1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 31 static inline void set_max_mapnr(unsigned long limit) 32 { 33 max_mapnr = limit; 34 } 35 #else 36 static inline void set_max_mapnr(unsigned long limit) { } 37 #endif 38 39 extern unsigned long totalram_pages; 40 extern void * high_memory; 41 extern int page_cluster; 42 43 #ifdef CONFIG_SYSCTL 44 extern int sysctl_legacy_va_layout; 45 #else 46 #define sysctl_legacy_va_layout 0 47 #endif 48 49 #include <asm/page.h> 50 #include <asm/pgtable.h> 51 #include <asm/processor.h> 52 53 extern unsigned long sysctl_user_reserve_kbytes; 54 extern unsigned long sysctl_admin_reserve_kbytes; 55 56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 57 58 /* to align the pointer to the (next) page boundary */ 59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 60 61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 62 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 63 64 /* 65 * Linux kernel virtual memory manager primitives. 66 * The idea being to have a "virtual" mm in the same way 67 * we have a virtual fs - giving a cleaner interface to the 68 * mm details, and allowing different kinds of memory mappings 69 * (from shared memory to executable loading to arbitrary 70 * mmap() functions). 71 */ 72 73 extern struct kmem_cache *vm_area_cachep; 74 75 #ifndef CONFIG_MMU 76 extern struct rb_root nommu_region_tree; 77 extern struct rw_semaphore nommu_region_sem; 78 79 extern unsigned int kobjsize(const void *objp); 80 #endif 81 82 /* 83 * vm_flags in vm_area_struct, see mm_types.h. 84 */ 85 #define VM_NONE 0x00000000 86 87 #define VM_READ 0x00000001 /* currently active flags */ 88 #define VM_WRITE 0x00000002 89 #define VM_EXEC 0x00000004 90 #define VM_SHARED 0x00000008 91 92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 93 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 94 #define VM_MAYWRITE 0x00000020 95 #define VM_MAYEXEC 0x00000040 96 #define VM_MAYSHARE 0x00000080 97 98 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 99 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 100 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 101 102 #define VM_LOCKED 0x00002000 103 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 104 105 /* Used by sys_madvise() */ 106 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 107 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 108 109 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 110 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 111 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 112 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 113 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 114 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 115 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 116 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 117 118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 119 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 120 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 122 123 #if defined(CONFIG_X86) 124 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 125 #elif defined(CONFIG_PPC) 126 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 127 #elif defined(CONFIG_PARISC) 128 # define VM_GROWSUP VM_ARCH_1 129 #elif defined(CONFIG_METAG) 130 # define VM_GROWSUP VM_ARCH_1 131 #elif defined(CONFIG_IA64) 132 # define VM_GROWSUP VM_ARCH_1 133 #elif !defined(CONFIG_MMU) 134 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 135 #endif 136 137 #ifndef VM_GROWSUP 138 # define VM_GROWSUP VM_NONE 139 #endif 140 141 /* Bits set in the VMA until the stack is in its final location */ 142 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 143 144 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 145 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 146 #endif 147 148 #ifdef CONFIG_STACK_GROWSUP 149 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 150 #else 151 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 152 #endif 153 154 /* 155 * Special vmas that are non-mergable, non-mlock()able. 156 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 157 */ 158 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 159 160 /* 161 * mapping from the currently active vm_flags protection bits (the 162 * low four bits) to a page protection mask.. 163 */ 164 extern pgprot_t protection_map[16]; 165 166 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 167 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 168 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 169 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 170 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 171 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 172 #define FAULT_FLAG_TRIED 0x40 /* second try */ 173 174 /* 175 * vm_fault is filled by the the pagefault handler and passed to the vma's 176 * ->fault function. The vma's ->fault is responsible for returning a bitmask 177 * of VM_FAULT_xxx flags that give details about how the fault was handled. 178 * 179 * pgoff should be used in favour of virtual_address, if possible. If pgoff 180 * is used, one may implement ->remap_pages to get nonlinear mapping support. 181 */ 182 struct vm_fault { 183 unsigned int flags; /* FAULT_FLAG_xxx flags */ 184 pgoff_t pgoff; /* Logical page offset based on vma */ 185 void __user *virtual_address; /* Faulting virtual address */ 186 187 struct page *page; /* ->fault handlers should return a 188 * page here, unless VM_FAULT_NOPAGE 189 * is set (which is also implied by 190 * VM_FAULT_ERROR). 191 */ 192 }; 193 194 /* 195 * These are the virtual MM functions - opening of an area, closing and 196 * unmapping it (needed to keep files on disk up-to-date etc), pointer 197 * to the functions called when a no-page or a wp-page exception occurs. 198 */ 199 struct vm_operations_struct { 200 void (*open)(struct vm_area_struct * area); 201 void (*close)(struct vm_area_struct * area); 202 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 203 204 /* notification that a previously read-only page is about to become 205 * writable, if an error is returned it will cause a SIGBUS */ 206 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 207 208 /* called by access_process_vm when get_user_pages() fails, typically 209 * for use by special VMAs that can switch between memory and hardware 210 */ 211 int (*access)(struct vm_area_struct *vma, unsigned long addr, 212 void *buf, int len, int write); 213 #ifdef CONFIG_NUMA 214 /* 215 * set_policy() op must add a reference to any non-NULL @new mempolicy 216 * to hold the policy upon return. Caller should pass NULL @new to 217 * remove a policy and fall back to surrounding context--i.e. do not 218 * install a MPOL_DEFAULT policy, nor the task or system default 219 * mempolicy. 220 */ 221 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 222 223 /* 224 * get_policy() op must add reference [mpol_get()] to any policy at 225 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 226 * in mm/mempolicy.c will do this automatically. 227 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 228 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 229 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 230 * must return NULL--i.e., do not "fallback" to task or system default 231 * policy. 