1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 extern unsigned long sysctl_user_reserve_kbytes; 48 extern unsigned long sysctl_admin_reserve_kbytes; 49 50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 51 52 /* to align the pointer to the (next) page boundary */ 53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 54 55 /* 56 * Linux kernel virtual memory manager primitives. 57 * The idea being to have a "virtual" mm in the same way 58 * we have a virtual fs - giving a cleaner interface to the 59 * mm details, and allowing different kinds of memory mappings 60 * (from shared memory to executable loading to arbitrary 61 * mmap() functions). 62 */ 63 64 extern struct kmem_cache *vm_area_cachep; 65 66 #ifndef CONFIG_MMU 67 extern struct rb_root nommu_region_tree; 68 extern struct rw_semaphore nommu_region_sem; 69 70 extern unsigned int kobjsize(const void *objp); 71 #endif 72 73 /* 74 * vm_flags in vm_area_struct, see mm_types.h. 75 */ 76 #define VM_NONE 0x00000000 77 78 #define VM_READ 0x00000001 /* currently active flags */ 79 #define VM_WRITE 0x00000002 80 #define VM_EXEC 0x00000004 81 #define VM_SHARED 0x00000008 82 83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 85 #define VM_MAYWRITE 0x00000020 86 #define VM_MAYEXEC 0x00000040 87 #define VM_MAYSHARE 0x00000080 88 89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 90 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 91 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 92 93 #define VM_LOCKED 0x00002000 94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 95 96 /* Used by sys_madvise() */ 97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 99 100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 107 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 108 109 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 110 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 111 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 112 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 113 114 #if defined(CONFIG_X86) 115 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 116 #elif defined(CONFIG_PPC) 117 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 118 #elif defined(CONFIG_PARISC) 119 # define VM_GROWSUP VM_ARCH_1 120 #elif defined(CONFIG_METAG) 121 # define VM_GROWSUP VM_ARCH_1 122 #elif defined(CONFIG_IA64) 123 # define VM_GROWSUP VM_ARCH_1 124 #elif !defined(CONFIG_MMU) 125 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 126 #endif 127 128 #ifndef VM_GROWSUP 129 # define VM_GROWSUP VM_NONE 130 #endif 131 132 /* Bits set in the VMA until the stack is in its final location */ 133 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 134 135 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 136 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 137 #endif 138 139 #ifdef CONFIG_STACK_GROWSUP 140 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 141 #else 142 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 143 #endif 144 145 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 146 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 147 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 148 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 149 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 150 151 /* 152 * Special vmas that are non-mergable, non-mlock()able. 153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 154 */ 155 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 156 157 /* 158 * mapping from the currently active vm_flags protection bits (the 159 * low four bits) to a page protection mask.. 160 */ 161 extern pgprot_t protection_map[16]; 162 163 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 164 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 165 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 166 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 167 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 168 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 169 #define FAULT_FLAG_TRIED 0x40 /* second try */ 170 171 /* 172 * vm_fault is filled by the the pagefault handler and passed to the vma's 173 * ->fault function. The vma's ->fault is responsible for returning a bitmask 174 * of VM_FAULT_xxx flags that give details about how the fault was handled. 175 * 176 * pgoff should be used in favour of virtual_address, if possible. If pgoff 177 * is used, one may implement ->remap_pages to get nonlinear mapping support. 178 */ 179 struct vm_fault { 180 unsigned int flags; /* FAULT_FLAG_xxx flags */ 181 pgoff_t pgoff; /* Logical page offset based on vma */ 182 void __user *virtual_address; /* Faulting virtual address */ 183 184 struct page *page; /* ->fault handlers should return a 185 * page here, unless VM_FAULT_NOPAGE 186 * is set (which is also implied by 187 * VM_FAULT_ERROR). 188 */ 189 }; 190 191 /* 192 * These are the virtual MM functions - opening of an area, closing and 193 * unmapping it (needed to keep files on disk up-to-date etc), pointer 194 * to the functions called when a no-page or a wp-page exception occurs. 195 */ 196 struct vm_operations_struct { 197 void (*open)(struct vm_area_struct * area); 198 void (*close)(struct vm_area_struct * area); 199 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 200 201 /* notification that a previously read-only page is about to become 202 * writable, if an error is returned it will cause a SIGBUS */ 203 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 204 205 /* called by access_process_vm when get_user_pages() fails, typically 206 * for use by special VMAs that can switch between memory and hardware 207 */ 208 int (*access)(struct vm_area_struct *vma, unsigned long addr, 209 void *buf, int len, int write); 210 #ifdef CONFIG_NUMA 211 /* 212 * set_policy() op must add a reference to any non-NULL @new mempolicy 213 * to hold the policy upon return. Caller should pass NULL @new to 214 * remove a policy and fall back to surrounding context--i.e. do not 215 * install a MPOL_DEFAULT policy, nor the task or system default 216 * mempolicy. 217 */ 218 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 219 220 /* 221 * get_policy() op must add reference [mpol_get()] to any policy at 222 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 223 * in mm/mempolicy.c will do this automatically. 224 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 225 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 226 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 227 * must return NULL--i.e., do not "fallback" to task or system default 228 * policy. 229 */ 230 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 231 unsigned long addr); 232 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 233 const nodemask_t *to, unsigned long flags); 234 #endif 235 /* called by sys_remap_file_pages() to populate non-linear mapping */ 236 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 237 unsigned long size, pgoff_t pgoff); 238 }; 239 240 struct mmu_gather; 241 struct inode; 242 243 #define page_private(page) ((page)->private) 244 #define set_page_private(page, v) ((page)->private = (v)) 245 246 /* It's valid only if the page is free path or free_list */ 247 static inline void set_freepage_migratetype(struct page *page, int migratetype) 248 { 249 page->index = migratetype; 250 } 251 252 /* It's valid only if the page is free path or free_list */ 253 static inline int get_freepage_migratetype(struct page *page) 254 { 255 return page->index; 256 } 257 258 /* 259 * FIXME: take this include out, include page-flags.h in 260 * files which need it (119 of them) 261 */ 262 #include <linux/page-flags.h> 263 #include <linux/huge_mm.h> 264 265 /* 266 * Methods to modify the page usage count. 