xref: /linux-6.15/include/linux/mm.h (revision f42cfb46)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for architectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129  * instrumented C code with jump table addresses. Architectures that
130  * support CFI can define this macro to return the actual function address
131  * when needed.
132  */
133 #ifndef function_nocfi
134 #define function_nocfi(x) (x)
135 #endif
136 
137 /*
138  * To prevent common memory management code establishing
139  * a zero page mapping on a read fault.
140  * This macro should be defined within <asm/pgtable.h>.
141  * s390 does this to prevent multiplexing of hardware bits
142  * related to the physical page in case of virtualization.
143  */
144 #ifndef mm_forbids_zeropage
145 #define mm_forbids_zeropage(X)	(0)
146 #endif
147 
148 /*
149  * On some architectures it is expensive to call memset() for small sizes.
150  * If an architecture decides to implement their own version of
151  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152  * define their own version of this macro in <asm/pgtable.h>
153  */
154 #if BITS_PER_LONG == 64
155 /* This function must be updated when the size of struct page grows above 80
156  * or reduces below 56. The idea that compiler optimizes out switch()
157  * statement, and only leaves move/store instructions. Also the compiler can
158  * combine write statments if they are both assignments and can be reordered,
159  * this can result in several of the writes here being dropped.
160  */
161 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162 static inline void __mm_zero_struct_page(struct page *page)
163 {
164 	unsigned long *_pp = (void *)page;
165 
166 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 	BUILD_BUG_ON(sizeof(struct page) & 7);
168 	BUILD_BUG_ON(sizeof(struct page) < 56);
169 	BUILD_BUG_ON(sizeof(struct page) > 80);
170 
171 	switch (sizeof(struct page)) {
172 	case 80:
173 		_pp[9] = 0;
174 		fallthrough;
175 	case 72:
176 		_pp[8] = 0;
177 		fallthrough;
178 	case 64:
179 		_pp[7] = 0;
180 		fallthrough;
181 	case 56:
182 		_pp[6] = 0;
183 		_pp[5] = 0;
184 		_pp[4] = 0;
185 		_pp[3] = 0;
186 		_pp[2] = 0;
187 		_pp[1] = 0;
188 		_pp[0] = 0;
189 	}
190 }
191 #else
192 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
193 #endif
194 
195 /*
196  * Default maximum number of active map areas, this limits the number of vmas
197  * per mm struct. Users can overwrite this number by sysctl but there is a
198  * problem.
199  *
200  * When a program's coredump is generated as ELF format, a section is created
201  * per a vma. In ELF, the number of sections is represented in unsigned short.
202  * This means the number of sections should be smaller than 65535 at coredump.
203  * Because the kernel adds some informative sections to a image of program at
204  * generating coredump, we need some margin. The number of extra sections is
205  * 1-3 now and depends on arch. We use "5" as safe margin, here.
206  *
207  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208  * not a hard limit any more. Although some userspace tools can be surprised by
209  * that.
210  */
211 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
212 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213 
214 extern int sysctl_max_map_count;
215 
216 extern unsigned long sysctl_user_reserve_kbytes;
217 extern unsigned long sysctl_admin_reserve_kbytes;
218 
219 extern int sysctl_overcommit_memory;
220 extern int sysctl_overcommit_ratio;
221 extern unsigned long sysctl_overcommit_kbytes;
222 
223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 		loff_t *);
225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 		loff_t *);
227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 		loff_t *);
229 /*
230  * Any attempt to mark this function as static leads to build failure
231  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232  * is referred to by BPF code. This must be visible for error injection.
233  */
234 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 		pgoff_t index, gfp_t gfp, void **shadowp);
236 
237 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238 
239 /* to align the pointer to the (next) page boundary */
240 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241 
242 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
243 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
244 
245 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 
260 #ifndef CONFIG_MMU
261 extern struct rb_root nommu_region_tree;
262 extern struct rw_semaphore nommu_region_sem;
263 
264 extern unsigned int kobjsize(const void *objp);
265 #endif
266 
267 /*
268  * vm_flags in vm_area_struct, see mm_types.h.
269  * When changing, update also include/trace/events/mmflags.h
270  */
271 #define VM_NONE		0x00000000
272 
273 #define VM_READ		0x00000001	/* currently active flags */
274 #define VM_WRITE	0x00000002
275 #define VM_EXEC		0x00000004
276 #define VM_SHARED	0x00000008
277 
278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
280 #define VM_MAYWRITE	0x00000020
281 #define VM_MAYEXEC	0x00000040
282 #define VM_MAYSHARE	0x00000080
283 
284 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
285 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
286 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
287 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
288 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
289 
290 #define VM_LOCKED	0x00002000
291 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
292 
293 					/* Used by sys_madvise() */
294 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
295 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
296 
297 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
298 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
299 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
300 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
301 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
302 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
303 #define VM_SYNC		0x00800000	/* Synchronous page faults */
304 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
305 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
306 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
307 
308 #ifdef CONFIG_MEM_SOFT_DIRTY
309 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
310 #else
311 # define VM_SOFTDIRTY	0
312 #endif
313 
314 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
315 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
316 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
317 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
318 
319 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
326 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
327 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
328 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
329 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #if defined(CONFIG_X86)
346 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
347 #elif defined(CONFIG_PPC)
348 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
349 #elif defined(CONFIG_PARISC)
350 # define VM_GROWSUP	VM_ARCH_1
351 #elif defined(CONFIG_IA64)
352 # define VM_GROWSUP	VM_ARCH_1
353 #elif defined(CONFIG_SPARC64)
354 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
355 # define VM_ARCH_CLEAR	VM_SPARC_ADI
356 #elif defined(CONFIG_ARM64)
357 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
358 # define VM_ARCH_CLEAR	VM_ARM64_BTI
359 #elif !defined(CONFIG_MMU)
360 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
361 #endif
362 
363 #if defined(CONFIG_ARM64_MTE)
364 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
365 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
366 #else
367 # define VM_MTE		VM_NONE
368 # define VM_MTE_ALLOWED	VM_NONE
369 #endif
370 
371 #ifndef VM_GROWSUP
372 # define VM_GROWSUP	VM_NONE
373 #endif
374 
375 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
376 # define VM_UFFD_MINOR_BIT	37
377 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
378 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379 # define VM_UFFD_MINOR		VM_NONE
380 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381 
382 /* Bits set in the VMA until the stack is in its final location */
383 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
384 
385 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
386 
387 /* Common data flag combinations */
388 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
389 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
391 				 VM_MAYWRITE | VM_MAYEXEC)
392 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
393 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394 
395 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
396 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
397 #endif
398 
399 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
400 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
401 #endif
402 
403 #ifdef CONFIG_STACK_GROWSUP
404 #define VM_STACK	VM_GROWSUP
405 #else
406 #define VM_STACK	VM_GROWSDOWN
407 #endif
408 
409 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
410 
411 /* VMA basic access permission flags */
412 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413 
414 
415 /*
416  * Special vmas that are non-mergable, non-mlock()able.
