is_vmalloc_addr(const void *x) 266 { 267 #ifdef CONFIG_MMU 268 unsigned long addr = (unsigned long)x; 269 270 return addr >= VMALLOC_START && addr < VMALLOC_END; 271 #else 272 return 0; 273 #endif 274 } 275 276 static inline struct page *compound_head(struct page *page) 277 { 278 if (unlikely(PageTail(page))) 279 return page->first_page; 280 return page; 281 } 282 283 static inline int page_count(struct page *page) 284 { 285 return atomic_read(&compound_head(page)->_count); 286 } 287 288 static inline void get_page(struct page *page) 289 { 290 page = compound_head(page); 291 VM_BUG_ON(atomic_read(&page->_count) == 0); 292 atomic_inc(&page->_count); 293 } 294 295 static inline struct page *virt_to_head_page(const void *x) 296 { 297 struct page *page = virt_to_page(x); 298 return compound_head(page); 299 } 300 301 /* 302 * Setup the page count before being freed into the page allocator for 303 * the first time (boot or memory hotplug) 304 */ 305 static inline void init_page_count(struct page *page) 306 { 307 atomic_set(&page->_count, 1); 308 } 309 310 void put_page(struct page *page); 311 void put_pages_list(struct list_head *pages); 312 313 void split_page(struct page *page, unsigned int order); 314 315 /* 316 * Compound pages have a destructor function. Provide a 317 * prototype for that function and accessor functions. 318 * These are _only_ valid on the head of a PG_compound page. 319 */ 320 typedef void compound_page_dtor(struct page *); 321 322 static inline void set_compound_page_dtor(struct page *page, 323 compound_page_dtor *dtor) 324 { 325 page[1].lru.next = (void *)dtor; 326 } 327 328 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 329 { 330 return (compound_page_dtor *)page[1].lru.next; 331 } 332 333 static inline int compound_order(struct page *page) 334 { 335 if (!PageHead(page)) 336 return 0; 337 return (unsigned long)page[1].lru.prev; 338 } 339 340 static inline void set_compound_order(struct page *page, unsigned long order) 341 { 342 page[1].lru.prev = (void *)order; 343 } 344 345 /* 346 * Multiple processes may "see" the same page. E.g. for untouched 347 * mappings of /dev/null, all processes see the same page full of 348 * zeroes, and text pages of executables and shared libraries have 349 * only one copy in memory, at most, normally. 350 * 351 * For the non-reserved pages, page_count(page) denotes a reference count. 352 * page_count() == 0 means the page is free. page->lru is then used for 353 * freelist management in the buddy allocator. 354 * page_count() > 0 means the page has been allocated. 355 * 356 * Pages are allocated by the slab allocator in order to provide memory 357 * to kmalloc and kmem_cache_alloc. In this case, the management of the 358 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 359 * unless a particular usage is carefully commented. (the responsibility of 360 * freeing the kmalloc memory is the caller's, of course). 361 * 362 * A page may be used by anyone else who does a __get_free_page(). 363 * In this case, page_count still tracks the references, and should only 364 * be used through the normal accessor functions. The top bits of page->flags 365 * and page->virtual store page management information, but all other fields 366 * are unused and could be used privately, carefully. The management of this 367 * page is the responsibility of the one who allocated it, and those who have 368 * subsequently been given references to it. 369 * 370 * The other pages (we may call them "pagecache pages") are completely 371 * managed by the Linux memory manager: I/O, buffers, swapping etc. 372 * The following discussion applies only to them. 373 * 374 * A pagecache page contains an opaque `private' member, which belongs to the 375 * page's address_space. Usually, this is the address of a circular list of 376 * the page's disk buffers. PG_private must be set to tell the VM to call 377 * into the filesystem to release these pages. 378 * 379 * A page may belong to an inode's memory mapping. In this case, page->mapping 380 * is the pointer to the inode, and page->index is the file offset of the page, 381 * in units of PAGE_CACHE_SIZE. 382 * 383 * If pagecache pages are not associated with an inode, they are said to be 384 * anonymous pages. These may become associated with the swapcache, and in that 385 * case PG_swapcache is set, and page->private is an offset into the swapcache. 386 * 387 * In either case (swapcache or inode backed), the pagecache itself holds one 388 * reference to the page. Setting PG_private should also increment the 389 * refcount. The each user mapping also has a reference to the page. 390 * 391 * The pagecache pages are stored in a per-mapping radix tree, which is 392 * rooted at mapping->page_tree, and indexed by offset. 