267 * 268 * What counts for a page usage: 269 * - cache mapping (page->mapping) 270 * - private data (page->private) 271 * - page mapped in a task's page tables, each mapping 272 * is counted separately 273 * 274 * Also, many kernel routines increase the page count before a critical 275 * routine so they can be sure the page doesn't go away from under them. 276 */ 277 278 /* 279 * Drop a ref, return true if the refcount fell to zero (the page has no users) 280 */ 281 static inline int put_page_testzero(struct page *page) 282 { 283 VM_BUG_ON(atomic_read(&page->_count) == 0); 284 return atomic_dec_and_test(&page->_count); 285 } 286 287 /* 288 * Try to grab a ref unless the page has a refcount of zero, return false if 289 * that is the case. 290 */ 291 static inline int get_page_unless_zero(struct page *page) 292 { 293 return atomic_inc_not_zero(&page->_count); 294 } 295 296 extern int page_is_ram(unsigned long pfn); 297 298 /* Support for virtually mapped pages */ 299 struct page *vmalloc_to_page(const void *addr); 300 unsigned long vmalloc_to_pfn(const void *addr); 301 302 /* 303 * Determine if an address is within the vmalloc range 304 * 305 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 306 * is no special casing required. 307 */ 308 static inline int is_vmalloc_addr(const void *x) 309 { 310 #ifdef CONFIG_MMU 311 unsigned long addr = (unsigned long)x; 312 313 return addr >= VMALLOC_START && addr < VMALLOC_END; 314 #else 315 return 0; 316 #endif 317 } 318 #ifdef CONFIG_MMU 319 extern int is_vmalloc_or_module_addr(const void *x); 320 #else 321 static inline int is_vmalloc_or_module_addr(const void *x) 322 { 323 return 0; 324 } 325 #endif 326 327 static inline void compound_lock(struct page *page) 328 { 329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 330 VM_BUG_ON(PageSlab(page)); 331 bit_spin_lock(PG_compound_lock, &page->flags); 332 #endif 333 } 334 335 static inline void compound_unlock(struct page *page) 336 { 337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 338 VM_BUG_ON(PageSlab(page)); 339 bit_spin_unlock(PG_compound_lock, &page->flags); 340 #endif 341 } 342 343 static inline unsigned long compound_lock_irqsave(struct page *page) 344 { 345 unsigned long uninitialized_var(flags); 346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 347 local_irq_save(flags); 348 compound_lock(page); 349 #endif 350 return flags; 351 } 352 353 static inline void compound_unlock_irqrestore(struct page *page, 354 unsigned long flags) 355 { 356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 357 compound_unlock(page); 358 local_irq_restore(flags); 359 #endif 360 } 361 362 static inline struct page *compound_head(struct page *page) 363 { 364 if (unlikely(PageTail(page))) 365 return page->first_page; 366 return page; 367 } 368 369 /* 370 * The atomic page->_mapcount, starts from -1: so that transitions 371 * both from it and to it can be tracked, using atomic_inc_and_test 372 * and atomic_add_negative(-1). 373 */ 374 static inline void page_mapcount_reset(struct page *page) 375 { 376 atomic_set(&(page)->_mapcount, -1); 377 } 378 379 static inline int page_mapcount(struct page *page) 380 { 381 return atomic_read(&(page)->_mapcount) + 1; 382 } 383 384 static inline int page_count(struct page *page) 385 { 386 return atomic_read(&compound_head(page)->_count); 387 } 388 389 static inline void get_huge_page_tail(struct page *page) 390 { 391 /* 392 * __split_huge_page_refcount() cannot run 393 * from under us. 394 */ 395 VM_BUG_ON(page_mapcount(page) < 0); 396 VM_BUG_ON(atomic_read(&page->_count) != 0); 397 atomic_inc(&page->_mapcount); 398 } 399 400 extern bool __get_page_tail(struct page *page); 401 402 static inline void get_page(struct page *page) 403 { 404 if (unlikely(PageTail(page))) 405 if (likely(__get_page_tail(page))) 406 return; 407 /* 408 * Getting a normal page or the head of a compound page 409 * requires to already have an elevated page->_count. 410 */ 411 VM_BUG_ON(atomic_read(&page->_count) <= 0); 412 atomic_inc(&page->_count); 413 } 414 415 static inline struct page *virt_to_head_page(const void *x) 416 { 417 struct page *page = virt_to_page(x); 418 return compound_head(page); 419 } 420 421 /* 422 * Setup the page count before being freed into the page allocator for 423 * the first time (boot or memory hotplug) 424 */ 425 static inline void init_page_count(struct page *page) 426 { 427 atomic_set(&page->_count, 1); 428 } 429 430 /* 431 * PageBuddy() indicate that the page is free and in the buddy system 432 * (see mm/page_alloc.c). 433 * 434 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 435 * -2 so that an underflow of the page_mapcount() won't be mistaken 436 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 437 * efficiently by most CPU architectures. 438 */ 439 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 440 441 static inline int PageBuddy(struct page *page) 442 { 443 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 444 } 445 446 static inline void __SetPageBuddy(struct page *page) 447 { 448 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 449 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 450 } 451 452 static inline void __ClearPageBuddy(struct page *page) 453 { 454 VM_BUG_ON(!PageBuddy(page)); 455 atomic_set(&page->_mapcount, -1); 456 } 457 458 void put_page(struct page *page); 459 void put_pages_list(struct list_head *pages); 460 461 void split_page(struct page *page, unsigned int order); 462 int split_free_page(struct page *page); 463 464 /* 465 * Compound pages have a destructor function. Provide a 466 * prototype for that function and accessor functions. 467 * These are _only_ valid on the head of a PG_compound page. 468 */ 469 typedef void compound_page_dtor(struct page *); 470 471 static inline void set_compound_page_dtor(struct page *page, 472 compound_page_dtor *dtor) 473 { 474 page[1].lru.next = (void *)dtor; 475 } 476 477 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 478 { 479 return (compound_page_dtor *)page[1].lru.next; 480 } 481 482 static inline int compound_order(struct page *page) 483 { 484 if (!PageHead(page)) 485 return 0; 486 return (unsigned long)page[1].lru.prev; 487 } 488 489 static inline int compound_trans_order(struct page *page) 490 { 491 int order; 492 unsigned long flags; 493 494 if (!PageHead(page)) 495 return 0; 496 497 flags = compound_lock_irqsave(page); 498 order = compound_order(page); 499 compound_unlock_irqrestore(page, flags); 500 return order; 501 } 502 503 static inline void set_compound_order(struct page *page, unsigned long order) 504 { 505 page[1].lru.prev = (void *)order; 506 } 507 508 #ifdef CONFIG_MMU 509 /* 510 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 511 * servicing faults for write access. In the normal case, do always want 512 * pte_mkwrite. But get_user_pages can cause write faults for mappings 513 * that do not have writing enabled, when used by access_process_vm. 514 */ 515 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 516 { 517 if (likely(vma->vm_flags & VM_WRITE)) 518 pte = pte_mkwrite(pte); 519 return pte; 520 } 521 #endif 522 523 /* 524 * Multiple processes may "see" the same page. E.g. for untouched 525 * mappings of /dev/null, all processes see the same page full of 526 * zeroes, and text pages of executables and shared libraries have 527 * only one copy in memory, at most, normally. 528 * 529 * For the non-reserved pages, page_count(page) denotes a reference count. 530 * page_count() == 0 means the page is free. page->lru is then used for 531 * freelist management in the buddy allocator. 532 * page_count() > 0 means the page has been allocated. 