417  */
418 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
419 
420 /* This mask prevents VMA from being scanned with khugepaged */
421 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
422 
423 /* This mask defines which mm->def_flags a process can inherit its parent */
424 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
425 
426 /* This mask is used to clear all the VMA flags used by mlock */
427 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
428 
429 /* Arch-specific flags to clear when updating VM flags on protection change */
430 #ifndef VM_ARCH_CLEAR
431 # define VM_ARCH_CLEAR	VM_NONE
432 #endif
433 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
434 
435 /*
436  * mapping from the currently active vm_flags protection bits (the
437  * low four bits) to a page protection mask..
438  */
439 extern pgprot_t protection_map[16];
440 
441 /**
442  * enum fault_flag - Fault flag definitions.
443  * @FAULT_FLAG_WRITE: Fault was a write fault.
444  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
445  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
446  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
447  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
448  * @FAULT_FLAG_TRIED: The fault has been tried once.
449  * @FAULT_FLAG_USER: The fault originated in userspace.
450  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
451  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
452  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
453  *
454  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
455  * whether we would allow page faults to retry by specifying these two
456  * fault flags correctly.  Currently there can be three legal combinations:
457  *
458  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
459  *                              this is the first try
460  *
461  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
462  *                              we've already tried at least once
463  *
464  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
465  *
466  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
467  * be used.  Note that page faults can be allowed to retry for multiple times,
468  * in which case we'll have an initial fault with flags (a) then later on
469  * continuous faults with flags (b).  We should always try to detect pending
470  * signals before a retry to make sure the continuous page faults can still be
471  * interrupted if necessary.
472  */
473 enum fault_flag {
474 	FAULT_FLAG_WRITE =		1 << 0,
475 	FAULT_FLAG_MKWRITE =		1 << 1,
476 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
477 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
478 	FAULT_FLAG_KILLABLE =		1 << 4,
479 	FAULT_FLAG_TRIED = 		1 << 5,
480 	FAULT_FLAG_USER =		1 << 6,
481 	FAULT_FLAG_REMOTE =		1 << 7,
482 	FAULT_FLAG_INSTRUCTION =	1 << 8,
483 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
484 };
485 
486 /*
487  * The default fault flags that should be used by most of the
488  * arch-specific page fault handlers.
489  */
490 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
491 			     FAULT_FLAG_KILLABLE | \
492 			     FAULT_FLAG_INTERRUPTIBLE)
493 
494 /**
495  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
496  * @flags: Fault flags.
497  *
498  * This is mostly used for places where we want to try to avoid taking
499  * the mmap_lock for too long a time when waiting for another condition
500  * to change, in which case we can try to be polite to release the
501  * mmap_lock in the first round to avoid potential starvation of other
502  * processes that would also want the mmap_lock.
503  *
504  * Return: true if the page fault allows retry and this is the first
505  * attempt of the fault handling; false otherwise.
506  */
507 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
508 {
509 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 	    (!(flags & FAULT_FLAG_TRIED));
511 }
512 
513 #define FAULT_FLAG_TRACE \
514 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
515 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
516 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
517 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
518 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
519 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
520 	{ FAULT_FLAG_USER,		"USER" }, \
521 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
522 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
523 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
524 
525 /*
526  * vm_fault is filled by the pagefault handler and passed to the vma's
527  * ->fault function. The vma's ->fault is responsible for returning a bitmask
528  * of VM_FAULT_xxx flags that give details about how the fault was handled.
529  *
530  * MM layer fills up gfp_mask for page allocations but fault handler might
531  * alter it if its implementation requires a different allocation context.
532  *
533  * pgoff should be used in favour of virtual_address, if possible.
534  */
535 struct vm_fault {
536 	const struct {
537 		struct vm_area_struct *vma;	/* Target VMA */
538 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
539 		pgoff_t pgoff;			/* Logical page offset based on vma */
540 		unsigned long address;		/* Faulting virtual address */
541 	};
542 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
543 					 * XXX: should really be 'const' */
544 	pmd_t *pmd;			/* Pointer to pmd entry matching
545 					 * the 'address' */
546 	pud_t *pud;			/* Pointer to pud entry matching
547 					 * the 'address'
548 					 */
549 	pte_t orig_pte;			/* Value of PTE at the time of fault */
550 
551 	struct page *cow_page;		/* Page handler may use for COW fault */
552 	struct page *page;		/* ->fault handlers should return a
553 					 * page here, unless VM_FAULT_NOPAGE
554 					 * is set (which is also implied by
555 					 * VM_FAULT_ERROR).
556 					 */
557 	/* These three entries are valid only while holding ptl lock */
558 	pte_t *pte;			/* Pointer to pte entry matching
559 					 * the 'address'. NULL if the page
560 					 * table hasn't been allocated.
561 					 */
562 	spinlock_t *ptl;		/* Page table lock.
563 					 * Protects pte page table if 'pte'
564 					 * is not NULL, otherwise pmd.
565 					 */
566 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
567 					 * vm_ops->map_pages() sets up a page
568 					 * table from atomic context.
569 					 * do_fault_around() pre-allocates
570 					 * page table to avoid allocation from
571 					 * atomic context.
572 					 */
573 };
574 
575 /* page entry size for vm->huge_fault() */
576 enum page_entry_size {
577 	PE_SIZE_PTE = 0,
578 	PE_SIZE_PMD,
579 	PE_SIZE_PUD,
580 };
581 
582 /*
583  * These are the virtual MM functions - opening of an area, closing and
584  * unmapping it (needed to keep files on disk up-to-date etc), pointer
585  * to the functions called when a no-page or a wp-page exception occurs.
586  */
587 struct vm_operations_struct {
588 	void (*open)(struct vm_area_struct * area);
589 	void (*close)(struct vm_area_struct * area);
590 	/* Called any time before splitting to check if it's allowed */
591 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
592 	int (*mremap)(struct vm_area_struct *area);
593 	/*
594 	 * Called by mprotect() to make driver-specific permission
595 	 * checks before mprotect() is finalised.   The VMA must not
596 	 * be modified.  Returns 0 if eprotect() can proceed.