232 */ 233 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 234 unsigned long addr); 235 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 236 const nodemask_t *to, unsigned long flags); 237 #endif 238 /* called by sys_remap_file_pages() to populate non-linear mapping */ 239 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 240 unsigned long size, pgoff_t pgoff); 241 }; 242 243 struct mmu_gather; 244 struct inode; 245 246 #define page_private(page) ((page)->private) 247 #define set_page_private(page, v) ((page)->private = (v)) 248 249 /* It's valid only if the page is free path or free_list */ 250 static inline void set_freepage_migratetype(struct page *page, int migratetype) 251 { 252 page->index = migratetype; 253 } 254 255 /* It's valid only if the page is free path or free_list */ 256 static inline int get_freepage_migratetype(struct page *page) 257 { 258 return page->index; 259 } 260 261 /* 262 * FIXME: take this include out, include page-flags.h in 263 * files which need it (119 of them) 264 */ 265 #include <linux/page-flags.h> 266 #include <linux/huge_mm.h> 267 268 /* 269 * Methods to modify the page usage count. 270 * 271 * What counts for a page usage: 272 * - cache mapping (page->mapping) 273 * - private data (page->private) 274 * - page mapped in a task's page tables, each mapping 275 * is counted separately 276 * 277 * Also, many kernel routines increase the page count before a critical 278 * routine so they can be sure the page doesn't go away from under them. 279 */ 280 281 /* 282 * Drop a ref, return true if the refcount fell to zero (the page has no users) 283 */ 284 static inline int put_page_testzero(struct page *page) 285 { 286 VM_BUG_ON(atomic_read(&page->_count) == 0); 287 return atomic_dec_and_test(&page->_count); 288 } 289 290 /* 291 * Try to grab a ref unless the page has a refcount of zero, return false if 292 * that is the case. 293 */ 294 static inline int get_page_unless_zero(struct page *page) 295 { 296 return atomic_inc_not_zero(&page->_count); 297 } 298 299 extern int page_is_ram(unsigned long pfn); 300 301 /* Support for virtually mapped pages */ 302 struct page *vmalloc_to_page(const void *addr); 303 unsigned long vmalloc_to_pfn(const void *addr); 304 305 /* 306 * Determine if an address is within the vmalloc range 307 * 308 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 309 * is no special casing required. 310 */ 311 static inline int is_vmalloc_addr(const void *x) 312 { 313 #ifdef CONFIG_MMU 314 unsigned long addr = (unsigned long)x; 315 316 return addr >= VMALLOC_START && addr < VMALLOC_END; 317 #else 318 return 0; 319 #endif 320 } 321 #ifdef CONFIG_MMU 322 extern int is_vmalloc_or_module_addr(const void *x); 323 #else 324 static inline int is_vmalloc_or_module_addr(const void *x) 325 { 326 return 0; 327 } 328 #endif 329 330 static inline void compound_lock(struct page *page) 331 { 332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 VM_BUG_ON(PageSlab(page)); 334 bit_spin_lock(PG_compound_lock, &page->flags); 335 #endif 336 } 337 338 static inline void compound_unlock(struct page *page) 339 { 340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 341 VM_BUG_ON(PageSlab(page)); 342 bit_spin_unlock(PG_compound_lock, &page->flags); 343 #endif 344 } 345 346 static inline unsigned long compound_lock_irqsave(struct page *page) 347 { 348 unsigned long uninitialized_var(flags); 349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 350 local_irq_save(flags); 351 compound_lock(page); 352 #endif 353 return flags; 354 } 355 356 static inline void compound_unlock_irqrestore(struct page *page, 357 unsigned long flags) 358 { 359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 360 compound_unlock(page); 361 local_irq_restore(flags); 362 #endif 363 } 364 365 static inline struct page *compound_head(struct page *page) 366 { 367 if (unlikely(PageTail(page))) 368 return page->first_page; 369 return page; 370 } 371 372 /* 373 * The atomic page->_mapcount, starts from -1: so that transitions 374 * both from it and to it can be tracked, using atomic_inc_and_test 375 * and atomic_add_negative(-1). 376 */ 377 static inline void page_mapcount_reset(struct page *page) 378 { 379 atomic_set(&(page)->_mapcount, -1); 380 } 381 382 static inline int page_mapcount(struct page *page) 383 { 384 return atomic_read(&(page)->_mapcount) + 1; 385 } 386 387 static inline int page_count(struct page *page) 388 { 389 return atomic_read(&compound_head(page)->_count); 390 } 391 392 static inline void get_huge_page_tail(struct page *page) 393 { 394 /* 395 * __split_huge_page_refcount() cannot run 396 * from under us. 397 */ 398 VM_BUG_ON(page_mapcount(page) < 0); 399 VM_BUG_ON(atomic_read(&page->_count) != 0); 400 atomic_inc(&page->_mapcount); 401 } 402 403 extern bool __get_page_tail(struct page *page); 404 405 static inline void get_page(struct page *page) 406 { 407 if (unlikely(PageTail(page))) 408 if (likely(__get_page_tail(page))) 409 return; 410 /* 411 * Getting a normal page or the head of a compound page 412 * requires to already have an elevated page->_count. 413 */ 414 VM_BUG_ON(atomic_read(&page->_count) <= 0); 415 atomic_inc(&page->_count); 416 } 417 418 static inline struct page *virt_to_head_page(const void *x) 419 { 420 struct page *page = virt_to_page(x); 421 return compound_head(page); 422 } 423 424 /* 425 * Setup the page count before being freed into the page allocator for 426 * the first time (boot or memory hotplug) 427 */ 428 static inline void init_page_count(struct page *page) 429 { 430 atomic_set(&page->_count, 1); 431 } 432 433 /* 434 * PageBuddy() indicate that the page is free and in the buddy system 435 * (see mm/page_alloc.c). 436 * 437 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 438 * -2 so that an underflow of the page_mapcount() won't be mistaken 439 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 440 * efficiently by most CPU architectures. 441 */ 442 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 443 444 static inline int PageBuddy(struct page *page) 445 { 446 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 447 } 448 449 static inline void __SetPageBuddy(struct page *page) 450 { 451 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 452 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 453 } 454 455 static inline void __ClearPageBuddy(struct page *page) 456 { 457 VM_BUG_ON(!PageBuddy(page)); 458 atomic_set(&page->_mapcount, -1); 459 } 460 461 void put_page(struct page *page); 462 void put_pages_list(struct list_head *pages); 463 464 void split_page(struct page *page, unsigned int order); 465 int split_free_page(struct page *page); 466 467 /* 468 * Compound pages have a destructor function. Provide a 469 * prototype for that function and accessor functions. 470 * These are _only_ valid on the head of a PG_compound page. 471 */ 472 typedef void compound_page_dtor(struct page *); 473 474 static inline void set_compound_page_dtor(struct page *page, 475 compound_page_dtor *dtor) 476 { 477 page[1].lru.next = (void *)dtor; 478 } 479 480 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 481 { 482 return (compound_page_dtor *)page[1].lru.next; 483 } 484 485 static inline int compound_order(struct page *page) 486 { 487 if (!PageHead(page)) 488 return 0; 489 return (unsigned long)page[1].lru.prev; 490 } 491 492 static inline int compound_trans_order(struct page *page) 493 { 494 int order; 495 unsigned long flags; 496 497 if (!PageHead(page)) 498 return 0; 499 500 flags = compound_lock_irqsave(page); 501 order = compound_order(page); 502 compound_unlock_irqrestore(page, flags); 503 return order; 504 } 505 506 static inline void set_compound_order(struct page *page, unsigned long order) 507 { 508 page[1].lru.prev = (void *)order; 509 } 510 511 #ifdef CONFIG_MMU 512 /* 513 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 514 * servicing faults for write access. In the normal case, do always want 515 * pte_mkwrite. But get_user_pages can cause write faults for mappings 516 * that do not have writing enabled, when used by access_process_vm. 517 */ 518 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 519 { 520 if (likely(vma->vm_flags & VM_WRITE)) 521 pte = pte_mkwrite(pte); 522 return pte; 523 } 524 #endif 525 526 /* 527 * Multiple processes may "see" the same page. E.g. for untouched 528 * mappings of /dev/null, all processes see the same page full of 529 * zeroes, and text pages of executables and shared libraries have 530 * only one copy in memory, at most, normally. 