533 * 534 * Pages are allocated by the slab allocator in order to provide memory 535 * to kmalloc and kmem_cache_alloc. In this case, the management of the 536 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 537 * unless a particular usage is carefully commented. (the responsibility of 538 * freeing the kmalloc memory is the caller's, of course). 539 * 540 * A page may be used by anyone else who does a __get_free_page(). 541 * In this case, page_count still tracks the references, and should only 542 * be used through the normal accessor functions. The top bits of page->flags 543 * and page->virtual store page management information, but all other fields 544 * are unused and could be used privately, carefully. The management of this 545 * page is the responsibility of the one who allocated it, and those who have 546 * subsequently been given references to it. 547 * 548 * The other pages (we may call them "pagecache pages") are completely 549 * managed by the Linux memory manager: I/O, buffers, swapping etc. 550 * The following discussion applies only to them. 551 * 552 * A pagecache page contains an opaque `private' member, which belongs to the 553 * page's address_space. Usually, this is the address of a circular list of 554 * the page's disk buffers. PG_private must be set to tell the VM to call 555 * into the filesystem to release these pages. 556 * 557 * A page may belong to an inode's memory mapping. In this case, page->mapping 558 * is the pointer to the inode, and page->index is the file offset of the page, 559 * in units of PAGE_CACHE_SIZE. 560 * 561 * If pagecache pages are not associated with an inode, they are said to be 562 * anonymous pages. These may become associated with the swapcache, and in that 563 * case PG_swapcache is set, and page->private is an offset into the swapcache. 564 * 565 * In either case (swapcache or inode backed), the pagecache itself holds one 566 * reference to the page. Setting PG_private should also increment the 567 * refcount. The each user mapping also has a reference to the page. 568 * 569 * The pagecache pages are stored in a per-mapping radix tree, which is 570 * rooted at mapping->page_tree, and indexed by offset. 571 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 572 * lists, we instead now tag pages as dirty/writeback in the radix tree. 573 * 574 * All pagecache pages may be subject to I/O: 575 * - inode pages may need to be read from disk, 576 * - inode pages which have been modified and are MAP_SHARED may need 577 * to be written back to the inode on disk, 578 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 579 * modified may need to be swapped out to swap space and (later) to be read 580 * back into memory. 581 */ 582 583 /* 584 * The zone field is never updated after free_area_init_core() 585 * sets it, so none of the operations on it need to be atomic. 586 */ 587 588 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 589 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 590 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 591 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 592 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 593 594 /* 595 * Define the bit shifts to access each section. For non-existent 596 * sections we define the shift as 0; that plus a 0 mask ensures 597 * the compiler will optimise away reference to them. 598 */ 599 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 600 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 601 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 602 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 603 604 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 605 #ifdef NODE_NOT_IN_PAGE_FLAGS 606 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 607 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 608 SECTIONS_PGOFF : ZONES_PGOFF) 609 #else 610 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 611 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 612 NODES_PGOFF : ZONES_PGOFF) 613 #endif 614 615 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 616 617 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 618 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 619 #endif 620 621 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 622 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 623 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 624 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 625 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 626 627 static inline enum zone_type page_zonenum(const struct page *page) 628 { 629 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 630 } 631 632 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 633 #define SECTION_IN_PAGE_FLAGS 634 #endif 635 636 /* 637 * The identification function is only used by the buddy allocator for 638 * determining if two pages could be buddies. We are not really 639 * identifying a zone since we could be using a the section number 640 * id if we have not node id available in page flags. 641 * We guarantee only that it will return the same value for two 642 * combinable pages in a zone. 643 */ 644 static inline int page_zone_id(struct page *page) 645 { 646 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 647 } 648 649 static inline int zone_to_nid(struct zone *zone) 650 { 651 #ifdef CONFIG_NUMA 652 return zone->node; 653 #else 654 return 0; 655 #endif 656 } 657 658 #ifdef NODE_NOT_IN_PAGE_FLAGS 659 extern int page_to_nid(const struct page *page); 660 #else 661 static inline int page_to_nid(const struct page *page) 662 { 663 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 664 } 665 #endif 666 667 #ifdef CONFIG_NUMA_BALANCING 668 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 669 static inline int page_nid_xchg_last(struct page *page, int nid) 670 { 671 return xchg(&page->_last_nid, nid); 672 } 673 674 static inline int page_nid_last(struct page *page) 675 { 676 return page->_last_nid; 677 } 678 static inline void page_nid_reset_last(struct page *page) 679 { 680 page->_last_nid = -1; 681 } 682 #else 683 static inline int page_nid_last(struct page *page) 684 { 685 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 686 } 687 688 extern int page_nid_xchg_last(struct page *page, int nid); 689 690 static inline void page_nid_reset_last(struct page *page) 691 { 692 int nid = (1 << LAST_NID_SHIFT) - 1; 693 694 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 695 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 696 } 697 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 698 #else 699 static inline int page_nid_xchg_last(struct page *page, int nid) 700 { 701 return page_to_nid(page); 702 } 703 704 static inline int page_nid_last(struct page *page) 705 { 706 return page_to_nid(page); 707 } 708 709 static inline void page_nid_reset_last(struct page *page) 710 { 711 } 712 #endif 713 714 static inline struct zone *page_zone(const struct page *page) 715 { 716 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 717 } 718 719 #ifdef SECTION_IN_PAGE_FLAGS 720 static inline void set_page_section(struct page *page, unsigned long section) 721 { 722 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 723 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 724 } 725 726 static inline unsigned long page_to_section(const struct page *page) 727 { 728 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 729 } 730 #endif 731 732 static inline void set_page_zone(struct page *page, enum zone_type zone) 733 { 734 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 735 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 736 } 737 738 static inline void set_page_node(struct page *page, unsigned long node) 739 { 740 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 