597 	 */
598 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
599 			unsigned long end, unsigned long newflags);
600 	vm_fault_t (*fault)(struct vm_fault *vmf);
601 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
602 			enum page_entry_size pe_size);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
659 {
660 	static const struct vm_operations_struct dummy_vm_ops = {};
661 
662 	memset(vma, 0, sizeof(*vma));
663 	vma->vm_mm = mm;
664 	vma->vm_ops = &dummy_vm_ops;
665 	INIT_LIST_HEAD(&vma->anon_vma_chain);
666 }
667 
668 static inline void vma_set_anonymous(struct vm_area_struct *vma)
669 {
670 	vma->vm_ops = NULL;
671 }
672 
673 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
674 {
675 	return !vma->vm_ops;
676 }
677 
678 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
679 {
680 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
681 
682 	if (!maybe_stack)
683 		return false;
684 
685 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
686 						VM_STACK_INCOMPLETE_SETUP)
687 		return true;
688 
689 	return false;
690 }
691 
692 static inline bool vma_is_foreign(struct vm_area_struct *vma)
693 {
694 	if (!current->mm)
695 		return true;
696 
697 	if (current->mm != vma->vm_mm)
698 		return true;
699 
700 	return false;
701 }
702 
703 static inline bool vma_is_accessible(struct vm_area_struct *vma)
704 {
705 	return vma->vm_flags & VM_ACCESS_FLAGS;
706 }
707 
708 #ifdef CONFIG_SHMEM
709 /*
710  * The vma_is_shmem is not inline because it is used only by slow
711  * paths in userfault.
712  */
713 bool vma_is_shmem(struct vm_area_struct *vma);
714 #else
715 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
716 #endif
717 
718 int vma_is_stack_for_current(struct vm_area_struct *vma);
719 
720 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
721 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
722 
723 struct mmu_gather;
724 struct inode;
725 
726 #include <linux/huge_mm.h>
727 
728 /*
729  * Methods to modify the page usage count.
730  *
731  * What counts for a page usage:
732  * - cache mapping   (page->mapping)
733  * - private data    (page->private)
734  * - page mapped in a task's page tables, each mapping
735  *   is counted separately
736  *
737  * Also, many kernel routines increase the page count before a critical
738  * routine so they can be sure the page doesn't go away from under them.
739  */
740 
741 /*
742  * Drop a ref, return true if the refcount fell to zero (the page has no users)
743  */
744 static inline int put_page_testzero(struct page *page)
745 {
746 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
747 	return page_ref_dec_and_test(page);
748 }
749 
750 /*
751  * Try to grab a ref unless the page has a refcount of zero, return false if
752  * that is the case.
753  * This can be called when MMU is off so it must not access
754  * any of the virtual mappings.
755  */
756 static inline int get_page_unless_zero(struct page *page)
757 {
758 	return page_ref_add_unless(page, 1, 0);
759 }
760 
761 extern int page_is_ram(unsigned long pfn);
762 
763 enum {
764 	REGION_INTERSECTS,
765 	REGION_DISJOINT,
766 	REGION_MIXED,
767 };
768 
769 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
770 		      unsigned long desc);
771 
772 /* Support for virtually mapped pages */
773 struct page *vmalloc_to_page(const void *addr);
774 unsigned long vmalloc_to_pfn(const void *addr);
775 
776 /*
777  * Determine if an address is within the vmalloc range
778  *
779  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
780  * is no special casing required.
781  */
782 
783 #ifndef is_ioremap_addr
784 #define is_ioremap_addr(x) is_vmalloc_addr(x)
785 #endif
786 
787 #ifdef CONFIG_MMU
788 extern bool is_vmalloc_addr(const void *x);
789 extern int is_vmalloc_or_module_addr(const void *x);
790 #else
791 static inline bool is_vmalloc_addr(const void *x)
792 {
793 	return false;
794 }
795 static inline int is_vmalloc_or_module_addr(const void *x)
796 {
797 	return 0;
798 }
799 #endif
800 
801 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
802 static inline void *kvmalloc(size_t size, gfp_t flags)
803 {
804 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
805 }
806 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
807 {
808 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
809 }
810 static inline void *kvzalloc(size_t size, gfp_t flags)
811 {
812 	return kvmalloc(size, flags | __GFP_ZERO);
813 }
814 
815 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
816 {
817 	size_t bytes;
818 
819 	if (unlikely(check_mul_overflow(n, size, &bytes)))
820 		return NULL;
821 
822 	return kvmalloc(bytes, flags);
823 }
824 
825 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
826 {
827 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
828 }
829 
830 extern void kvfree(const void *addr);
831 extern void kvfree_sensitive(const void *addr, size_t len);
832 
833 static inline int head_compound_mapcount(struct page *head)
834 {
835 	return atomic_read(compound_mapcount_ptr(head)) + 1;
836 }
837 
838 /*
839  * Mapcount of compound page as a whole, does not include mapped sub-pages.
840  *
841  * Must be called only for compound pages or any their tail sub-pages.
842  */
843 static inline int compound_mapcount(struct page *page)
844 {
845 	VM_BUG_ON_PAGE(!PageCompound(page), page);
846 	page = compound_head(page);
847 	return head_compound_mapcount(page);
848 }
849 
850 /*
851  * The atomic page->_mapcount, starts from -1: so that transitions
852  * both from it and to it can be tracked, using atomic_inc_and_test
853  * and atomic_add_negative(-1).
854  */
855 static inline void page_mapcount_reset(struct page *page)
856 {
857 	atomic_set(&(page)->_mapcount, -1);
858 }
859 
860 int __page_mapcount(struct page *page);
861 
862 /*
863  * Mapcount of 0-order page; when compound sub-page, includes
864  * compound_mapcount().
865  *
866  * Result is undefined for pages which cannot be mapped into userspace.
867  * For example SLAB or special types of pages. See function page_has_type().
868  * They use this place in struct page differently.
869  */
870 static inline int page_mapcount(struct page *page)
871 {
872 	if (unlikely(PageCompound(page)))
873 		return __page_mapcount(page);
874 	return atomic_read(&page->_mapcount) + 1;
875 }
876 
877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
878 int total_mapcount(struct page *page);
879 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880 #else
881 static inline int total_mapcount(struct page *page)
882 {
883 	return page_mapcount(page);
884 }
885 static inline int page_trans_huge_mapcount(struct page *page,
886 					   int *total_mapcount)
887 {
888 	int mapcount = page_mapcount(page);
889 	if (total_mapcount)
890 		*total_mapcount = mapcount;
891 	return mapcount;
892 }
893 #endif
894 
895 static inline struct page *virt_to_head_page(const void *x)
896 {
897 	struct page *page = virt_to_page(x);
898 
899 	return compound_head(page);
900 }
901 
902 void __put_page(struct page *page);
903 
904 void put_pages_list(struct list_head *pages);
905 
906 void split_page(struct page *page, unsigned int order);
907 
908 /*
909  * Compound pages have a destructor function.  Provide a
910  * prototype for that function and accessor functions.
911  * These are _only_ valid on the head of a compound page.