531 * 532 * For the non-reserved pages, page_count(page) denotes a reference count. 533 * page_count() == 0 means the page is free. page->lru is then used for 534 * freelist management in the buddy allocator. 535 * page_count() > 0 means the page has been allocated. 536 * 537 * Pages are allocated by the slab allocator in order to provide memory 538 * to kmalloc and kmem_cache_alloc. In this case, the management of the 539 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 540 * unless a particular usage is carefully commented. (the responsibility of 541 * freeing the kmalloc memory is the caller's, of course). 542 * 543 * A page may be used by anyone else who does a __get_free_page(). 544 * In this case, page_count still tracks the references, and should only 545 * be used through the normal accessor functions. The top bits of page->flags 546 * and page->virtual store page management information, but all other fields 547 * are unused and could be used privately, carefully. The management of this 548 * page is the responsibility of the one who allocated it, and those who have 549 * subsequently been given references to it. 550 * 551 * The other pages (we may call them "pagecache pages") are completely 552 * managed by the Linux memory manager: I/O, buffers, swapping etc. 553 * The following discussion applies only to them. 554 * 555 * A pagecache page contains an opaque `private' member, which belongs to the 556 * page's address_space. Usually, this is the address of a circular list of 557 * the page's disk buffers. PG_private must be set to tell the VM to call 558 * into the filesystem to release these pages. 559 * 560 * A page may belong to an inode's memory mapping. In this case, page->mapping 561 * is the pointer to the inode, and page->index is the file offset of the page, 562 * in units of PAGE_CACHE_SIZE. 563 * 564 * If pagecache pages are not associated with an inode, they are said to be 565 * anonymous pages. These may become associated with the swapcache, and in that 566 * case PG_swapcache is set, and page->private is an offset into the swapcache. 567 * 568 * In either case (swapcache or inode backed), the pagecache itself holds one 569 * reference to the page. Setting PG_private should also increment the 570 * refcount. The each user mapping also has a reference to the page. 571 * 572 * The pagecache pages are stored in a per-mapping radix tree, which is 573 * rooted at mapping->page_tree, and indexed by offset. 574 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 575 * lists, we instead now tag pages as dirty/writeback in the radix tree. 576 * 577 * All pagecache pages may be subject to I/O: 578 * - inode pages may need to be read from disk, 579 * - inode pages which have been modified and are MAP_SHARED may need 580 * to be written back to the inode on disk, 581 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 582 * modified may need to be swapped out to swap space and (later) to be read 583 * back into memory. 584 */ 585 586 /* 587 * The zone field is never updated after free_area_init_core() 588 * sets it, so none of the operations on it need to be atomic. 589 */ 590 591 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 592 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 593 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 594 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 595 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 596 597 /* 598 * Define the bit shifts to access each section. For non-existent 599 * sections we define the shift as 0; that plus a 0 mask ensures 600 * the compiler will optimise away reference to them. 601 */ 602 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 603 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 604 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 605 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 606 607 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 608 #ifdef NODE_NOT_IN_PAGE_FLAGS 609 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 610 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 611 SECTIONS_PGOFF : ZONES_PGOFF) 612 #else 613 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 614 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 615 NODES_PGOFF : ZONES_PGOFF) 616 #endif 617 618 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 619 620 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 621 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 622 #endif 623 624 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 625 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 626 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 627 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 628 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 629 630 static inline enum zone_type page_zonenum(const struct page *page) 631 { 632 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 633 } 634 635 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 636 #define SECTION_IN_PAGE_FLAGS 637 #endif 638 639 /* 640 * The identification function is only used by the buddy allocator for 641 * determining if two pages could be buddies. We are not really 642 * identifying a zone since we could be using a the section number 643 * id if we have not node id available in page flags. 644 * We guarantee only that it will return the same value for two 645 * combinable pages in a zone. 646 */ 647 static inline int page_zone_id(struct page *page) 648 { 649 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 650 } 651 652 static inline int zone_to_nid(struct zone *zone) 653 { 654 #ifdef CONFIG_NUMA 655 return zone->node; 656 #else 657 return 0; 658 #endif 659 } 660 661 #ifdef NODE_NOT_IN_PAGE_FLAGS 662 extern int page_to_nid(const struct page *page); 663 #else 664 static inline int page_to_nid(const struct page *page) 665 { 666 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 667 } 668 #endif 669 670 #ifdef CONFIG_NUMA_BALANCING 671 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 672 static inline int page_nid_xchg_last(struct page *page, int nid) 673 { 674 return xchg(&page->_last_nid, nid); 675 } 676 677 static inline int page_nid_last(struct page *page) 678 { 679 return page->_last_nid; 680 } 681 static inline void page_nid_reset_last(struct page *page) 682 { 683 page->_last_nid = -1; 684 } 685 #else 686 static inline int page_nid_last(struct page *page) 687 { 688 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 689 } 690 691 extern int page_nid_xchg_last(struct page *page, int nid); 692 693 static inline void page_nid_reset_last(struct page *page) 694 { 695 int nid = (1 << LAST_NID_SHIFT) - 1; 696 697 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 698 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 699 } 700 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 701 #else 702 static inline int page_nid_xchg_last(struct page *page, int nid) 703 { 704 return page_to_nid(page); 705 } 706 707 static inline int page_nid_last(struct page *page) 708 { 709 return page_to_nid(page); 710 } 711 712 static inline void page_nid_reset_last(struct page *page) 713 { 714 } 715 #endif 716 717 static inline struct zone *page_zone(const struct page *page) 718 { 719 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 720 } 721 722 #ifdef SECTION_IN_PAGE_FLAGS 723 static inline void set_page_section(struct page *page, unsigned long section) 724 { 725 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 726 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 727 } 728 729 static inline unsigned long page_to_section(const struct page *page) 730 { 731 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 