393 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 394 * lists, we instead now tag pages as dirty/writeback in the radix tree. 395 * 396 * All pagecache pages may be subject to I/O: 397 * - inode pages may need to be read from disk, 398 * - inode pages which have been modified and are MAP_SHARED may need 399 * to be written back to the inode on disk, 400 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 401 * modified may need to be swapped out to swap space and (later) to be read 402 * back into memory. 403 */ 404 405 /* 406 * The zone field is never updated after free_area_init_core() 407 * sets it, so none of the operations on it need to be atomic. 408 */ 409 410 411 /* 412 * page->flags layout: 413 * 414 * There are three possibilities for how page->flags get 415 * laid out. The first is for the normal case, without 416 * sparsemem. The second is for sparsemem when there is 417 * plenty of space for node and section. The last is when 418 * we have run out of space and have to fall back to an 419 * alternate (slower) way of determining the node. 420 * 421 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 422 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 423 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 424 */ 425 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 426 #define SECTIONS_WIDTH SECTIONS_SHIFT 427 #else 428 #define SECTIONS_WIDTH 0 429 #endif 430 431 #define ZONES_WIDTH ZONES_SHIFT 432 433 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 434 #define NODES_WIDTH NODES_SHIFT 435 #else 436 #ifdef CONFIG_SPARSEMEM_VMEMMAP 437 #error "Vmemmap: No space for nodes field in page flags" 438 #endif 439 #define NODES_WIDTH 0 440 #endif 441 442 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 443 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 444 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 445 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 446 447 /* 448 * We are going to use the flags for the page to node mapping if its in 449 * there. This includes the case where there is no node, so it is implicit. 450 */ 451 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 452 #define NODE_NOT_IN_PAGE_FLAGS 453 #endif 454 455 #ifndef PFN_SECTION_SHIFT 456 #define PFN_SECTION_SHIFT 0 457 #endif 458 459 /* 460 * Define the bit shifts to access each section. For non-existant 461 * sections we define the shift as 0; that plus a 0 mask ensures 462 * the compiler will optimise away reference to them. 463 */ 464 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 465 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 466 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 467 468 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 469 #ifdef NODE_NOT_IN_PAGEFLAGS 470 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 471 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 472 SECTIONS_PGOFF : ZONES_PGOFF) 473 #else 474 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 475 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 476 NODES_PGOFF : ZONES_PGOFF) 477 #endif 478 479 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 480 481 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 482 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 483 #endif 484 485 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 486 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 487 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 488 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 489 490 static inline enum zone_type page_zonenum(struct page *page) 491 { 492 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 493 } 494 495 /* 496 * The identification function is only used by the buddy allocator for 497 * determining if two pages could be buddies. We are not really 498 * identifying a zone since we could be using a the section number 499 * id if we have not node id available in page flags. 