912  */
913 typedef void compound_page_dtor(struct page *);
914 
915 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916 enum compound_dtor_id {
917 	NULL_COMPOUND_DTOR,
918 	COMPOUND_PAGE_DTOR,
919 #ifdef CONFIG_HUGETLB_PAGE
920 	HUGETLB_PAGE_DTOR,
921 #endif
922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 	TRANSHUGE_PAGE_DTOR,
924 #endif
925 	NR_COMPOUND_DTORS,
926 };
927 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
928 
929 static inline void set_compound_page_dtor(struct page *page,
930 		enum compound_dtor_id compound_dtor)
931 {
932 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
933 	page[1].compound_dtor = compound_dtor;
934 }
935 
936 static inline void destroy_compound_page(struct page *page)
937 {
938 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
939 	compound_page_dtors[page[1].compound_dtor](page);
940 }
941 
942 static inline unsigned int compound_order(struct page *page)
943 {
944 	if (!PageHead(page))
945 		return 0;
946 	return page[1].compound_order;
947 }
948 
949 static inline bool hpage_pincount_available(struct page *page)
950 {
951 	/*
952 	 * Can the page->hpage_pinned_refcount field be used? That field is in
953 	 * the 3rd page of the compound page, so the smallest (2-page) compound
954 	 * pages cannot support it.
955 	 */
956 	page = compound_head(page);
957 	return PageCompound(page) && compound_order(page) > 1;
958 }
959 
960 static inline int head_compound_pincount(struct page *head)
961 {
962 	return atomic_read(compound_pincount_ptr(head));
963 }
964 
965 static inline int compound_pincount(struct page *page)
966 {
967 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 	page = compound_head(page);
969 	return head_compound_pincount(page);
970 }
971 
972 static inline void set_compound_order(struct page *page, unsigned int order)
973 {
974 	page[1].compound_order = order;
975 	page[1].compound_nr = 1U << order;
976 }
977 
978 /* Returns the number of pages in this potentially compound page. */
979 static inline unsigned long compound_nr(struct page *page)
980 {
981 	if (!PageHead(page))
982 		return 1;
983 	return page[1].compound_nr;
984 }
985 
986 /* Returns the number of bytes in this potentially compound page. */
987 static inline unsigned long page_size(struct page *page)
988 {
989 	return PAGE_SIZE << compound_order(page);
990 }
991 
992 /* Returns the number of bits needed for the number of bytes in a page */
993 static inline unsigned int page_shift(struct page *page)
994 {
995 	return PAGE_SHIFT + compound_order(page);
996 }
997 
998 void free_compound_page(struct page *page);
999 
1000 #ifdef CONFIG_MMU
1001 /*
1002  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1003  * servicing faults for write access.  In the normal case, do always want
1004  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1005  * that do not have writing enabled, when used by access_process_vm.
1006  */
1007 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1008 {
1009 	if (likely(vma->vm_flags & VM_WRITE))
1010 		pte = pte_mkwrite(pte);
1011 	return pte;
1012 }
1013 
1014 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1015 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1016 
1017 vm_fault_t finish_fault(struct vm_fault *vmf);
1018 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019 #endif
1020 
1021 /*
1022  * Multiple processes may "see" the same page. E.g. for untouched
1023  * mappings of /dev/null, all processes see the same page full of
1024  * zeroes, and text pages of executables and shared libraries have
1025  * only one copy in memory, at most, normally.
1026  *
1027  * For the non-reserved pages, page_count(page) denotes a reference count.
1028  *   page_count() == 0 means the page is free. page->lru is then used for
1029  *   freelist management in the buddy allocator.
1030  *   page_count() > 0  means the page has been allocated.
1031  *
1032  * Pages are allocated by the slab allocator in order to provide memory
1033  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035  * unless a particular usage is carefully commented. (the responsibility of
1036  * freeing the kmalloc memory is the caller's, of course).
1037  *
1038  * A page may be used by anyone else who does a __get_free_page().
1039  * In this case, page_count still tracks the references, and should only
1040  * be used through the normal accessor functions. The top bits of page->flags
1041  * and page->virtual store page management information, but all other fields
1042  * are unused and could be used privately, carefully. The management of this
1043  * page is the responsibility of the one who allocated it, and those who have
1044  * subsequently been given references to it.
1045  *
1046  * The other pages (we may call them "pagecache pages") are completely
1047  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048  * The following discussion applies only to them.
1049  *
1050  * A pagecache page contains an opaque `private' member, which belongs to the
1051  * page's address_space. Usually, this is the address of a circular list of
1052  * the page's disk buffers. PG_private must be set to tell the VM to call
1053  * into the filesystem to release these pages.
1054  *
1055  * A page may belong to an inode's memory mapping. In this case, page->mapping
1056  * is the pointer to the inode, and page->index is the file offset of the page,
1057  * in units of PAGE_SIZE.
1058  *
1059  * If pagecache pages are not associated with an inode, they are said to be
1060  * anonymous pages. These may become associated with the swapcache, and in that
1061  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062  *
1063  * In either case (swapcache or inode backed), the pagecache itself holds one
1064  * reference to the page. Setting PG_private should also increment the
1065  * refcount. The each user mapping also has a reference to the page.
1066  *
1067  * The pagecache pages are stored in a per-mapping radix tree, which is
1068  * rooted at mapping->i_pages, and indexed by offset.
1069  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071  *
1072  * All pagecache pages may be subject to I/O:
1073  * - inode pages may need to be read from disk,
1074  * - inode pages which have been modified and are MAP_SHARED may need
1075  *   to be written back to the inode on disk,
1076  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077  *   modified may need to be swapped out to swap space and (later) to be read
1078  *   back into memory.
1079  */
1080 
1081 /*
1082  * The zone field is never updated after free_area_init_core()
1083  * sets it, so none of the operations on it need to be atomic.
1084  */
1085 
1086 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1088 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1089 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1090 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092 
1093 /*
1094  * Define the bit shifts to access each section.  For non-existent
1095  * sections we define the shift as 0; that plus a 0 mask ensures
1096  * the compiler will optimise away reference to them.