732 } 733 #endif 734 735 static inline void set_page_zone(struct page *page, enum zone_type zone) 736 { 737 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 738 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 739 } 740 741 static inline void set_page_node(struct page *page, unsigned long node) 742 { 743 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 744 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 745 } 746 747 static inline void set_page_links(struct page *page, enum zone_type zone, 748 unsigned long node, unsigned long pfn) 749 { 750 set_page_zone(page, zone); 751 set_page_node(page, node); 752 #ifdef SECTION_IN_PAGE_FLAGS 753 set_page_section(page, pfn_to_section_nr(pfn)); 754 #endif 755 } 756 757 /* 758 * Some inline functions in vmstat.h depend on page_zone() 759 */ 760 #include <linux/vmstat.h> 761 762 static __always_inline void *lowmem_page_address(const struct page *page) 763 { 764 return __va(PFN_PHYS(page_to_pfn(page))); 765 } 766 767 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 768 #define HASHED_PAGE_VIRTUAL 769 #endif 770 771 #if defined(WANT_PAGE_VIRTUAL) 772 #define page_address(page) ((page)->virtual) 773 #define set_page_address(page, address) \ 774 do { \ 775 (page)->virtual = (address); \ 776 } while(0) 777 #define page_address_init() do { } while(0) 778 #endif 779 780 #if defined(HASHED_PAGE_VIRTUAL) 781 void *page_address(const struct page *page); 782 void set_page_address(struct page *page, void *virtual); 783 void page_address_init(void); 784 #endif 785 786 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 787 #define page_address(page) lowmem_page_address(page) 788 #define set_page_address(page, address) do { } while(0) 789 #define page_address_init() do { } while(0) 790 #endif 791 792 /* 793 * On an anonymous page mapped into a user virtual memory area, 794 * page->mapping points to its anon_vma, not to a struct address_space; 795 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 796 * 797 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 798 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 799 * and then page->mapping points, not to an anon_vma, but to a private 800 * structure which KSM associates with that merged page. See ksm.h. 801 * 802 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 803 * 804 * Please note that, confusingly, "page_mapping" refers to the inode 805 * address_space which maps the page from disk; whereas "page_mapped" 806 * refers to user virtual address space into which the page is mapped. 807 */ 808 #define PAGE_MAPPING_ANON 1 809 #define PAGE_MAPPING_KSM 2 810 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 811 812 extern struct address_space *page_mapping(struct page *page); 813 814 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 815 static inline void *page_rmapping(struct page *page) 816 { 817 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 818 } 819 820 extern struct address_space *__page_file_mapping(struct page *); 821 822 static inline 823 struct address_space *page_file_mapping(struct page *page) 824 { 825 if (unlikely(PageSwapCache(page))) 826 return __page_file_mapping(page); 827 828 return page->mapping; 829 } 830 831 static inline int PageAnon(struct page *page) 832 { 833 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 834 } 835 836 /* 837 * Return the pagecache index of the passed page. Regular pagecache pages 838 * use ->index whereas swapcache pages use ->private 839 */ 840 static inline pgoff_t page_index(struct page *page) 841 { 842 if (unlikely(PageSwapCache(page))) 843 return page_private(page); 844 return page->index; 845 } 846 847 extern pgoff_t __page_file_index(struct page *page); 848 849 /* 850 * Return the file index of the page. Regular pagecache pages use ->index 851 * whereas swapcache pages use swp_offset(->private) 852 */ 853 static inline pgoff_t page_file_index(struct page *page) 854 { 855 if (unlikely(PageSwapCache(page))) 856 return __page_file_index(page); 857 858 return page->index; 859 } 860 861 /* 862 * Return true if this page is mapped into pagetables. 863 */ 864 static inline int page_mapped(struct page *page) 865 { 866 return atomic_read(&(page)->_mapcount) >= 0; 867 } 868 869 /* 870 * Different kinds of faults, as returned by handle_mm_fault(). 871 * Used to decide whether a process gets delivered SIGBUS or 872 * just gets major/minor fault counters bumped up. 873 */ 874 875 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 876 877 #define VM_FAULT_OOM 0x0001 878 #define VM_FAULT_SIGBUS 0x0002 879 #define VM_FAULT_MAJOR 0x0004 880 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 881 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 882 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 883 884 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 885 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 886 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 887 888 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 889 890 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 891 VM_FAULT_HWPOISON_LARGE) 892 893 /* Encode hstate index for a hwpoisoned large page */ 894 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 895 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 896 897 /* 898 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 899 */ 900 extern void pagefault_out_of_memory(void); 901 902 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 903 904 /* 905 * Flags passed to show_mem() and show_free_areas() to suppress output in 906 * various contexts. 907 */ 908 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 909 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 910 911 extern void show_free_areas(unsigned int flags); 912 extern bool skip_free_areas_node(unsigned int flags, int nid); 913 914 int shmem_zero_setup(struct vm_area_struct *); 915 916 extern int can_do_mlock(void); 917 extern int user_shm_lock(size_t, struct user_struct *); 918 extern void user_shm_unlock(size_t, struct user_struct *); 919 920 /* 921 * Parameter block passed down to zap_pte_range in exceptional cases. 922 */ 923 struct zap_details { 924 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 925 struct address_space *check_mapping; /* Check page->mapping if set */ 926 pgoff_t first_index; /* Lowest page->index to unmap */ 927 pgoff_t last_index; /* Highest page->index to unmap */ 928 }; 929 930 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 931 pte_t pte); 932 933 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 934 unsigned long size); 935 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 936 unsigned long size, struct zap_details *); 937 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 938 unsigned long start, unsigned long end); 939 940 /** 941 * mm_walk - callbacks for walk_page_range 942 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 943 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 944 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 945 * this handler is required to be able to handle 946 * pmd_trans_huge() pmds. They may simply choose to 947 * split_huge_page() instead of handling it explicitly. 