500 * We guarantee only that it will return the same value for two 501 * combinable pages in a zone. 502 */ 503 static inline int page_zone_id(struct page *page) 504 { 505 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 506 } 507 508 static inline int zone_to_nid(struct zone *zone) 509 { 510 #ifdef CONFIG_NUMA 511 return zone->node; 512 #else 513 return 0; 514 #endif 515 } 516 517 #ifdef NODE_NOT_IN_PAGE_FLAGS 518 extern int page_to_nid(struct page *page); 519 #else 520 static inline int page_to_nid(struct page *page) 521 { 522 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 523 } 524 #endif 525 526 static inline struct zone *page_zone(struct page *page) 527 { 528 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 529 } 530 531 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 532 static inline unsigned long page_to_section(struct page *page) 533 { 534 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 535 } 536 #endif 537 538 static inline void set_page_zone(struct page *page, enum zone_type zone) 539 { 540 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 541 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 542 } 543 544 static inline void set_page_node(struct page *page, unsigned long node) 545 { 546 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 547 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 548 } 549 550 static inline void set_page_section(struct page *page, unsigned long section) 551 { 552 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 553 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 554 } 555 556 static inline void set_page_links(struct page *page, enum zone_type zone, 557 unsigned long node, unsigned long pfn) 558 { 559 set_page_zone(page, zone); 560 set_page_node(page, node); 561 set_page_section(page, pfn_to_section_nr(pfn)); 562 } 563 564 /* 565 * If a hint addr is less than mmap_min_addr change hint to be as 566 * low as possible but still greater than mmap_min_addr 567 */ 568 static inline unsigned long round_hint_to_min(unsigned long hint) 569 { 570 #ifdef CONFIG_SECURITY 571 hint &= PAGE_MASK; 572 if (((void *)hint != NULL) && 573 (hint < mmap_min_addr)) 574 return PAGE_ALIGN(mmap_min_addr); 575 #endif 576 return hint; 577 } 578 579 /* 580 * Some inline functions in vmstat.h depend on page_zone() 581 */ 582 #include <linux/vmstat.h> 583 584 static __always_inline void *lowmem_page_address(struct page *page) 585 { 586 return __va(page_to_pfn(page) << PAGE_SHIFT); 587 } 588 589 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 590 #define HASHED_PAGE_VIRTUAL 591 #endif 592 593 #if defined(WANT_PAGE_VIRTUAL) 594 #define page_address(page) ((page)->virtual) 595 #define set_page_address(page, address) \ 596 do { \ 597 (page)->virtual = (address); \ 598 } while(0) 599 #define page_address_init() do { } while(0) 600 #endif 601 602 #if defined(HASHED_PAGE_VIRTUAL) 603 void *page_address(struct page *page); 604 void set_page_address(struct page *page, void *virtual); 605 void page_address_init(void); 606 #endif 607 608 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 609 #define page_address(page) lowmem_page_address(page) 610 #define set_page_address(page, address) do { } while(0) 611 #define page_address_init() do { } while(0) 612 #endif 613 614 /* 615 * On an anonymous page mapped into a user virtual memory area, 616 * page->mapping points to its anon_vma, not to a struct address_space; 617 * with the PAGE_MAPPING_ANON bit set to distinguish it. 618 * 619 * Please note that, confusingly, "page_mapping" refers to the inode 620 * address_space which maps the page from disk; whereas "page_mapped" 621 * refers to user virtual address space into which the page is mapped. 622 */ 623 #define PAGE_MAPPING_ANON 1 624 625 extern struct address_space swapper_space; 626 static inline struct address_space *page_mapping(struct page *page) 627 { 628 struct address_space *mapping = page->mapping; 629 630 VM_BUG_ON(PageSlab(page)); 631 #ifdef CONFIG_SWAP 632 if (unlikely(PageSwapCache(page))) 633 mapping = &swapper_space; 634 else 635 #endif 636 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 637 mapping = NULL; 638 return mapping; 639 } 640 641 static inline int PageAnon(struct page *page) 642 { 643 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 644 } 645 646 /* 647 * Return the pagecache index of the passed page. Regular pagecache pages 648 * use ->index whereas swapcache pages use ->private 649 */ 650 static inline pgoff_t page_index(struct page *page) 651 { 652 if (unlikely(PageSwapCache(page))) 653 return page_private(page); 654 return page->index; 655 } 656 657 /* 658 * The atomic page->_mapcount, like _count, starts from -1: 659 * so that transitions both from it and to it can be tracked, 660 * using atomic_inc_and_test and atomic_add_negative(-1). 661 */ 662 static inline void reset_page_mapcount(struct page *page) 663 { 664 atomic_set(&(page)->_mapcount, -1); 665 } 666 667 static inline int page_mapcount(struct page *page) 668 { 669 return atomic_read(&(page)->_mapcount) + 1; 670 } 671 672 /* 673 * Return true if this page is mapped into pagetables. 