1097  */
1098 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1100 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1101 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103 
1104 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105 #ifdef NODE_NOT_IN_PAGE_FLAGS
1106 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1108 						SECTIONS_PGOFF : ZONES_PGOFF)
1109 #else
1110 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1111 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1112 						NODES_PGOFF : ZONES_PGOFF)
1113 #endif
1114 
1115 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1116 
1117 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1118 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1119 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1120 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1121 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1122 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1123 
1124 static inline enum zone_type page_zonenum(const struct page *page)
1125 {
1126 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1127 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1128 }
1129 
1130 #ifdef CONFIG_ZONE_DEVICE
1131 static inline bool is_zone_device_page(const struct page *page)
1132 {
1133 	return page_zonenum(page) == ZONE_DEVICE;
1134 }
1135 extern void memmap_init_zone_device(struct zone *, unsigned long,
1136 				    unsigned long, struct dev_pagemap *);
1137 #else
1138 static inline bool is_zone_device_page(const struct page *page)
1139 {
1140 	return false;
1141 }
1142 #endif
1143 
1144 static inline bool is_zone_movable_page(const struct page *page)
1145 {
1146 	return page_zonenum(page) == ZONE_MOVABLE;
1147 }
1148 
1149 #ifdef CONFIG_DEV_PAGEMAP_OPS
1150 void free_devmap_managed_page(struct page *page);
1151 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1152 
1153 static inline bool page_is_devmap_managed(struct page *page)
1154 {
1155 	if (!static_branch_unlikely(&devmap_managed_key))
1156 		return false;
1157 	if (!is_zone_device_page(page))
1158 		return false;
1159 	switch (page->pgmap->type) {
1160 	case MEMORY_DEVICE_PRIVATE:
1161 	case MEMORY_DEVICE_FS_DAX:
1162 		return true;
1163 	default:
1164 		break;
1165 	}
1166 	return false;
1167 }
1168 
1169 void put_devmap_managed_page(struct page *page);
1170 
1171 #else /* CONFIG_DEV_PAGEMAP_OPS */
1172 static inline bool page_is_devmap_managed(struct page *page)
1173 {
1174 	return false;
1175 }
1176 
1177 static inline void put_devmap_managed_page(struct page *page)
1178 {
1179 }
1180 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1181 
1182 static inline bool is_device_private_page(const struct page *page)
1183 {
1184 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1185 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1186 		is_zone_device_page(page) &&
1187 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1188 }
1189 
1190 static inline bool is_pci_p2pdma_page(const struct page *page)
1191 {
1192 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1193 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1194 		is_zone_device_page(page) &&
1195 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1196 }
1197 
1198 /* 127: arbitrary random number, small enough to assemble well */
1199 #define page_ref_zero_or_close_to_overflow(page) \
1200 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1201 
1202 static inline void get_page(struct page *page)
1203 {
1204 	page = compound_head(page);
1205 	/*
1206 	 * Getting a normal page or the head of a compound page
1207 	 * requires to already have an elevated page->_refcount.
1208 	 */
1209 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1210 	page_ref_inc(page);
1211 }
1212 
1213 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1214 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1215 						   unsigned int flags);
1216 
1217 
1218 static inline __must_check bool try_get_page(struct page *page)
1219 {
1220 	page = compound_head(page);
1221 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1222 		return false;
1223 	page_ref_inc(page);
1224 	return true;
1225 }
1226 
1227 static inline void put_page(struct page *page)
1228 {
1229 	page = compound_head(page);
1230 
1231 	/*
1232 	 * For devmap managed pages we need to catch refcount transition from
1233 	 * 2 to 1, when refcount reach one it means the page is free and we
1234 	 * need to inform the device driver through callback. See
1235 	 * include/linux/memremap.h and HMM for details.
1236 	 */
1237 	if (page_is_devmap_managed(page)) {
1238 		put_devmap_managed_page(page);
1239 		return;
1240 	}
1241 
1242 	if (put_page_testzero(page))
1243 		__put_page(page);
1244 }
1245 
1246 /*
1247  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1248  * the page's refcount so that two separate items are tracked: the original page
1249  * reference count, and also a new count of how many pin_user_pages() calls were
1250  * made against the page. ("gup-pinned" is another term for the latter).
1251  *
1252  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1253  * distinct from normal pages. As such, the unpin_user_page() call (and its
1254  * variants) must be used in order to release gup-pinned pages.
1255  *
1256  * Choice of value:
1257  *
1258  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1259  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1260  * simpler, due to the fact that adding an even power of two to the page
1261  * refcount has the effect of using only the upper N bits, for the code that
1262  * counts up using the bias value. This means that the lower bits are left for
1263  * the exclusive use of the original code that increments and decrements by one
1264  * (or at least, by much smaller values than the bias value).
1265  *
1266  * Of course, once the lower bits overflow into the upper bits (and this is
1267  * OK, because subtraction recovers the original values), then visual inspection
1268  * no longer suffices to directly view the separate counts. However, for normal
1269  * applications that don't have huge page reference counts, this won't be an
1270  * issue.
1271  *
1272  * Locking: the lockless algorithm described in page_cache_get_speculative()
1273  * and page_cache_gup_pin_speculative() provides safe operation for
1274  * get_user_pages and page_mkclean and other calls that race to set up page
1275  * table entries.
1276  */
1277 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1278 
1279 void unpin_user_page(struct page *page);
1280 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1281 				 bool make_dirty);
1282 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1283 				      bool make_dirty);
1284 void unpin_user_pages(struct page **pages, unsigned long npages);
1285 
1286 /**
1287  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1288  * @page: The page.
1289  *
1290  * This function checks if a page has been pinned via a call to
1291  * a function in the pin_user_pages() family.
1292  *
1293  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1294  * because it means "definitely not pinned for DMA", but true means "probably
1295  * pinned for DMA, but possibly a false positive due to having at least
1296  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1297  *
1298  * False positives are OK, because: a) it's unlikely for a page to get that many
1299  * refcounts, and b) all the callers of this routine are expected to be able to
1300  * deal gracefully with a false positive.
1301  *
1302  * For huge pages, the result will be exactly correct. That's because we have
1303  * more tracking data available: the 3rd struct page in the compound page is
1304  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1305  * scheme).
1306  *
1307  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1308  *
1309  * Return: True, if it is likely that the page has been "dma-pinned".
1310  * False, if the page is definitely not dma-pinned.
1311  */
1312 static inline bool page_maybe_dma_pinned(struct page *page)
1313 {
1314 	if (hpage_pincount_available(page))
1315 		return compound_pincount(page) > 0;
1316 
1317 	/*
1318 	 * page_ref_count() is signed. If that refcount overflows, then
1319 	 * page_ref_count() returns a negative value, and callers will avoid
1320 	 * further incrementing the refcount.
1321 	 *
1322 	 * Here, for that overflow case, use the signed bit to count a little
1323 	 * bit higher via unsigned math, and thus still get an accurate result.
1324 	 */
1325 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1326 		GUP_PIN_COUNTING_BIAS;
1327 }
1328 
1329 static inline bool is_cow_mapping(vm_flags_t flags)
1330 {
1331 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1332 }
1333 
1334 /*
1335  * This should most likely only be called during fork() to see whether we
1336  * should break the cow immediately for a page on the src mm.