948 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 949 * @pte_hole: if set, called for each hole at all levels 950 * @hugetlb_entry: if set, called for each hugetlb entry 951 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 952 * is used. 953 * 954 * (see walk_page_range for more details) 955 */ 956 struct mm_walk { 957 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 958 unsigned long next, struct mm_walk *walk); 959 int (*pud_entry)(pud_t *pud, unsigned long addr, 960 unsigned long next, struct mm_walk *walk); 961 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 962 unsigned long next, struct mm_walk *walk); 963 int (*pte_entry)(pte_t *pte, unsigned long addr, 964 unsigned long next, struct mm_walk *walk); 965 int (*pte_hole)(unsigned long addr, unsigned long next, 966 struct mm_walk *walk); 967 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 968 unsigned long addr, unsigned long next, 969 struct mm_walk *walk); 970 struct mm_struct *mm; 971 void *private; 972 }; 973 974 int walk_page_range(unsigned long addr, unsigned long end, 975 struct mm_walk *walk); 976 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 977 unsigned long end, unsigned long floor, unsigned long ceiling); 978 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 979 struct vm_area_struct *vma); 980 void unmap_mapping_range(struct address_space *mapping, 981 loff_t const holebegin, loff_t const holelen, int even_cows); 982 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 983 unsigned long *pfn); 984 int follow_phys(struct vm_area_struct *vma, unsigned long address, 985 unsigned int flags, unsigned long *prot, resource_size_t *phys); 986 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 987 void *buf, int len, int write); 988 989 static inline void unmap_shared_mapping_range(struct address_space *mapping, 990 loff_t const holebegin, loff_t const holelen) 991 { 992 unmap_mapping_range(mapping, holebegin, holelen, 0); 993 } 994 995 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 996 extern void truncate_setsize(struct inode *inode, loff_t newsize); 997 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 998 int truncate_inode_page(struct address_space *mapping, struct page *page); 999 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1000 int invalidate_inode_page(struct page *page); 1001 1002 #ifdef CONFIG_MMU 1003 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1004 unsigned long address, unsigned int flags); 1005 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1006 unsigned long address, unsigned int fault_flags); 1007 #else 1008 static inline int handle_mm_fault(struct mm_struct *mm, 1009 struct vm_area_struct *vma, unsigned long address, 1010 unsigned int flags) 1011 { 1012 /* should never happen if there's no MMU */ 1013 BUG(); 1014 return VM_FAULT_SIGBUS; 1015 } 1016 static inline int fixup_user_fault(struct task_struct *tsk, 1017 struct mm_struct *mm, unsigned long address, 1018 unsigned int fault_flags) 1019 { 1020 /* should never happen if there's no MMU */ 1021 BUG(); 1022 return -EFAULT; 1023 } 1024 #endif 1025 1026 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1027 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1028 void *buf, int len, int write); 1029 1030 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1031 unsigned long start, unsigned long nr_pages, 1032 unsigned int foll_flags, struct page **pages, 1033 struct vm_area_struct **vmas, int *nonblocking); 1034 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1035 unsigned long start, unsigned long nr_pages, 1036 int write, int force, struct page **pages, 1037 struct vm_area_struct **vmas); 1038 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1039 struct page **pages); 1040 struct kvec; 1041 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1042 struct page **pages); 1043 int get_kernel_page(unsigned long start, int write, struct page **pages); 1044 struct page *get_dump_page(unsigned long addr); 1045 1046 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1047 extern void do_invalidatepage(struct page *page, unsigned int offset, 1048 unsigned int length); 1049 1050 int __set_page_dirty_nobuffers(struct page *page); 1051 int __set_page_dirty_no_writeback(struct page *page); 1052 int redirty_page_for_writepage(struct writeback_control *wbc, 1053 struct page *page); 1054 void account_page_dirtied(struct page *page, struct address_space *mapping); 1055 void account_page_writeback(struct page *page); 1056 int set_page_dirty(struct page *page); 1057 int set_page_dirty_lock(struct page *page); 1058 int clear_page_dirty_for_io(struct page *page); 1059 1060 /* Is the vma a continuation of the stack vma above it? */ 1061 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1062 { 1063 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1064 } 1065 1066 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1067 unsigned long addr) 1068 { 1069 return (vma->vm_flags & VM_GROWSDOWN) && 1070 (vma->vm_start == addr) && 1071 !vma_growsdown(vma->vm_prev, addr); 1072 } 1073 1074 /* Is the vma a continuation of the stack vma below it? */ 1075 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1076 { 1077 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1078 } 1079 1080 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1081 unsigned long addr) 1082 { 1083 return (vma->vm_flags & VM_GROWSUP) && 1084 (vma->vm_end == addr) && 1085 !vma_growsup(vma->vm_next, addr); 1086 } 1087 1088 extern pid_t 1089 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1090 1091 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1092 unsigned long old_addr, struct vm_area_struct *new_vma, 1093 unsigned long new_addr, unsigned long len, 1094 bool need_rmap_locks); 1095 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1096 unsigned long end, pgprot_t newprot, 1097 int dirty_accountable, int prot_numa); 1098 extern int mprotect_fixup(struct vm_area_struct *vma, 1099 struct vm_area_struct **pprev, unsigned long start, 1100 unsigned long end, unsigned long newflags); 1101 1102 /* 1103 * doesn't attempt to fault and will return short. 1104 */ 1105 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1106 struct page **pages); 1107 /* 1108 * per-process(per-mm_struct) statistics. 1109 */ 1110 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1111 { 1112 long val = atomic_long_read(&mm->rss_stat.count[member]); 1113 1114 #ifdef SPLIT_RSS_COUNTING 1115 /* 1116 * counter is updated in asynchronous manner and may go to minus. 1117 * But it's never be expected number for users. 1118 */ 1119 if (val < 0) 1120 val = 0; 1121 #endif 1122 return (unsigned long)val; 1123 } 1124 1125 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1126 { 1127 atomic_long_add(value, &mm->rss_stat.count[member]); 1128 } 1129 1130 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1131 { 1132 atomic_long_inc(&mm->rss_stat.count[member]); 1133 } 1134 1135 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1136 { 1137 atomic_long_dec(&mm->rss_stat.count[member]); 1138 } 1139 1140 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1141 { 1142 return get_mm_counter(mm, MM_FILEPAGES) + 1143 get_mm_counter(mm, MM_ANONPAGES); 1144 } 1145 1146 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1147 { 1148 return max(mm->hiwater_rss, get_mm_rss(mm)); 1149 } 1150 1151 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1152 { 1153 return max(mm->hiwater_vm, mm->total_vm); 1154 } 1155 1156 static inline void update_hiwater_rss(struct mm_struct *mm) 1157 { 1158 unsigned long _rss = get_mm_rss(mm); 1159 1160 if ((mm)->hiwater_rss < _rss) 1161 (mm)->hiwater_rss = _rss; 1162 } 1163 1164 static inline void update_hiwater_vm(struct mm_struct *mm) 1165 { 1166 if (mm->hiwater_vm < mm->total_vm) 1167 mm->hiwater_vm = mm->total_vm; 1168 } 1169 1170 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1171 struct mm_struct *mm) 1172 { 1173 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1174 1175 if (*maxrss < hiwater_rss) 1176 *maxrss = hiwater_rss; 1177 } 1178 1179 #if defined(SPLIT_RSS_COUNTING) 1180 void sync_mm_rss(struct mm_struct *mm); 1181 #else 1182 static inline void sync_mm_rss(struct mm_struct *mm) 1183 { 1184 } 1185 #endif 1186 1187 int vma_wants_writenotify(struct vm_area_struct *vma); 1188 1189 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1190 spinlock_t **ptl); 1191 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1192 spinlock_t **ptl) 1193 { 1194 pte_t *ptep; 1195 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1196 return ptep; 1197 } 1198 1199 #ifdef __PAGETABLE_PUD_FOLDED 1200 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1201 unsigned long address) 1202 { 1203 return 0; 1204 } 1205 #else 1206 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1207 #endif 1208 1209 #ifdef __PAGETABLE_PMD_FOLDED 1210 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1211 unsigned long address) 1212 { 1213 return 0; 1214 } 1215 #else 1216 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1217 #endif 1218 1219 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1220 pmd_t *pmd, unsigned long address); 1221 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1222 1223 /* 1224 * The following ifdef needed to get the 4level-fixup.h header to work. 1225 * Remove it when 4level-fixup.h has been removed. 