674 */ 675 static inline int page_mapped(struct page *page) 676 { 677 return atomic_read(&(page)->_mapcount) >= 0; 678 } 679 680 /* 681 * Different kinds of faults, as returned by handle_mm_fault(). 682 * Used to decide whether a process gets delivered SIGBUS or 683 * just gets major/minor fault counters bumped up. 684 */ 685 686 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 687 688 #define VM_FAULT_OOM 0x0001 689 #define VM_FAULT_SIGBUS 0x0002 690 #define VM_FAULT_MAJOR 0x0004 691 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 692 693 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 694 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 695 696 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 697 698 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 699 700 extern void show_free_areas(void); 701 702 #ifdef CONFIG_SHMEM 703 int shmem_lock(struct file *file, int lock, struct user_struct *user); 704 #else 705 static inline int shmem_lock(struct file *file, int lock, 706 struct user_struct *user) 707 { 708 return 0; 709 } 710 #endif 711 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 712 713 int shmem_zero_setup(struct vm_area_struct *); 714 715 #ifndef CONFIG_MMU 716 extern unsigned long shmem_get_unmapped_area(struct file *file, 717 unsigned long addr, 718 unsigned long len, 719 unsigned long pgoff, 720 unsigned long flags); 721 #endif 722 723 extern int can_do_mlock(void); 724 extern int user_shm_lock(size_t, struct user_struct *); 725 extern void user_shm_unlock(size_t, struct user_struct *); 726 727 /* 728 * Parameter block passed down to zap_pte_range in exceptional cases. 729 */ 730 struct zap_details { 731 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 732 struct address_space *check_mapping; /* Check page->mapping if set */ 733 pgoff_t first_index; /* Lowest page->index to unmap */ 734 pgoff_t last_index; /* Highest page->index to unmap */ 735 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 736 unsigned long truncate_count; /* Compare vm_truncate_count */ 737 }; 738 739 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 740 pte_t pte); 741 742 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 743 unsigned long size); 744 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 745 unsigned long size, struct zap_details *); 746 unsigned long unmap_vmas(struct mmu_gather **tlb, 747 struct vm_area_struct *start_vma, unsigned long start_addr, 748 unsigned long end_addr, unsigned long *nr_accounted, 749 struct zap_details *); 750 751 /** 752 * mm_walk - callbacks for walk_page_range 753 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 754 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 755 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 756 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 757 * @pte_hole: if set, called for each hole at all levels 758 * 759 * (see walk_page_range for more details) 760 */ 761 struct mm_walk { 762 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 763 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 764 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 765 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 766 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 767 struct mm_struct *mm; 768 void *private; 769 }; 770 771 int walk_page_range(unsigned long addr, unsigned long end, 772 struct mm_walk *walk); 773 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 774 unsigned long end, unsigned long floor, unsigned long ceiling); 775 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 776 struct vm_area_struct *vma); 777 void unmap_mapping_range(struct address_space *mapping, 778 loff_t const holebegin, loff_t const holelen, int even_cows); 779 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 780 void *buf, int len, int write); 781 782 static inline void unmap_shared_mapping_range(struct address_space *mapping, 783 loff_t const holebegin, loff_t const holelen) 784 { 785 unmap_mapping_range(mapping, holebegin, holelen, 0); 786 } 787 788 extern int vmtruncate(struct inode * inode, loff_t offset); 789 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 790 791 #ifdef CONFIG_MMU 792 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 793 unsigned long address, int write_access); 794 #else 795 static inline int handle_mm_fault(struct mm_struct *mm, 796 struct vm_area_struct *vma, unsigned long address, 797 int write_access) 798 { 799 /* should never happen if there's no MMU */ 800 BUG(); 801 return VM_FAULT_SIGBUS; 802 } 803 #endif 804 805 extern