1337  */
1338 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1339 					  struct page *page)
1340 {
1341 	if (!is_cow_mapping(vma->vm_flags))
1342 		return false;
1343 
1344 	if (!atomic_read(&vma->vm_mm->has_pinned))
1345 		return false;
1346 
1347 	return page_maybe_dma_pinned(page);
1348 }
1349 
1350 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351 #define SECTION_IN_PAGE_FLAGS
1352 #endif
1353 
1354 /*
1355  * The identification function is mainly used by the buddy allocator for
1356  * determining if two pages could be buddies. We are not really identifying
1357  * the zone since we could be using the section number id if we do not have
1358  * node id available in page flags.
1359  * We only guarantee that it will return the same value for two combinable
1360  * pages in a zone.
1361  */
1362 static inline int page_zone_id(struct page *page)
1363 {
1364 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1365 }
1366 
1367 #ifdef NODE_NOT_IN_PAGE_FLAGS
1368 extern int page_to_nid(const struct page *page);
1369 #else
1370 static inline int page_to_nid(const struct page *page)
1371 {
1372 	struct page *p = (struct page *)page;
1373 
1374 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1375 }
1376 #endif
1377 
1378 #ifdef CONFIG_NUMA_BALANCING
1379 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1380 {
1381 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1382 }
1383 
1384 static inline int cpupid_to_pid(int cpupid)
1385 {
1386 	return cpupid & LAST__PID_MASK;
1387 }
1388 
1389 static inline int cpupid_to_cpu(int cpupid)
1390 {
1391 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1392 }
1393 
1394 static inline int cpupid_to_nid(int cpupid)
1395 {
1396 	return cpu_to_node(cpupid_to_cpu(cpupid));
1397 }
1398 
1399 static inline bool cpupid_pid_unset(int cpupid)
1400 {
1401 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1402 }
1403 
1404 static inline bool cpupid_cpu_unset(int cpupid)
1405 {
1406 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1407 }
1408 
1409 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1410 {
1411 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1412 }
1413 
1414 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1415 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1416 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1417 {
1418 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1419 }
1420 
1421 static inline int page_cpupid_last(struct page *page)
1422 {
1423 	return page->_last_cpupid;
1424 }
1425 static inline void page_cpupid_reset_last(struct page *page)
1426 {
1427 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1428 }
1429 #else
1430 static inline int page_cpupid_last(struct page *page)
1431 {
1432 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1433 }
1434 
1435 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1436 
1437 static inline void page_cpupid_reset_last(struct page *page)
1438 {
1439 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1440 }
1441 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1442 #else /* !CONFIG_NUMA_BALANCING */
1443 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1444 {
1445 	return page_to_nid(page); /* XXX */
1446 }
1447 
1448 static inline int page_cpupid_last(struct page *page)
1449 {
1450 	return page_to_nid(page); /* XXX */
1451 }
1452 
1453 static inline int cpupid_to_nid(int cpupid)
1454 {
1455 	return -1;
1456 }
1457 
1458 static inline int cpupid_to_pid(int cpupid)
1459 {
1460 	return -1;
1461 }
1462 
1463 static inline int cpupid_to_cpu(int cpupid)
1464 {
1465 	return -1;
1466 }
1467 
1468 static inline int cpu_pid_to_cpupid(int nid, int pid)
1469 {
1470 	return -1;
1471 }
1472 
1473 static inline bool cpupid_pid_unset(int cpupid)
1474 {
1475 	return true;
1476 }
1477 
1478 static inline void page_cpupid_reset_last(struct page *page)
1479 {
1480 }
1481 
1482 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1483 {
1484 	return false;
1485 }
1486 #endif /* CONFIG_NUMA_BALANCING */
1487 
1488 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1489 
1490 /*
1491  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1492  * setting tags for all pages to native kernel tag value 0xff, as the default
1493  * value 0x00 maps to 0xff.
1494  */
1495 
1496 static inline u8 page_kasan_tag(const struct page *page)
1497 {
1498 	u8 tag = 0xff;
1499 
1500 	if (kasan_enabled()) {
1501 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1502 		tag ^= 0xff;
1503 	}
1504 
1505 	return tag;
1506 }
1507 
1508 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1509 {
1510 	if (kasan_enabled()) {
1511 		tag ^= 0xff;
1512 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1513 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1514 	}
1515 }
1516 
1517 static inline void page_kasan_tag_reset(struct page *page)
1518 {
1519 	if (kasan_enabled())
1520 		page_kasan_tag_set(page, 0xff);
1521 }
1522 
1523 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524 
1525 static inline u8 page_kasan_tag(const struct page *page)
1526 {
1527 	return 0xff;
1528 }
1529 
1530 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1531 static inline void page_kasan_tag_reset(struct page *page) { }
1532 
1533 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1534 
1535 static inline struct zone *page_zone(const struct page *page)
1536 {
1537 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1538 }
1539 
1540 static inline pg_data_t *page_pgdat(const struct page *page)
1541 {
1542 	return NODE_DATA(page_to_nid(page));
1543 }
1544 
1545 #ifdef SECTION_IN_PAGE_FLAGS
1546 static inline void set_page_section(struct page *page, unsigned long section)
1547 {
1548 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1549 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1550 }
1551 
1552 static inline unsigned long page_to_section(const struct page *page)
1553 {
1554 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1555 }
1556 #endif
1557 
1558 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1559 #ifdef CONFIG_MIGRATION
1560 static inline bool is_pinnable_page(struct page *page)
1561 {
1562 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1563 		is_zero_pfn(page_to_pfn(page));
1564 }
1565 #else
1566 static inline bool is_pinnable_page(struct page *page)
1567 {
1568 	return true;
1569 }
1570 #endif
1571 
1572 static inline void set_page_zone(struct page *page, enum zone_type zone)
1573 {
1574 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1575 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1576 }
1577 
1578 static inline void set_page_node(struct page *page, unsigned long node)
1579 {
1580 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1581 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1582 }
1583 
1584 static inline void set_page_links(struct page *page, enum zone_type zone,
1585 	unsigned long node, unsigned long pfn)
1586 {
1587 	set_page_zone(page, zone);
1588 	set_page_node(page, node);
1589 #ifdef SECTION_IN_PAGE_FLAGS
1590 	set_page_section(page, pfn_to_section_nr(pfn));
1591 #endif
1592 }
1593 
1594 /*
1595  * Some inline functions in vmstat.h depend on page_zone()
1596  */
1597 #include <linux/vmstat.h>
1598 
1599 static __always_inline void *lowmem_page_address(const struct page *page)
1600 {
1601 	return page_to_virt(page);
1602 }
1603 
1604 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1605 #define HASHED_PAGE_VIRTUAL
1606 #endif
1607 
1608 #if defined(WANT_PAGE_VIRTUAL)
1609 static inline void *page_address(const struct page *page)
1610 {
1611 	return page->virtual;
1612 }
1613 static inline void set_page_address(struct page *page, void *address)
1614 {
1615 	page->virtual = address;
1616 }
1617 #define page_address_init()  do { } while(0)
1618 #endif
1619 
1620 #if defined(HASHED_PAGE_VIRTUAL)
1621 void *page_address(const struct page *page);
1622 void set_page_address(struct page *page, void *virtual);
1623 void page_address_init(void);
1624 #endif
1625 
1626 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1627 #define page_address(page) lowmem_page_address(page)
1628 #define set_page_address(page, address)  do { } while(0)
1629 #define page_address_init()  do { } while(0)
1630 #endif
1631 
1632 extern void *page_rmapping(struct page *page);
1633 extern struct anon_vma *page_anon_vma(struct page *page);
1634 extern struct address_space *page_mapping(struct page *page);
1635 
1636 extern struct address_space *__page_file_mapping(struct page *);
1637 
1638 static inline
1639 struct address_space *page_file_mapping(struct page *page)
1640 {
1641 	if (unlikely(PageSwapCache(page)))
1642 		return __page_file_mapping(page);
1643 
1644 	return page->mapping;
1645 }
1646 
1647 extern pgoff_t __page_file_index(struct page *page);
1648 
1649 /*
1650  * Return the pagecache index of the passed page.  Regular pagecache pages
1651  * use ->index whereas swapcache pages use swp_offset(->private)
1652  */
1653 static inline pgoff_t page_index(struct page *page)
1654 {
1655 	if (unlikely(PageSwapCache(page)))
1656 		return __page_file_index(page);
1657 	return page->index;
1658 }
1659 
1660 bool page_mapped(struct page *page);
1661 struct address_space *page_mapping(struct page *page);
1662 
1663 /*
1664  * Return true only if the page has been allocated with
1665  * ALLOC_NO_WATERMARKS and the low watermark was not
1666  * met implying that the system is under some pressure.