1226 */ 1227 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1228 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1229 { 1230 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1231 NULL: pud_offset(pgd, address); 1232 } 1233 1234 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1235 { 1236 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1237 NULL: pmd_offset(pud, address); 1238 } 1239 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1240 1241 #if USE_SPLIT_PTLOCKS 1242 /* 1243 * We tuck a spinlock to guard each pagetable page into its struct page, 1244 * at page->private, with BUILD_BUG_ON to make sure that this will not 1245 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1246 * When freeing, reset page->mapping so free_pages_check won't complain. 1247 */ 1248 #define __pte_lockptr(page) &((page)->ptl) 1249 #define pte_lock_init(_page) do { \ 1250 spin_lock_init(__pte_lockptr(_page)); \ 1251 } while (0) 1252 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1253 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1254 #else /* !USE_SPLIT_PTLOCKS */ 1255 /* 1256 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1257 */ 1258 #define pte_lock_init(page) do {} while (0) 1259 #define pte_lock_deinit(page) do {} while (0) 1260 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1261 #endif /* USE_SPLIT_PTLOCKS */ 1262 1263 static inline void pgtable_page_ctor(struct page *page) 1264 { 1265 pte_lock_init(page); 1266 inc_zone_page_state(page, NR_PAGETABLE); 1267 } 1268 1269 static inline void pgtable_page_dtor(struct page *page) 1270 { 1271 pte_lock_deinit(page); 1272 dec_zone_page_state(page, NR_PAGETABLE); 1273 } 1274 1275 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1276 ({ \ 1277 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1278 pte_t *__pte = pte_offset_map(pmd, address); \ 1279 *(ptlp) = __ptl; \ 1280 spin_lock(__ptl); \ 1281 __pte; \ 1282 }) 1283 1284 #define pte_unmap_unlock(pte, ptl) do { \ 1285 spin_unlock(ptl); \ 1286 pte_unmap(pte); \ 1287 } while (0) 1288 1289 #define pte_alloc_map(mm, vma, pmd, address) \ 1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1291 pmd, address))? \ 1292 NULL: pte_offset_map(pmd, address)) 1293 1294 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1296 pmd, address))? \ 1297 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1298 1299 #define pte_alloc_kernel(pmd, address) \ 1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1301 NULL: pte_offset_kernel(pmd, address)) 1302 1303 extern void free_area_init(unsigned long * zones_size); 1304 extern void free_area_init_node(int nid, unsigned long * zones_size, 1305 unsigned long zone_start_pfn, unsigned long *zholes_size); 1306 extern void free_initmem(void); 1307 1308 /* 1309 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1310 * into the buddy system. The freed pages will be poisoned with pattern 1311 * "poison" if it's within range [0, UCHAR_MAX]. 1312 * Return pages freed into the buddy system. 1313 */ 1314 extern unsigned long free_reserved_area(void *start, void *end, 1315 int poison, char *s); 1316 1317 #ifdef CONFIG_HIGHMEM 1318 /* 1319 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1320 * and totalram_pages. 1321 */ 1322 extern void free_highmem_page(struct page *page); 1323 #endif 1324 1325 extern void adjust_managed_page_count(struct page *page, long count); 1326 extern void mem_init_print_info(const char *str); 1327 1328 /* Free the reserved page into the buddy system, so it gets managed. */ 1329 static inline void __free_reserved_page(struct page *page) 1330 { 1331 ClearPageReserved(page); 1332 init_page_count(page); 1333 __free_page(page); 1334 } 1335 1336 static inline void free_reserved_page(struct page *page) 1337 { 1338 __free_reserved_page(page); 1339 adjust_managed_page_count(page, 1); 1340 } 1341 1342 static inline void mark_page_reserved(struct page *page) 1343 { 1344 SetPageReserved(page); 1345 adjust_managed_page_count(page, -1); 1346 } 1347 1348 /* 1349 * Default method to free all the __init memory into the buddy system. 1350 * The freed pages will be poisoned with pattern "poison" if it's within 1351 * range [0, UCHAR_MAX]. 1352 * Return pages freed into the buddy system. 1353 */ 1354 static inline unsigned long free_initmem_default(int poison) 1355 { 1356 extern char __init_begin[], __init_end[]; 1357 1358 return free_reserved_area(&__init_begin, &__init_end, 1359 poison, "unused kernel"); 1360 } 1361 1362 static inline unsigned long get_num_physpages(void) 1363 { 1364 int nid; 1365 unsigned long phys_pages = 0; 1366 1367 for_each_online_node(nid) 1368 phys_pages += node_present_pages(nid); 1369 1370 return phys_pages; 1371 } 1372 1373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1374 /* 1375 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1376 * zones, allocate the backing mem_map and account for memory holes in a more 1377 * architecture independent manner. This is a substitute for creating the 1378 * zone_sizes[] and zholes_size[] arrays and passing them to 1379 * free_area_init_node() 1380 * 1381 * An architecture is expected to register range of page frames backed by 1382 * physical memory with memblock_add[_node]() before calling 1383 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1384 * usage, an architecture is expected to do something like 1385 * 1386 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1387 * max_highmem_pfn}; 1388 * for_each_valid_physical_page_range() 1389 * memblock_add_node(base, size, nid) 1390 * free_area_init_nodes(max_zone_pfns); 1391 * 1392 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1393 * registered physical page range. Similarly 1394 * sparse_memory_present_with_active_regions() calls memory_present() for 1395 * each range when SPARSEMEM is enabled. 