int make_pages_present(unsigned long addr, unsigned long end); 806 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 807 808 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 809 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 810 811 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 812 extern void do_invalidatepage(struct page *page, unsigned long offset); 813 814 int __set_page_dirty_nobuffers(struct page *page); 815 int __set_page_dirty_no_writeback(struct page *page); 816 int redirty_page_for_writepage(struct writeback_control *wbc, 817 struct page *page); 818 int set_page_dirty(struct page *page); 819 int set_page_dirty_lock(struct page *page); 820 int clear_page_dirty_for_io(struct page *page); 821 822 extern unsigned long move_page_tables(struct vm_area_struct *vma, 823 unsigned long old_addr, struct vm_area_struct *new_vma, 824 unsigned long new_addr, unsigned long len); 825 extern unsigned long do_mremap(unsigned long addr, 826 unsigned long old_len, unsigned long new_len, 827 unsigned long flags, unsigned long new_addr); 828 extern int mprotect_fixup(struct vm_area_struct *vma, 829 struct vm_area_struct **pprev, unsigned long start, 830 unsigned long end, unsigned long newflags); 831 832 /* 833 * get_user_pages_fast provides equivalent functionality to get_user_pages, 834 * operating on current and current->mm (force=0 and doesn't return any vmas). 835 * 836 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions 837 * can be made about locking. get_user_pages_fast is to be implemented in a 838 * way that is advantageous (vs get_user_pages()) when the user memory area is 839 * already faulted in and present in ptes. However if the pages have to be 840 * faulted in, it may turn out to be slightly slower). 841 */ 842 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 843 struct page **pages); 844 845 /* 846 * A callback you can register to apply pressure to ageable caches. 847 * 848 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 849 * look through the least-recently-used 'nr_to_scan' entries and 850 * attempt to free them up. It should return the number of objects 851 * which remain in the cache. If it returns -1, it means it cannot do 852 * any scanning at this time (eg. there is a risk of deadlock). 853 * 854 * The 'gfpmask' refers to the allocation we are currently trying to 855 * fulfil. 856 * 857 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 858 * querying the cache size, so a fastpath for that case is appropriate. 859 */ 860 struct shrinker { 861 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 862 int seeks; /* seeks to recreate an obj */ 863 864 /* These are for internal use */ 865 struct list_head list; 866 long nr; /* objs pending delete */ 867 }; 868 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 869 extern void register_shrinker(struct shrinker *); 870 extern void unregister_shrinker(struct shrinker *); 871 872 int vma_wants_writenotify(struct vm_area_struct *vma); 873 874 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 875 876 #ifdef __PAGETABLE_PUD_FOLDED 877 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 878 unsigned long address) 879 { 880 return 0; 881 } 882 #else 883 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 884 #endif 885 886 #ifdef __PAGETABLE_PMD_FOLDED 887 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 888 unsigned long address) 889 { 890 return 0; 891 } 892 #else 893 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 894 #endif 895 896 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 897 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 898 899 /* 900 * The following ifdef needed to get the 4level-fixup.h header to work. 901 * Remove it when 4level-fixup.h has been removed. 902 */ 903 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 904 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 905 { 906 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 907 NULL: pud_offset(pgd, address); 908 } 909 910 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 911 { 912 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 913 NULL: pmd_offset(pud, address); 914 } 915 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 916 917 #if USE_SPLIT_PTLOCKS 918 /* 919 * We tuck a spinlock to guard each pagetable page into its struct page, 920 * at page->private, with BUILD_BUG_ON to make sure that this will not 921 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 922 * When freeing, reset page->mapping so free_pages_check won't complain. 