1667  */
1668 static inline bool page_is_pfmemalloc(const struct page *page)
1669 {
1670 	/*
1671 	 * lru.next has bit 1 set if the page is allocated from the
1672 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1673 	 * they do not need to preserve that information.
1674 	 */
1675 	return (uintptr_t)page->lru.next & BIT(1);
1676 }
1677 
1678 /*
1679  * Only to be called by the page allocator on a freshly allocated
1680  * page.
1681  */
1682 static inline void set_page_pfmemalloc(struct page *page)
1683 {
1684 	page->lru.next = (void *)BIT(1);
1685 }
1686 
1687 static inline void clear_page_pfmemalloc(struct page *page)
1688 {
1689 	page->lru.next = NULL;
1690 }
1691 
1692 /*
1693  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1694  */
1695 extern void pagefault_out_of_memory(void);
1696 
1697 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1698 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1699 
1700 /*
1701  * Flags passed to show_mem() and show_free_areas() to suppress output in
1702  * various contexts.
1703  */
1704 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1705 
1706 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1707 
1708 #ifdef CONFIG_MMU
1709 extern bool can_do_mlock(void);
1710 #else
1711 static inline bool can_do_mlock(void) { return false; }
1712 #endif
1713 extern int user_shm_lock(size_t, struct user_struct *);
1714 extern void user_shm_unlock(size_t, struct user_struct *);
1715 
1716 /*
1717  * Parameter block passed down to zap_pte_range in exceptional cases.
1718  */
1719 struct zap_details {
1720 	struct address_space *check_mapping;	/* Check page->mapping if set */
1721 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1722 	pgoff_t last_index;			/* Highest page->index to unmap */
1723 };
1724 
1725 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1726 			     pte_t pte);
1727 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1728 				pmd_t pmd);
1729 
1730 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1731 		  unsigned long size);
1732 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1733 		    unsigned long size);
1734 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1735 		unsigned long start, unsigned long end);
1736 
1737 struct mmu_notifier_range;
1738 
1739 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1740 		unsigned long end, unsigned long floor, unsigned long ceiling);
1741 int
1742 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1743 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1744 			  struct mmu_notifier_range *range, pte_t **ptepp,
1745 			  pmd_t **pmdpp, spinlock_t **ptlp);
1746 int follow_pte(struct mm_struct *mm, unsigned long address,
1747 	       pte_t **ptepp, spinlock_t **ptlp);
1748 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1749 	unsigned long *pfn);
1750 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1751 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1752 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1753 			void *buf, int len, int write);
1754 
1755 extern void truncate_pagecache(struct inode *inode, loff_t new);
1756 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1757 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1758 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1759 int truncate_inode_page(struct address_space *mapping, struct page *page);
1760 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1761 int invalidate_inode_page(struct page *page);
1762 
1763 #ifdef CONFIG_MMU
1764 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1765 				  unsigned long address, unsigned int flags,
1766 				  struct pt_regs *regs);
1767 extern int fixup_user_fault(struct mm_struct *mm,
1768 			    unsigned long address, unsigned int fault_flags,
1769 			    bool *unlocked);
1770 void unmap_mapping_pages(struct address_space *mapping,
1771 		pgoff_t start, pgoff_t nr, bool even_cows);
1772 void unmap_mapping_range(struct address_space *mapping,
1773 		loff_t const holebegin, loff_t const holelen, int even_cows);
1774 #else
1775 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1776 					 unsigned long address, unsigned int flags,
1777 					 struct pt_regs *regs)
1778 {
1779 	/* should never happen if there's no MMU */
1780 	BUG();
1781 	return VM_FAULT_SIGBUS;
1782 }
1783 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1784 		unsigned int fault_flags, bool *unlocked)
1785 {
1786 	/* should never happen if there's no MMU */
1787 	BUG();
1788 	return -EFAULT;
1789 }
1790 static inline void unmap_mapping_pages(struct address_space *mapping,
1791 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1792 static inline void unmap_mapping_range(struct address_space *mapping,
1793 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1794 #endif
1795 
1796 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1797 		loff_t const holebegin, loff_t const holelen)
1798 {
1799 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1800 }
1801 
1802 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1803 		void *buf, int len, unsigned int gup_flags);
1804 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1805 		void *buf, int len, unsigned int gup_flags);
1806 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1807 			      void *buf, int len, unsigned int gup_flags);
1808 
1809 long get_user_pages_remote(struct mm_struct *mm,
1810 			    unsigned long start, unsigned long nr_pages,
1811 			    unsigned int gup_flags, struct page **pages,
1812 			    struct vm_area_struct **vmas, int *locked);
1813 long pin_user_pages_remote(struct mm_struct *mm,
1814 			   unsigned long start, unsigned long nr_pages,
1815 			   unsigned int gup_flags, struct page **pages,
1816 			   struct vm_area_struct **vmas, int *locked);
1817 long get_user_pages(unsigned long start, unsigned long nr_pages,
1818 			    unsigned int gup_flags, struct page **pages,
1819 			    struct vm_area_struct **vmas);
1820 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1821 		    unsigned int gup_flags, struct page **pages,
1822 		    struct vm_area_struct **vmas);
1823 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1824 		    unsigned int gup_flags, struct page **pages, int *locked);
1825 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1826 		    unsigned int gup_flags, struct page **pages, int *locked);
1827 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1828 		    struct page **pages, unsigned int gup_flags);
1829 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1830 		    struct page **pages, unsigned int gup_flags);
1831 