1396 * 1397 * See mm/page_alloc.c for more information on each function exposed by 1398 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1399 */ 1400 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1401 unsigned long node_map_pfn_alignment(void); 1402 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1403 unsigned long end_pfn); 1404 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1405 unsigned long end_pfn); 1406 extern void get_pfn_range_for_nid(unsigned int nid, 1407 unsigned long *start_pfn, unsigned long *end_pfn); 1408 extern unsigned long find_min_pfn_with_active_regions(void); 1409 extern void free_bootmem_with_active_regions(int nid, 1410 unsigned long max_low_pfn); 1411 extern void sparse_memory_present_with_active_regions(int nid); 1412 1413 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1414 1415 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1416 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1417 static inline int __early_pfn_to_nid(unsigned long pfn) 1418 { 1419 return 0; 1420 } 1421 #else 1422 /* please see mm/page_alloc.c */ 1423 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1424 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1425 /* there is a per-arch backend function. */ 1426 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1427 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1428 #endif 1429 1430 extern void set_dma_reserve(unsigned long new_dma_reserve); 1431 extern void memmap_init_zone(unsigned long, int, unsigned long, 1432 unsigned long, enum memmap_context); 1433 extern void setup_per_zone_wmarks(void); 1434 extern int __meminit init_per_zone_wmark_min(void); 1435 extern void mem_init(void); 1436 extern void __init mmap_init(void); 1437 extern void show_mem(unsigned int flags); 1438 extern void si_meminfo(struct sysinfo * val); 1439 extern void si_meminfo_node(struct sysinfo *val, int nid); 1440 1441 extern __printf(3, 4) 1442 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1443 1444 extern void setup_per_cpu_pageset(void); 1445 1446 extern void zone_pcp_update(struct zone *zone); 1447 extern void zone_pcp_reset(struct zone *zone); 1448 1449 /* page_alloc.c */ 1450 extern int min_free_kbytes; 1451 1452 /* nommu.c */ 1453 extern atomic_long_t mmap_pages_allocated; 1454 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1455 1456 /* interval_tree.c */ 1457 void vma_interval_tree_insert(struct vm_area_struct *node, 1458 struct rb_root *root); 1459 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1460 struct vm_area_struct *prev, 1461 struct rb_root *root); 1462 void vma_interval_tree_remove(struct vm_area_struct *node, 1463 struct rb_root *root); 1464 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1465 unsigned long start, unsigned long last); 1466 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1467 unsigned long start, unsigned long last); 1468 1469 #define vma_interval_tree_foreach(vma, root, start, last) \ 1470 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1471 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1472 1473 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1474 struct list_head *list) 1475 { 1476 list_add_tail(&vma->shared.nonlinear, list); 1477 } 1478 1479 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1480 struct rb_root *root); 1481 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1482 struct rb_root *root); 1483 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1484 struct rb_root *root, unsigned long start, unsigned long last); 1485 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1486 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1487 #ifdef CONFIG_DEBUG_VM_RB 1488 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1489 #endif 1490 1491 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1492 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1493 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1494 1495 /* mmap.c */ 1496 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1497 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1498 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1499 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1500 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1501 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1502 struct mempolicy *); 1503 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1504 extern int split_vma(struct mm_struct *, 1505 struct vm_area_struct *, unsigned long addr, int new_below); 1506 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1507 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1508 struct rb_node **, struct rb_node *); 1509 extern void unlink_file_vma(struct vm_area_struct *); 1510 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1511 unsigned long addr, unsigned long len, pgoff_t pgoff, 1512 bool *need_rmap_locks); 1513 extern void exit_mmap(struct mm_struct *); 1514 1515 extern int mm_take_all_locks(struct mm_struct *mm); 1516 extern void mm_drop_all_locks(struct mm_struct *mm); 1517 1518 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1519 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1520 1521 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1522 extern int install_special_mapping(struct mm_struct *mm, 1523 unsigned long addr, unsigned long len, 1524 unsigned long flags, struct page **pages); 1525 1526 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1527 1528 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1529 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1530 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1531 unsigned long len, unsigned long prot, unsigned long flags, 1532 unsigned long pgoff, unsigned long *populate); 1533 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1534 1535 #ifdef CONFIG_MMU 1536 extern int __mm_populate(unsigned long addr, unsigned long len, 1537 int ignore_errors); 1538 static inline void mm_populate(unsigned long addr, unsigned long len) 1539 { 1540 /* Ignore errors */ 1541 (void) __mm_populate(addr, len, 1); 1542 } 1543 #else 1544 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1545 #endif 1546 1547 /* These take the mm semaphore themselves */ 1548 extern unsigned long vm_brk(unsigned long, unsigned long); 1549 extern int vm_munmap(unsigned long, size_t); 1550 extern unsigned long vm_mmap(struct file *, unsigned long, 1551 unsigned long, unsigned long, 1552 unsigned long, unsigned long); 1553 1554 struct vm_unmapped_area_info { 1555 #define VM_UNMAPPED_AREA_TOPDOWN 1 1556 unsigned long flags; 1557 unsigned long length; 1558 unsigned long low_limit; 1559 unsigned long high_limit; 1560 unsigned long align_mask; 1561 unsigned long align_offset; 1562 }; 1563 1564 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1565 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1566 1567 /* 1568 * Search for an unmapped address range. 1569 * 1570 * We are looking for a range that: 1571 * - does not intersect with any VMA; 1572 * - is contained within the [low_limit, high_limit) interval; 1573 * - is at least the desired size. 1574 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1575 */ 1576 static inline unsigned long 1577 vm_unmapped_area(struct vm_unmapped_area_info *info) 1578 { 1579 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1580 return unmapped_area(info); 1581 else 1582 return unmapped_area_topdown(info); 1583 } 1584 1585 /* truncate.c */ 1586 extern void truncate_inode_pages(struct address_space *, loff_t); 1587 extern void truncate_inode_pages_range(struct address_space *, 1588 loff_t lstart, loff_t lend); 1589 1590 /* generic vm_area_ops exported for stackable file systems */ 1591 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1592 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1593 1594 /* mm/page-writeback.c */ 1595 int write_one_page(struct page *page, int wait); 1596 void task_dirty_inc(struct task_struct *tsk); 1597 1598 /* readahead.c */ 1599 #define VM_MAX_READAHEAD 128 /* kbytes */ 1600 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1601 1602 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1603 pgoff_t offset, unsigned long nr_to_read); 1604 1605 void page_cache_sync_readahead(struct address_space *mapping, 1606 struct file_ra_state *ra, 1607 struct file *filp, 1608 pgoff_t offset, 1609 unsigned long size); 1610 1611 void page_cache_async_readahead(struct address_space *mapping, 1612 struct file_ra_state *ra, 1613 struct file *filp, 1614 struct page *pg, 1615 pgoff_t offset, 1616 unsigned long size); 1617 1618 unsigned long max_sane_readahead(unsigned long nr); 1619 unsigned long ra_submit(struct file_ra_state *ra, 1620 struct address_space *mapping, 1621 struct file *filp); 1622 1623 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1624 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1625 1626 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1627 extern int expand_downwards(struct vm_area_struct *vma, 1628 unsigned long