923 */ 924 #define __pte_lockptr(page) &((page)->ptl) 925 #define pte_lock_init(_page) do { \ 926 spin_lock_init(__pte_lockptr(_page)); \ 927 } while (0) 928 #define pte_lock_deinit(page) ((page)->mapping = NULL) 929 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 930 #else /* !USE_SPLIT_PTLOCKS */ 931 /* 932 * We use mm->page_table_lock to guard all pagetable pages of the mm. 933 */ 934 #define pte_lock_init(page) do {} while (0) 935 #define pte_lock_deinit(page) do {} while (0) 936 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 937 #endif /* USE_SPLIT_PTLOCKS */ 938 939 static inline void pgtable_page_ctor(struct page *page) 940 { 941 pte_lock_init(page); 942 inc_zone_page_state(page, NR_PAGETABLE); 943 } 944 945 static inline void pgtable_page_dtor(struct page *page) 946 { 947 pte_lock_deinit(page); 948 dec_zone_page_state(page, NR_PAGETABLE); 949 } 950 951 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 952 ({ \ 953 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 954 pte_t *__pte = pte_offset_map(pmd, address); \ 955 *(ptlp) = __ptl; \ 956 spin_lock(__ptl); \ 957 __pte; \ 958 }) 959 960 #define pte_unmap_unlock(pte, ptl) do { \ 961 spin_unlock(ptl); \ 962 pte_unmap(pte); \ 963 } while (0) 964 965 #define pte_alloc_map(mm, pmd, address) \ 966 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 967 NULL: pte_offset_map(pmd, address)) 968 969 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 970 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 971 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 972 973 #define pte_alloc_kernel(pmd, address) \ 974 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 975 NULL: pte_offset_kernel(pmd, address)) 976 977 extern void free_area_init(unsigned long * zones_size); 978 extern void free_area_init_node(int nid, unsigned long * zones_size, 979 unsigned long zone_start_pfn, unsigned long *zholes_size); 980 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 981 /* 982 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 983 * zones, allocate the backing mem_map and account for memory holes in a more 984 * architecture independent manner. This is a substitute for creating the 985 * zone_sizes[] and zholes_size[] arrays and passing them to 986 * free_area_init_node() 987 * 988 * An architecture is expected to register range of page frames backed by 989 * physical memory with add_active_range() before calling 990 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 991 * usage, an architecture is expected to do something like 992 * 993 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 994 * max_highmem_pfn}; 995 * for_each_valid_physical_page_range() 996 * add_active_range(node_id, start_pfn, end_pfn) 997 * free_area_init_nodes(max_zone_pfns); 998 * 999 * If the architecture guarantees that there are no holes in the ranges 1000 * registered with add_active_range(), free_bootmem_active_regions() 1001 * will call free_bootmem_node() for each registered physical page range. 1002 * Similarly sparse_memory_present_with_active_regions() calls 1003 * memory_present() for each range when SPARSEMEM is enabled. 1004 * 1005 * See mm/page_alloc.c for more information on each function exposed by 1006 * CONFIG_ARCH_POPULATES_NODE_MAP 1007 */ 1008 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1009 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1010 unsigned long end_pfn); 1011 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1012 unsigned long end_pfn); 1013 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1014 unsigned long end_pfn); 1015 extern void remove_all_active_ranges(void); 1016 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1017 unsigned long end_pfn); 1018 extern void get_pfn_range_for_nid(unsigned int nid, 1019 unsigned long *start_pfn, unsigned long *end_pfn); 1020 extern unsigned long find_min_pfn_with_active_regions(void); 1021 extern void free_bootmem_with_active_regions(int nid, 1022 unsigned long max_low_pfn); 1023 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1024 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1025 extern void sparse_memory_present_with_active_regions(int nid); 1026 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1027 extern int early_pfn_to_nid(unsigned long pfn); 1028 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1029 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1030 extern void set_dma_reserve(unsigned long new_dma_reserve); 1031 extern void memmap_init_zone(unsigned long, int, unsigned long, 1032 unsigned long, enum memmap_context); 1033 extern void setup_per_zone_pages_min(void); 1034 extern void mem_init(void); 