741 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 742 } 743 744 static inline void set_page_links(struct page *page, enum zone_type zone, 745 unsigned long node, unsigned long pfn) 746 { 747 set_page_zone(page, zone); 748 set_page_node(page, node); 749 #ifdef SECTION_IN_PAGE_FLAGS 750 set_page_section(page, pfn_to_section_nr(pfn)); 751 #endif 752 } 753 754 /* 755 * Some inline functions in vmstat.h depend on page_zone() 756 */ 757 #include <linux/vmstat.h> 758 759 static __always_inline void *lowmem_page_address(const struct page *page) 760 { 761 return __va(PFN_PHYS(page_to_pfn(page))); 762 } 763 764 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 765 #define HASHED_PAGE_VIRTUAL 766 #endif 767 768 #if defined(WANT_PAGE_VIRTUAL) 769 #define page_address(page) ((page)->virtual) 770 #define set_page_address(page, address) \ 771 do { \ 772 (page)->virtual = (address); \ 773 } while(0) 774 #define page_address_init() do { } while(0) 775 #endif 776 777 #if defined(HASHED_PAGE_VIRTUAL) 778 void *page_address(const struct page *page); 779 void set_page_address(struct page *page, void *virtual); 780 void page_address_init(void); 781 #endif 782 783 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 784 #define page_address(page) lowmem_page_address(page) 785 #define set_page_address(page, address) do { } while(0) 786 #define page_address_init() do { } while(0) 787 #endif 788 789 /* 790 * On an anonymous page mapped into a user virtual memory area, 791 * page->mapping points to its anon_vma, not to a struct address_space; 792 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 793 * 794 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 795 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 796 * and then page->mapping points, not to an anon_vma, but to a private 797 * structure which KSM associates with that merged page. See ksm.h. 798 * 799 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 800 * 801 * Please note that, confusingly, "page_mapping" refers to the inode 802 * address_space which maps the page from disk; whereas "page_mapped" 803 * refers to user virtual address space into which the page is mapped. 804 */ 805 #define PAGE_MAPPING_ANON 1 806 #define PAGE_MAPPING_KSM 2 807 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 808 809 extern struct address_space *page_mapping(struct page *page); 810 811 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 812 static inline void *page_rmapping(struct page *page) 813 { 814 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 815 } 816 817 extern struct address_space *__page_file_mapping(struct page *); 818 819 static inline 820 struct address_space *page_file_mapping(struct page *page) 821 { 822 if (unlikely(PageSwapCache(page))) 823 return __page_file_mapping(page); 824 825 return page->mapping; 826 } 827 828 static inline int PageAnon(struct page *page) 829 { 830 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 831 } 832 833 /* 834 * Return the pagecache index of the passed page. Regular pagecache pages 835 * use ->index whereas swapcache pages use ->private 836 */ 837 static inline pgoff_t page_index(struct page *page) 838 { 839 if (unlikely(PageSwapCache(page))) 840 return page_private(page); 841 return page->index; 842 } 843 844 extern pgoff_t __page_file_index(struct page *page); 845 846 /* 847 * Return the file index of the page. Regular pagecache pages use ->index 848 * whereas swapcache pages use swp_offset(->private) 849 */ 850 static inline pgoff_t page_file_index(struct page *page) 851 { 852 if (unlikely(PageSwapCache(page))) 853 return __page_file_index(page); 854 855 return page->index; 856 } 857 858 /* 859 * Return true if this page is mapped into pagetables. 860 */ 861 static inline int page_mapped(struct page *page) 862 { 863 return atomic_read(&(page)->_mapcount) >= 0; 864 } 865 866 /* 867 * Different kinds of faults, as returned by handle_mm_fault(). 868 * Used to decide whether a process gets delivered SIGBUS or 869 * just gets major/minor fault counters bumped up. 870 */ 871 872 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 873 874 #define VM_FAULT_OOM 0x0001 875 #define VM_FAULT_SIGBUS 0x0002 876 #define VM_FAULT_MAJOR 0x0004 877 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 878 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 879 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 880 881 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 882 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 883 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 884 885 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 886 887 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 888 VM_FAULT_HWPOISON_LARGE) 889 890 /* Encode hstate index for a hwpoisoned large page */ 891 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 892 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 893 894 /* 895 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 896 */ 897 extern void pagefault_out_of_memory(void); 898 899 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 900 901 /* 902 * Flags passed to show_mem() and show_free_areas() to suppress output in 903 * various contexts. 904 */ 905 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 906 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 907 908 extern void show_free_areas(unsigned int flags); 909 extern bool skip_free_areas_node(unsigned int flags, int nid); 910 911 int shmem_zero_setup(struct vm_area_struct *); 912 913 extern int can_do_mlock(void); 914 extern int user_shm_lock(size_t, struct user_struct *); 915 extern void user_shm_unlock(size_t, struct user_struct *); 916 917 /* 918 * Parameter block passed down to zap_pte_range in exceptional cases. 919 */ 920 struct zap_details { 921 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 922 struct address_space *check_mapping; /* Check page->mapping if set */ 923 pgoff_t first_index; /* Lowest page->index to unmap */ 924 pgoff_t last_index; /* Highest page->index to unmap */ 925 }; 926 927 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 928 pte_t pte); 929 930 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 931 unsigned long size); 932 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 933 unsigned long size, struct zap_details *); 934 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 935 unsigned long start, unsigned long end); 936 937 /** 938 * mm_walk - callbacks for walk_page_range 939 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 940 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 941 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 942 * this handler is required to be able to handle 943 * pmd_trans_huge() pmds. They may simply choose to 944 * split_huge_page() instead of handling it explicitly. 