address); 1629 #if VM_GROWSUP 1630 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1631 #else 1632 #define expand_upwards(vma, address) do { } while (0) 1633 #endif 1634 1635 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1636 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1637 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1638 struct vm_area_struct **pprev); 1639 1640 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1641 NULL if none. Assume start_addr < end_addr. */ 1642 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1643 { 1644 struct vm_area_struct * vma = find_vma(mm,start_addr); 1645 1646 if (vma && end_addr <= vma->vm_start) 1647 vma = NULL; 1648 return vma; 1649 } 1650 1651 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1652 { 1653 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1654 } 1655 1656 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1657 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1658 unsigned long vm_start, unsigned long vm_end) 1659 { 1660 struct vm_area_struct *vma = find_vma(mm, vm_start); 1661 1662 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1663 vma = NULL; 1664 1665 return vma; 1666 } 1667 1668 #ifdef CONFIG_MMU 1669 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1670 #else 1671 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1672 { 1673 return __pgprot(0); 1674 } 1675 #endif 1676 1677 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1678 unsigned long change_prot_numa(struct vm_area_struct *vma, 1679 unsigned long start, unsigned long end); 1680 #endif 1681 1682 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1683 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1684 unsigned long pfn, unsigned long size, pgprot_t); 1685 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1686 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1687 unsigned long pfn); 1688 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1689 unsigned long pfn); 1690 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1691 1692 1693 struct page *follow_page_mask(struct vm_area_struct *vma, 1694 unsigned long address, unsigned int foll_flags, 1695 unsigned int *page_mask); 1696 1697 static inline struct page *follow_page(struct vm_area_struct *vma, 1698 unsigned long address, unsigned int foll_flags) 1699 { 1700 unsigned int unused_page_mask; 1701 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1702 } 1703 1704 #define FOLL_WRITE 0x01 /* check pte is writable */ 1705 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1706 #define FOLL_GET 0x04 /* do get_page on page */ 1707 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1708 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1709 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1710 * and return without waiting upon it */ 1711 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1712 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1713 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1714 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1715 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1716 1717 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1718 void *data); 1719 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1720 unsigned long size, pte_fn_t fn, void *data); 1721 1722 #ifdef CONFIG_PROC_FS 1723 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1724 #else 1725 static inline void vm_stat_account(struct mm_struct *mm, 1726 unsigned long flags, struct file *file, long pages) 1727 { 1728 mm->total_vm += pages; 1729 } 1730 #endif /* CONFIG_PROC_FS */ 1731 1732 #ifdef CONFIG_DEBUG_PAGEALLOC 1733 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1734 #ifdef CONFIG_HIBERNATION 1735 extern bool kernel_page_present(struct page *page); 1736 #endif /* CONFIG_HIBERNATION */ 1737 #else 1738 static inline void 1739 kernel_map_pages(struct page *page, int numpages, int enable) {} 1740 #ifdef CONFIG_HIBERNATION 1741 static inline bool kernel_page_present(struct page *page) { return true; } 1742 #endif /* CONFIG_HIBERNATION */ 1743 #endif 1744 1745 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1746 #ifdef __HAVE_ARCH_GATE_AREA 1747 int in_gate_area_no_mm(unsigned long addr); 1748 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1749 #else 1750 int in_gate_area_no_mm(unsigned long addr); 1751 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1752 #endif /* __HAVE_ARCH_GATE_AREA */ 1753 1754 #ifdef CONFIG_SYSCTL 1755 extern int sysctl_drop_caches; 1756 int drop_caches_sysctl_handler(struct ctl_table *, int, 1757 void __user *, size_t *, loff_t *); 1758 #endif 1759 1760 unsigned long shrink_slab(struct shrink_control *shrink, 1761 unsigned long nr_pages_scanned, 1762 unsigned long lru_pages); 1763 1764 #ifndef CONFIG_MMU 1765 #define randomize_va_space 0 1766 #else 1767 extern int randomize_va_space; 1768 #endif 1769 1770 const char * arch_vma_name(struct vm_area_struct *vma); 1771 void print_vma_addr(char *prefix, unsigned long rip); 1772 1773 void sparse_mem_maps_populate_node(struct page **map_map, 1774 unsigned long pnum_begin, 1775 unsigned long pnum_end, 1776 unsigned long map_count, 1777 int nodeid); 1778 1779 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1780 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1781 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1782 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1783 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1784 void *vmemmap_alloc_block(unsigned long size, int node); 1785 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1786 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1787 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1788 int node); 1789 int vmemmap_populate(unsigned long start, unsigned long end, int node); 1790 void vmemmap_populate_print_last(void); 1791 #ifdef CONFIG_MEMORY_HOTPLUG 1792 void vmemmap_free(unsigned long start, unsigned long end); 1793 #endif 1794 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1795 unsigned long size); 1796 1797 enum mf_flags { 1798 MF_COUNT_INCREASED = 1 << 0, 1799 MF_ACTION_REQUIRED = 1 << 1, 1800 MF_MUST_KILL = 1 << 2, 1801 }; 1802 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1803 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1804 extern int unpoison_memory(unsigned long pfn); 1805 extern int sysctl_memory_failure_early_kill; 1806 extern int sysctl_memory_failure_recovery; 1807 extern void shake_page(struct page *p, int access); 1808 extern atomic_long_t num_poisoned_pages; 1809 extern int soft_offline_page(struct page *page, int flags); 1810 1811 extern void dump_page(struct page *page); 1812 1813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1814 extern void clear_huge_page(struct page *page, 1815 unsigned long addr, 1816 unsigned int pages_per_huge_page); 1817 extern void copy_user_huge_page(struct page *dst, struct page *src, 1818 unsigned long addr, struct vm_area_struct *vma, 1819 unsigned int pages_per_huge_page); 1820 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1821 1822 #ifdef CONFIG_DEBUG_PAGEALLOC 1823 extern unsigned int _debug_guardpage_minorder; 1824 1825 static inline unsigned int debug_guardpage_minorder(void) 1826 { 1827 return _debug_guardpage_minorder; 1828 } 1829 1830 static inline bool page_is_guard(struct page *page) 1831 { 1832 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1833 } 1834 #else 1835 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1836 static inline bool page_is_guard(struct page *page) { return false; } 1837 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1838 1839 #if MAX_NUMNODES > 1 1840 void __init setup_nr_node_ids(void); 1841 #else 1842 static inline void setup_nr_node_ids(void) {} 1843 #endif 1844 1845 #endif /* __KERNEL__ */ 1846 #endif /* _LINUX_MM_H */ 1847