1035 extern void show_mem(void); 1036 extern void si_meminfo(struct sysinfo * val); 1037 extern void si_meminfo_node(struct sysinfo *val, int nid); 1038 extern int after_bootmem; 1039 1040 #ifdef CONFIG_NUMA 1041 extern void setup_per_cpu_pageset(void); 1042 #else 1043 static inline void setup_per_cpu_pageset(void) {} 1044 #endif 1045 1046 /* prio_tree.c */ 1047 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1048 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1049 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1050 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1051 struct prio_tree_iter *iter); 1052 1053 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1054 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1055 (vma = vma_prio_tree_next(vma, iter)); ) 1056 1057 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1058 struct list_head *list) 1059 { 1060 vma->shared.vm_set.parent = NULL; 1061 list_add_tail(&vma->shared.vm_set.list, list); 1062 } 1063 1064 /* mmap.c */ 1065 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1066 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1067 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1068 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1069 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1070 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1071 struct mempolicy *); 1072 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1073 extern int split_vma(struct mm_struct *, 1074 struct vm_area_struct *, unsigned long addr, int new_below); 1075 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1076 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1077 struct rb_node **, struct rb_node *); 1078 extern void unlink_file_vma(struct vm_area_struct *); 1079 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1080 unsigned long addr, unsigned long len, pgoff_t pgoff); 1081 extern void exit_mmap(struct mm_struct *); 1082 1083 extern int mm_take_all_locks(struct mm_struct *mm); 1084 extern void mm_drop_all_locks(struct mm_struct *mm); 1085 1086 #ifdef CONFIG_PROC_FS 1087 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1088 extern void added_exe_file_vma(struct mm_struct *mm); 1089 extern void removed_exe_file_vma(struct mm_struct *mm); 1090 #else 1091 static inline void added_exe_file_vma(struct mm_struct *mm) 1092 {} 1093 1094 static inline void removed_exe_file_vma(struct mm_struct *mm) 1095 {} 1096 #endif /* CONFIG_PROC_FS */ 1097 1098 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1099 extern int install_special_mapping(struct mm_struct *mm, 1100 unsigned long addr, unsigned long len, 1101 unsigned long flags, struct page **pages); 1102 1103 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1104 1105 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1106 unsigned long len, unsigned long prot, 1107 unsigned long flag, unsigned long pgoff); 1108 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1109 unsigned long len, unsigned long flags, 1110 unsigned int vm_flags, unsigned long pgoff, 1111 int accountable); 1112 1113 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1114 unsigned long len, unsigned long prot, 1115 unsigned long flag, unsigned long offset) 1116 { 1117 unsigned long ret = -EINVAL; 1118 if ((offset + PAGE_ALIGN(len)) < offset) 1119 goto out; 1120 if (!(offset & ~PAGE_MASK)) 1121 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1122 out: 1123 return ret; 1124 } 1125 1126 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1127 1128 extern unsigned long do_brk(unsigned long, unsigned long); 1129 1130 /* filemap.c */ 1131 extern unsigned long page_unuse(struct page *); 1132 extern void truncate_inode_pages(struct address_space *, loff_t); 1133 extern void truncate_inode_pages_range(struct address_space *, 1134 loff_t lstart, loff_t lend); 1135 1136 /* generic vm_area_ops exported for stackable file systems */ 1137 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1138 1139 /* mm/page-writeback.c */ 1140 int write_one_page(struct page *page, int wait); 1141 1142 /* readahead.c */ 1143 #define VM_MAX_READAHEAD 128 /* kbytes */ 1144 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1145 1146 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1147 pgoff_t offset, unsigned long nr_to_read); 1148 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1149 pgoff_t offset, unsigned long nr_to_read); 1150 1151 void page_cache_sync_readahead(struct address_space *mapping, 1152 struct file_ra_state *ra, 1153 struct file *filp, 1154 pgoff_t offset, 1155 unsigned long size); 1156 