945 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 946 * @pte_hole: if set, called for each hole at all levels 947 * @hugetlb_entry: if set, called for each hugetlb entry 948 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 949 * is used. 950 * 951 * (see walk_page_range for more details) 952 */ 953 struct mm_walk { 954 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 955 unsigned long next, struct mm_walk *walk); 956 int (*pud_entry)(pud_t *pud, unsigned long addr, 957 unsigned long next, struct mm_walk *walk); 958 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 959 unsigned long next, struct mm_walk *walk); 960 int (*pte_entry)(pte_t *pte, unsigned long addr, 961 unsigned long next, struct mm_walk *walk); 962 int (*pte_hole)(unsigned long addr, unsigned long next, 963 struct mm_walk *walk); 964 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 965 unsigned long addr, unsigned long next, 966 struct mm_walk *walk); 967 struct mm_struct *mm; 968 void *private; 969 }; 970 971 int walk_page_range(unsigned long addr, unsigned long end, 972 struct mm_walk *walk); 973 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 974 unsigned long end, unsigned long floor, unsigned long ceiling); 975 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 976 struct vm_area_struct *vma); 977 void unmap_mapping_range(struct address_space *mapping, 978 loff_t const holebegin, loff_t const holelen, int even_cows); 979 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 980 unsigned long *pfn); 981 int follow_phys(struct vm_area_struct *vma, unsigned long address, 982 unsigned int flags, unsigned long *prot, resource_size_t *phys); 983 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 984 void *buf, int len, int write); 985 986 static inline void unmap_shared_mapping_range(struct address_space *mapping, 987 loff_t const holebegin, loff_t const holelen) 988 { 989 unmap_mapping_range(mapping, holebegin, holelen, 0); 990 } 991 992 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 993 extern void truncate_setsize(struct inode *inode, loff_t newsize); 994 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 995 int truncate_inode_page(struct address_space *mapping, struct page *page); 996 int generic_error_remove_page(struct address_space *mapping, struct page *page); 997 int invalidate_inode_page(struct page *page); 998 999 #ifdef CONFIG_MMU 1000 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1001 unsigned long address, unsigned int flags); 1002 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1003 unsigned long address, unsigned int fault_flags); 1004 #else 1005 static inline int handle_mm_fault(struct mm_struct *mm, 1006 struct vm_area_struct *vma, unsigned long address, 1007 unsigned int flags) 1008 { 1009 /* should never happen if there's no MMU */ 1010 BUG(); 1011 return VM_FAULT_SIGBUS; 1012 } 1013 static inline int fixup_user_fault(struct task_struct *tsk, 1014 struct mm_struct *mm, unsigned long address, 1015 unsigned int fault_flags) 1016 { 1017 /* should never happen if there's no MMU */ 1018 BUG(); 1019 return -EFAULT; 1020 } 1021 #endif 1022 1023 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1024 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1025 void *buf, int len, int write); 1026 1027 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1028 unsigned long start, unsigned long nr_pages, 1029 unsigned int foll_flags, struct page **pages, 1030 struct vm_area_struct **vmas, int *nonblocking); 1031 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1032 unsigned long start, unsigned long nr_pages, 1033 int write, int force, struct page **pages, 1034 struct vm_area_struct **vmas); 1035 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1036 struct page **pages); 1037 struct kvec; 1038 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1039 struct page **pages); 1040 int get_kernel_page(unsigned long start, int write, struct page **pages); 1041 struct page *get_dump_page(unsigned long addr); 1042 1043 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1044 extern void do_invalidatepage(struct page *page, unsigned long offset); 1045 1046 int __set_page_dirty_nobuffers(struct page *page); 1047 int __set_page_dirty_no_writeback(struct page *page); 1048 int redirty_page_for_writepage(struct writeback_control *wbc, 1049 struct page *page); 1050 void account_page_dirtied(struct page *page, struct address_space *mapping); 1051 void account_page_writeback(struct page *page); 1052 int set_page_dirty(struct page *page); 1053 int set_page_dirty_lock(struct page *page); 1054 int clear_page_dirty_for_io(struct page *page); 1055 1056 /* Is the vma a continuation of the stack vma above it? */ 1057 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1058 { 1059 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1060 } 1061 1062 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1063 unsigned long addr) 1064 { 1065 return (vma->vm_flags & VM_GROWSDOWN) && 1066 (vma->vm_start == addr) && 1067 !vma_growsdown(vma->vm_prev, addr); 1068 } 1069 1070 /* Is the vma a continuation of the stack vma below it? */ 1071 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1072 { 1073 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1074 } 1075 1076 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1077 unsigned long addr) 1078 { 1079 return (vma->vm_flags & VM_GROWSUP) && 1080 (vma->vm_end == addr) && 1081 !vma_growsup(vma->vm_next, addr); 1082 } 1083 1084 extern pid_t 1085 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1086 1087 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1088 unsigned long old_addr, struct vm_area_struct *new_vma, 1089 unsigned long new_addr, unsigned long len, 1090 bool need_rmap_locks); 1091 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1092 unsigned long end, pgprot_t newprot, 1093 int dirty_accountable, int prot_numa); 1094 extern int mprotect_fixup(struct vm_area_struct *vma, 1095 struct vm_area_struct **pprev, unsigned long start, 1096 unsigned long end, unsigned long newflags); 1097 1098 /* 1099 * doesn't attempt to fault and will return short. 1100 */ 1101 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1102 struct page **pages); 1103 /* 1104 * per-process(per-mm_struct) statistics. 1105 */ 1106 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1107 { 1108 long val = atomic_long_read(&mm->rss_stat.count[member]); 1109 1110 #ifdef SPLIT_RSS_COUNTING 1111 /* 1112 * counter is updated in asynchronous manner and may go to minus. 1113 * But it's never be expected number for users. 1114 */ 1115 if (val < 0) 1116 val = 0; 1117 #endif 1118 return (unsigned long)val; 1119 } 1120 1121 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1122 { 1123 atomic_long_add(value, &mm->rss_stat.count[member]); 1124 } 1125 1126 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1127 { 1128 atomic_long_inc(&mm->rss_stat.count[member]); 1129 } 1130 1131 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1132 { 1133 atomic_long_dec(&mm->rss_stat.count[member]); 1134 } 1135 1136 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1137 { 1138 return get_mm_counter(mm, MM_FILEPAGES) + 1139 get_mm_counter(mm, MM_ANONPAGES); 1140 } 1141 1142 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1143 { 1144 return max(mm->hiwater_rss, get_mm_rss(mm)); 1145 } 1146 1147 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1148 { 1149 return max(mm->hiwater_vm, mm->total_vm); 1150 } 1151 1152 static inline void update_hiwater_rss(struct mm_struct *mm) 1153 { 1154 unsigned long _rss = get_mm_rss(mm); 1155 1156 if ((mm)->hiwater_rss < _rss) 1157 (mm)->hiwater_rss = _rss; 1158 } 1159 1160 static inline void update_hiwater_vm(struct mm_struct *mm) 1161 { 1162 if (mm->hiwater_vm < mm->total_vm) 1163 mm->hiwater_vm = mm->total_vm; 1164 } 1165 1166 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1167 struct mm_struct *mm) 1168 { 1169 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1170 1171 if (*maxrss < hiwater_rss) 1172 *maxrss = hiwater_rss; 1173 } 1174 1175 #if defined(SPLIT_RSS_COUNTING) 1176 void sync_mm_rss(struct mm_struct *mm); 1177 #else 1178 static inline void sync_mm_rss(struct mm_struct *mm) 1179 { 1180 } 1181 #endif 1182 1183 int vma_wants_writenotify(struct vm_area_struct *vma); 1184 1185 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1186 spinlock_t **ptl); 1187 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1188 spinlock_t **ptl) 1189 { 1190 pte_t *ptep; 1191 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1192 return ptep; 1193 } 1194 1195 #ifdef __PAGETABLE_PUD_FOLDED 1196 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1197 unsigned long address) 1198 { 1199 return 0; 1200 } 1201 #else 1202 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1203 #endif 1204 1205 #ifdef __PAGETABLE_PMD_FOLDED 1206 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1207 unsigned long address) 1208 { 1209 return 0; 1210 } 1211 #else 1212 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1213 #endif 1214 1215 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1216 pmd_t *pmd, unsigned long address); 1217 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1218 1219 /* 1220 * The following ifdef needed to get the 4level-fixup.h header to work. 1221 * Remove it when 4level-fixup.h has been removed. 