1157 void page_cache_async_readahead(struct address_space *mapping, 1158 struct file_ra_state *ra, 1159 struct file *filp, 1160 struct page *pg, 1161 pgoff_t offset, 1162 unsigned long size); 1163 1164 unsigned long max_sane_readahead(unsigned long nr); 1165 1166 /* Do stack extension */ 1167 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1168 #ifdef CONFIG_IA64 1169 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1170 #endif 1171 extern int expand_stack_downwards(struct vm_area_struct *vma, 1172 unsigned long address); 1173 1174 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1175 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1176 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1177 struct vm_area_struct **pprev); 1178 1179 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1180 NULL if none. Assume start_addr < end_addr. */ 1181 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1182 { 1183 struct vm_area_struct * vma = find_vma(mm,start_addr); 1184 1185 if (vma && end_addr <= vma->vm_start) 1186 vma = NULL; 1187 return vma; 1188 } 1189 1190 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1191 { 1192 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1193 } 1194 1195 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1196 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1197 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1198 unsigned long pfn, unsigned long size, pgprot_t); 1199 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1201 unsigned long pfn); 1202 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1203 unsigned long pfn); 1204 1205 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1206 unsigned int foll_flags); 1207 #define FOLL_WRITE 0x01 /* check pte is writable */ 1208 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1209 #define FOLL_GET 0x04 /* do get_page on page */ 1210 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1211 1212 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1213 void *data); 1214 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1215 unsigned long size, pte_fn_t fn, void *data); 1216 1217 #ifdef CONFIG_PROC_FS 1218 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1219 #else 1220 static inline void vm_stat_account(struct mm_struct *mm, 1221 unsigned long flags, struct file *file, long pages) 1222 { 1223 } 1224 #endif /* CONFIG_PROC_FS */ 1225 1226 #ifdef CONFIG_DEBUG_PAGEALLOC 1227 extern int debug_pagealloc_enabled; 1228 1229 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1230 1231 static inline void enable_debug_pagealloc(void) 1232 { 1233 debug_pagealloc_enabled = 1; 1234 } 1235 #ifdef CONFIG_HIBERNATION 1236 extern bool kernel_page_present(struct page *page); 1237 #endif /* CONFIG_HIBERNATION */ 1238 #else 1239 static inline void 1240 kernel_map_pages(struct page *page, int numpages, int enable) {} 1241 static inline void enable_debug_pagealloc(void) 1242 { 1243 } 1244 #ifdef CONFIG_HIBERNATION 1245 static inline bool kernel_page_present(struct page *page) { return true; } 1246 #endif /* CONFIG_HIBERNATION */ 1247 #endif 1248 1249 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1250 #ifdef __HAVE_ARCH_GATE_AREA 1251 int in_gate_area_no_task(unsigned long addr); 1252 int in_gate_area(struct task_struct *task, unsigned long addr); 1253 #else 1254 int in_gate_area_no_task(unsigned long addr); 1255 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1256 #endif /* __HAVE_ARCH_GATE_AREA */ 1257 1258 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1259 void __user *, size_t *, loff_t *); 1260 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1261 unsigned long lru_pages); 1262 1263 #ifndef CONFIG_MMU 1264 #define randomize_va_space 0 1265 #else 1266 extern int randomize_va_space; 1267 #endif 1268 1269 const char * arch_vma_name(struct vm_area_struct *vma); 1270 void print_vma_addr(char *prefix, unsigned long rip); 1271 1272 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1273 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1274 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1275 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1276 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1277 void *vmemmap_alloc_block(unsigned long size, int node); 1278 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1279 int vmemmap_populate_basepages(struct page *start_page, 1280 unsigned long pages, int node); 1281 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1282 void vmemmap_populate_print_last(void); 1283 1284 #endif /* __KERNEL__ */ 1285 #endif /* _LINUX_MM_H */ 1286