1222 */ 1223 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1224 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1225 { 1226 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1227 NULL: pud_offset(pgd, address); 1228 } 1229 1230 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1231 { 1232 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1233 NULL: pmd_offset(pud, address); 1234 } 1235 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1236 1237 #if USE_SPLIT_PTLOCKS 1238 /* 1239 * We tuck a spinlock to guard each pagetable page into its struct page, 1240 * at page->private, with BUILD_BUG_ON to make sure that this will not 1241 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1242 * When freeing, reset page->mapping so free_pages_check won't complain. 1243 */ 1244 #define __pte_lockptr(page) &((page)->ptl) 1245 #define pte_lock_init(_page) do { \ 1246 spin_lock_init(__pte_lockptr(_page)); \ 1247 } while (0) 1248 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1249 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1250 #else /* !USE_SPLIT_PTLOCKS */ 1251 /* 1252 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1253 */ 1254 #define pte_lock_init(page) do {} while (0) 1255 #define pte_lock_deinit(page) do {} while (0) 1256 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1257 #endif /* USE_SPLIT_PTLOCKS */ 1258 1259 static inline void pgtable_page_ctor(struct page *page) 1260 { 1261 pte_lock_init(page); 1262 inc_zone_page_state(page, NR_PAGETABLE); 1263 } 1264 1265 static inline void pgtable_page_dtor(struct page *page) 1266 { 1267 pte_lock_deinit(page); 1268 dec_zone_page_state(page, NR_PAGETABLE); 1269 } 1270 1271 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1272 ({ \ 1273 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1274 pte_t *__pte = pte_offset_map(pmd, address); \ 1275 *(ptlp) = __ptl; \ 1276 spin_lock(__ptl); \ 1277 __pte; \ 1278 }) 1279 1280 #define pte_unmap_unlock(pte, ptl) do { \ 1281 spin_unlock(ptl); \ 1282 pte_unmap(pte); \ 1283 } while (0) 1284 1285 #define pte_alloc_map(mm, vma, pmd, address) \ 1286 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1287 pmd, address))? \ 1288 NULL: pte_offset_map(pmd, address)) 1289 1290 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1291 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1292 pmd, address))? \ 1293 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1294 1295 #define pte_alloc_kernel(pmd, address) \ 1296 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1297 NULL: pte_offset_kernel(pmd, address)) 1298 1299 extern void free_area_init(unsigned long * zones_size); 1300 extern void free_area_init_node(int nid, unsigned long * zones_size, 1301 unsigned long zone_start_pfn, unsigned long *zholes_size); 1302 extern void free_initmem(void); 1303 1304 /* 1305 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1306 * into the buddy system. The freed pages will be poisoned with pattern 1307 * "poison" if it's non-zero. 1308 * Return pages freed into the buddy system. 1309 */ 1310 extern unsigned long free_reserved_area(unsigned long start, unsigned long end, 1311 int poison, char *s); 1312 #ifdef CONFIG_HIGHMEM 1313 /* 1314 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1315 * and totalram_pages. 1316 */ 1317 extern void free_highmem_page(struct page *page); 1318 #endif 1319 1320 static inline void adjust_managed_page_count(struct page *page, long count) 1321 { 1322 totalram_pages += count; 1323 } 1324 1325 /* Free the reserved page into the buddy system, so it gets managed. */ 1326 static inline void __free_reserved_page(struct page *page) 1327 { 1328 ClearPageReserved(page); 1329 init_page_count(page); 1330 __free_page(page); 1331 } 1332 1333 static inline void free_reserved_page(struct page *page) 1334 { 1335 __free_reserved_page(page); 1336 adjust_managed_page_count(page, 1); 1337 } 1338 1339 static inline void mark_page_reserved(struct page *page) 1340 { 1341 SetPageReserved(page); 1342 adjust_managed_page_count(page, -1); 1343 } 1344 1345 /* 1346 * Default method to free all the __init memory into the buddy system. 1347 * The freed pages will be poisoned with pattern "poison" if it is 1348 * non-zero. Return pages freed into the buddy system. 1349 */ 1350 static inline unsigned long free_initmem_default(int poison) 1351 { 1352 extern char __init_begin[], __init_end[]; 1353 1354 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) , 1355 ((unsigned long)&__init_end) & PAGE_MASK, 1356 poison, "unused kernel"); 1357 } 1358 1359 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1360 /* 1361 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1362 * zones, allocate the backing mem_map and account for memory holes in a more 1363 * architecture independent manner. This is a substitute for creating the 1364 * zone_sizes[] and zholes_size[] arrays and passing them to 1365 * free_area_init_node() 1366 * 1367 * An architecture is expected to register range of page frames backed by 1368 * physical memory with memblock_add[_node]() before calling 1369 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1370 * usage, an architecture is expected to do something like 1371 * 1372 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1373 * max_highmem_pfn}; 1374 * for_each_valid_physical_page_range() 1375 * memblock_add_node(base, size, nid) 1376 * free_area_init_nodes(max_zone_pfns); 1377 * 1378 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1379 * registered physical page range. Similarly 1380 * sparse_memory_present_with_active_regions() calls memory_present() for 1381 * each range when SPARSEMEM is enabled. 1382 * 1383 * See mm/page_alloc.c for more information on each function exposed by 1384 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1385 */ 1386 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1387 unsigned long node_map_pfn_alignment(void); 1388 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1389 unsigned long end_pfn); 1390 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1391 unsigned long end_pfn); 1392 extern void get_pfn_range_for_nid(unsigned int nid, 1393 unsigned long *start_pfn, unsigned long *end_pfn); 1394 extern unsigned long find_min_pfn_with_active_regions(void); 1395 extern void free_bootmem_with_active_regions(int nid, 1396 unsigned long max_low_pfn); 1397 extern void sparse_memory_present_with_active_regions(int nid); 1398 1399 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1400 1401 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1402 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1403 static inline int __early_pfn_to_nid(unsigned long pfn) 1404 { 1405 return 0; 1406 } 1407 #else 1408 /* please see mm/page_alloc.c */ 1409 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1410 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1411 /* there is a per-arch backend function. */ 1412 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1413 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1414 #endif 1415 1416 extern void set_dma_reserve(unsigned long new_dma_reserve); 1417 extern void memmap_init_zone(unsigned long, int, unsigned long, 1418 unsigned long, enum memmap_context); 1419 extern void setup_per_zone_wmarks(void); 1420 extern int __meminit init_per_zone_wmark_min(void); 1421 extern void mem_init(void); 1422 extern void __init mmap_init(void); 1423 extern void show_mem(unsigned int flags); 1424 extern void si_meminfo(struct sysinfo * val); 1425 extern void si_meminfo_node(struct sysinfo *val, int nid); 1426 1427 extern __printf(3, 4) 1428 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1429 1430 extern void setup_per_cpu_pageset(void); 1431 1432 extern void zone_pcp_update(struct zone *zone); 1433 extern void zone_pcp_reset(struct zone *zone); 1434 1435 /* page_alloc.c */ 1436 extern int min_free_kbytes; 1437 1438 /* nommu.c */ 1439 extern atomic_long_t mmap_pages_allocated; 1440 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1441 1442 /* interval_tree.c */ 1443 void vma_interval_tree_insert(struct vm_area_struct *node, 1444 struct rb_root *root); 1445 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1446 struct vm_area_struct *prev, 1447 struct rb_root *root); 1448 void vma_interval_tree_remove(struct vm_area_struct *node, 1449 struct rb_root *root); 1450 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1451 unsigned long start, unsigned long last); 1452 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1453 unsigned long start, unsigned long last); 1454 1455 #define vma_interval_tree_foreach(vma, root, start, last) \ 1456 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1457 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1458 1459 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1460 struct list_head *list) 1461 { 1462 list_add_tail(&vma->shared.nonlinear, list); 1463 } 1464 1465 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1466 struct rb_root *root); 1467 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1468 struct rb_root *root); 1469 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1470 struct rb_root *root, unsigned long start, unsigned long last); 1471 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1472 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1473 #ifdef CONFIG_DEBUG_VM_RB 1474 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1475 #endif 1476 1477 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1478 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1479 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1480 1481 /* mmap.c */ 1482 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1483 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1484 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1485 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1486 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1487 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1488 struct mempolicy *); 1489 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1490 extern int split_vma(struct mm_struct *, 1491 struct vm_area_struct *, unsigned long addr, int new_below); 1492 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1493 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1494 struct rb_node **, struct rb_node *); 1495 extern void unlink_file_vma(struct vm_area_struct *); 1496 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1497 unsigned long addr, unsigned long len, pgoff_t pgoff, 1498 bool *need_rmap_locks); 1499 extern void exit_mmap(struct mm_struct *); 1500 1501 extern int mm_take_all_locks(struct mm_struct *mm); 1502 extern void mm_drop_all_locks(struct mm_struct *mm); 1503 1504 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1505 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1506 1507 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1508 extern int install_special_mapping(struct mm_struct *mm, 1509 unsigned long addr, unsigned long len, 1510 unsigned long flags, struct page **pages); 1511 1512 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1513 1514 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1515 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1516 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1517 unsigned long len, unsigned long prot, unsigned long flags, 1518 unsigned long pgoff, unsigned long *populate); 1519 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1520 1521 #ifdef CONFIG_MMU 1522 extern int __mm_populate(unsigned long addr, unsigned long len, 1523 int ignore_errors); 1524 static inline void mm_populate(unsigned long addr, unsigned long len) 1525 { 1526 /* Ignore errors */ 1527 (void) __mm_populate(addr, len, 1); 1528 } 1529 #else 1530 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1531 #endif 1532 1533 /* These take the mm semaphore themselves */ 1534 extern unsigned long vm_brk(unsigned long, unsigned long); 1535 extern int vm_munmap(unsigned long, size_t); 1536 extern unsigned long vm_mmap(struct file *, unsigned long, 1537 unsigned long, unsigned long, 1538 unsigned long, unsigned long); 1539 1540 struct vm_unmapped_area_info { 1541 #define VM_UNMAPPED_AREA_TOPDOWN 1 1542 unsigned long flags; 1543 unsigned long length; 1544 unsigned long low_limit; 1545 unsigned long high_limit; 1546 unsigned long align_mask; 1547 unsigned long align_offset; 1548 }; 1549 1550 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1551 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1552 1553 /* 1554 * Search for an unmapped address range. 1555 * 1556 * We are looking for a range that: 1557 * - does not intersect with any VMA; 1558 * - is contained within the [low_limit, high_limit) interval; 1559 * - is at least the desired size. 1560 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1561 */ 1562 static inline unsigned long 1563 vm_unmapped_area(struct vm_unmapped_area_info *info) 1564 { 1565 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1566 return unmapped_area(info); 1567 else 1568 return unmapped_area_topdown(info); 1569 } 1570 1571 /* truncate.c */ 1572 extern void truncate_inode_pages(struct address_space *, loff_t); 1573 extern void truncate_inode_pages_range(struct address_space *, 1574 loff_t lstart, loff_t lend); 1575 1576 /* generic vm_area_ops exported for stackable file systems */ 1577 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1578 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1579 1580 /* mm/page-writeback.c */ 1581 int write_one_page(struct page *page, int wait); 1582 void task_dirty_inc(struct task_struct *tsk); 1583 1584 /* readahead.c */ 1585 #define VM_MAX_READAHEAD 128 /* kbytes */ 1586 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1587 1588 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1589 pgoff_t offset, unsigned long nr_to_read); 1590 1591 void page_cache_sync_readahead(struct address_space *mapping, 1592 struct file_ra_state *ra, 1593 struct file *filp, 1594 pgoff_t offset, 1595 unsigned long size); 1596 1597 void page_cache_async_readahead(struct address_space *mapping, 1598 struct file_ra_state *ra, 1599 struct file *filp, 1600 struct page *pg, 1601 pgoff_t offset, 1602 unsigned long size); 1603 1604 unsigned long max_sane_readahead(unsigned long nr); 1605 unsigned long ra_submit(struct file_ra_state *ra, 1606 struct address_space *mapping, 1607 struct file *filp); 1608 1609 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1610 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1611 1612 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1613 extern int expand_downwards(struct vm_area_struct *vma, 1614 unsigned long address); 1615 #if VM_GROWSUP 1616 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1617 #else 1618 #define expand_upwards(vma, address) do { } while (0) 1619 #endif 1620 1621 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1622 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1623 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1624 struct vm_area_struct **pprev); 1625 1626 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1627 NULL if none. Assume start_addr < end_addr. */ 1628 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1629 { 1630 struct vm_area_struct * vma = find_vma(mm,start_addr); 1631 1632 if (vma && end_addr <= vma->vm_start) 1633 vma = NULL; 1634 return vma; 1635 } 1636 1637 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1638 { 1639 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1640 } 1641 1642 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1643 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1644 unsigned long vm_start, unsigned long vm_end) 1645 { 1646 struct vm_area_struct *vma = find_vma(mm, vm_start); 1647 1648 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1649 vma = NULL; 1650 1651 return vma; 1652 } 1653 1654 #ifdef CONFIG_MMU 1655 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1656 #else 1657 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1658 { 1659 return __pgprot(0); 1660 } 1661 #endif 1662 1663 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1664 unsigned long change_prot_numa(struct vm_area_struct *vma, 1665 unsigned long start, unsigned long end); 1666 #endif 1667 1668 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1669 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1670 unsigned long pfn, unsigned long size, pgprot_t); 1671 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1672 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1673 unsigned long pfn); 1674 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1675 unsigned long pfn); 1676 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1677 1678 1679 struct page *follow_page_mask(struct vm_area_struct *vma, 1680 unsigned long address, unsigned int foll_flags, 1681 unsigned int *page_mask); 1682 1683 static inline struct page *follow_page(struct vm_area_struct *vma, 1684 unsigned long address, unsigned int foll_flags) 1685 { 1686 unsigned int unused_page_mask; 1687 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1688 } 1689 1690 #define FOLL_WRITE 0x01 /* check pte is writable */ 1691 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1692 #define FOLL_GET 0x04 /* do get_page on page */ 1693 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1694 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1695 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1696 * and return without waiting upon it */ 1697 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1698 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1699 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1700 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1701 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1702 1703 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1704 void *data); 1705 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1706 unsigned long size, pte_fn_t fn, void *data); 1707 1708 #ifdef CONFIG_PROC_FS 1709 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1710 #else 1711 static inline void vm_stat_account(struct mm_struct *mm, 1712 unsigned long flags, struct file *file, long pages) 1713 { 1714 mm->total_vm += pages; 1715 } 1716 #endif /* CONFIG_PROC_FS */ 1717 1718 #ifdef CONFIG_DEBUG_PAGEALLOC 1719 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1720 #ifdef CONFIG_HIBERNATION 1721 extern bool kernel_page_present(struct page *page); 1722 #endif /* CONFIG_HIBERNATION */ 1723 #else 1724 static inline void 1725 kernel_map_pages(struct page *page, int numpages, int enable) {} 1726 #ifdef CONFIG_HIBERNATION 1727 static inline bool kernel_page_present(struct page *page) { return true; } 1728 #endif /* CONFIG_HIBERNATION */ 1729 #endif 1730 1731 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1732 #ifdef __HAVE_ARCH_GATE_AREA 1733 int in_gate_area_no_mm(unsigned long addr); 1734 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1735 #else 1736 int in_gate_area_no_mm(unsigned long addr); 1737 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1738 #endif /* __HAVE_ARCH_GATE_AREA */ 1739 1740 #ifdef CONFIG_SYSCTL 1741 extern int sysctl_drop_caches; 1742 int drop_caches_sysctl_handler(struct ctl_table *, int, 1743 void __user *, size_t *, loff_t *); 1744 #endif 1745 1746 unsigned long shrink_slab(struct shrink_control *shrink, 1747 unsigned long nr_pages_scanned, 1748 unsigned long lru_pages); 1749 1750 #ifndef CONFIG_MMU 1751 #define randomize_va_space 0 1752 #else 1753 extern int randomize_va_space; 1754 #endif 1755 1756 const char * arch_vma_name(struct vm_area_struct *vma); 1757 void print_vma_addr(char *prefix, unsigned long rip); 1758 1759 void sparse_mem_maps_populate_node(struct page **map_map, 1760 unsigned long pnum_begin, 1761 unsigned long pnum_end, 1762 unsigned long map_count, 1763 int nodeid); 1764 1765 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1766 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1767 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1768 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1769 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1770 void *vmemmap_alloc_block(unsigned long size, int node); 1771 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1772 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1773 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1774 int node); 1775 int vmemmap_populate(unsigned long start, unsigned long end, int node); 1776 void vmemmap_populate_print_last(void); 1777 #ifdef CONFIG_MEMORY_HOTPLUG 1778 void vmemmap_free(unsigned long start, unsigned long end); 1779 #endif 1780 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1781 unsigned long size); 1782 1783 enum mf_flags { 1784 MF_COUNT_INCREASED = 1 << 0, 1785 MF_ACTION_REQUIRED = 1 << 1, 1786 MF_MUST_KILL = 1 << 2, 1787 }; 1788 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1789 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1790 extern int unpoison_memory(unsigned long pfn); 1791 extern int sysctl_memory_failure_early_kill; 1792 extern int sysctl_memory_failure_recovery; 1793 extern void shake_page(struct page *p, int access); 1794 extern atomic_long_t num_poisoned_pages; 1795 extern int soft_offline_page(struct page *page, int flags); 1796 1797 extern void dump_page(struct page *page); 1798 1799 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1800 extern void clear_huge_page(struct page *page, 1801 unsigned long addr, 1802 unsigned int pages_per_huge_page); 1803 extern void copy_user_huge_page(struct page *dst, struct page *src, 1804 unsigned long addr, struct vm_area_struct *vma, 1805 unsigned int pages_per_huge_page); 1806 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1807 1808 #ifdef CONFIG_DEBUG_PAGEALLOC 1809 extern unsigned int _debug_guardpage_minorder; 1810 1811 static inline unsigned int debug_guardpage_minorder(void) 1812 { 1813 return _debug_guardpage_minorder; 1814 } 1815 1816 static inline bool page_is_guard(struct page *page) 1817 { 1818 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1819 } 1820 #else 1821 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1822 static inline bool page_is_guard(struct page *page) { return false; } 1823 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1824 1825 #if MAX_NUMNODES > 1 1826 void __init setup_nr_node_ids(void); 1827 #else 1828 static inline void setup_nr_node_ids(void) {} 1829 #endif 1830 1831 #endif /* __KERNEL__ */ 1832 #endif /* _LINUX_MM_H */ 1833