1832 int get_user_pages_fast(unsigned long start, int nr_pages,
1833 			unsigned int gup_flags, struct page **pages);
1834 int pin_user_pages_fast(unsigned long start, int nr_pages,
1835 			unsigned int gup_flags, struct page **pages);
1836 
1837 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1838 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1839 			struct task_struct *task, bool bypass_rlim);
1840 
1841 struct kvec;
1842 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1843 			struct page **pages);
1844 int get_kernel_page(unsigned long start, int write, struct page **pages);
1845 struct page *get_dump_page(unsigned long addr);
1846 
1847 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1848 extern void do_invalidatepage(struct page *page, unsigned int offset,
1849 			      unsigned int length);
1850 
1851 void __set_page_dirty(struct page *, struct address_space *, int warn);
1852 int __set_page_dirty_nobuffers(struct page *page);
1853 int __set_page_dirty_no_writeback(struct page *page);
1854 int redirty_page_for_writepage(struct writeback_control *wbc,
1855 				struct page *page);
1856 void account_page_dirtied(struct page *page, struct address_space *mapping);
1857 void account_page_cleaned(struct page *page, struct address_space *mapping,
1858 			  struct bdi_writeback *wb);
1859 int set_page_dirty(struct page *page);
1860 int set_page_dirty_lock(struct page *page);
1861 void __cancel_dirty_page(struct page *page);
1862 static inline void cancel_dirty_page(struct page *page)
1863 {
1864 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1865 	if (PageDirty(page))
1866 		__cancel_dirty_page(page);
1867 }
1868 int clear_page_dirty_for_io(struct page *page);
1869 
1870 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1871 
1872 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1873 		unsigned long old_addr, struct vm_area_struct *new_vma,
1874 		unsigned long new_addr, unsigned long len,
1875 		bool need_rmap_locks);
1876 
1877 /*
1878  * Flags used by change_protection().  For now we make it a bitmap so
1879  * that we can pass in multiple flags just like parameters.  However
1880  * for now all the callers are only use one of the flags at the same
1881  * time.
1882  */
1883 /* Whether we should allow dirty bit accounting */
1884 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1885 /* Whether this protection change is for NUMA hints */
1886 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1887 /* Whether this change is for write protecting */
1888 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1889 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1890 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1891 					    MM_CP_UFFD_WP_RESOLVE)
1892 
1893 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1894 			      unsigned long end, pgprot_t newprot,
1895 			      unsigned long cp_flags);
1896 extern int mprotect_fixup(struct vm_area_struct *vma,
1897 			  struct vm_area_struct **pprev, unsigned long start,
1898 			  unsigned long end, unsigned long newflags);
1899 
1900 /*
1901  * doesn't attempt to fault and will return short.
1902  */
1903 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1904 			     unsigned int gup_flags, struct page **pages);
1905 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1906 			     unsigned int gup_flags, struct page **pages);
1907 
1908 static inline bool get_user_page_fast_only(unsigned long addr,
1909 			unsigned int gup_flags, struct page **pagep)
1910 {
1911 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1912 }
1913 /*
1914  * per-process(per-mm_struct) statistics.
1915  */
1916 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1917 {
1918 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1919 
1920 #ifdef SPLIT_RSS_COUNTING
1921 	/*
1922 	 * counter is updated in asynchronous manner and may go to minus.
1923 	 * But it's never be expected number for users.
1924 	 */
1925 	if (val < 0)
1926 		val = 0;
1927 #endif
1928 	return (unsigned long)val;
1929 }
1930 
1931 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1932 
1933 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1934 {
1935 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1936 
1937 	mm_trace_rss_stat(mm, member, count);
1938 }
1939 
1940 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1941 {
1942 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1943 
1944 	mm_trace_rss_stat(mm, member, count);
1945 }
1946 
1947 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1948 {
1949 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1950 
1951 	mm_trace_rss_stat(mm, member, count);
1952 }
1953 
1954 /* Optimized variant when page is already known not to be PageAnon */
1955 static inline int mm_counter_file(struct page *page)
1956 {
1957 	if (PageSwapBacked(page))
1958 		return MM_SHMEMPAGES;
1959 	return MM_FILEPAGES;
1960 }
1961 
1962 static inline int mm_counter(struct page *page)
1963 {
1964 	if (PageAnon(page))
1965 		return MM_ANONPAGES;
1966 	return mm_counter_file(page);
1967 }
1968 
1969 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1970 {
1971 	return get_mm_counter(mm, MM_FILEPAGES) +
1972 		get_mm_counter(mm, MM_ANONPAGES) +
1973 		get_mm_counter(mm, MM_SHMEMPAGES);
1974 }
1975 
1976 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1977 {
1978 	return max(mm->hiwater_rss, get_mm_rss(mm));
1979 }
1980 
1981 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1982 {
1983 	return max(mm->hiwater_vm, mm->total_vm);
1984 }
1985 
1986 static inline void update_hiwater_rss(struct mm_struct *mm)
1987 {
1988 	unsigned long _rss = get_mm_rss(mm);
1989 
1990 	if ((mm)->hiwater_rss < _rss)
1991 		(mm)->hiwater_rss = _rss;
1992 }
1993 
1994 static inline void update_hiwater_vm(struct mm_struct *mm)
1995 {
1996 	if (mm->hiwater_vm < mm->total_vm)
1997 		mm->hiwater_vm = mm->total_vm;
1998 }
1999 
2000 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2001 {
2002 	mm->hiwater_rss = get_mm_rss(mm);
2003 }
2004 
2005 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2006 					 struct mm_struct *mm)
2007 {
2008 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2009 
2010 	if (*maxrss < hiwater_rss)
2011 		*maxrss = hiwater_rss;
2012 }
2013 
2014 #if defined(SPLIT_RSS_COUNTING)
2015 void sync_mm_rss(struct mm_struct *mm);
2016 #else
2017 static inline void sync_mm_rss(struct mm_struct *mm)
2018 {
2019 }
2020 #endif
2021 
2022 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2023 static inline int pte_special(pte_t pte)
2024 {
2025 	return 0;
2026 }
2027 
2028 static inline pte_t pte_mkspecial(pte_t pte)
2029 {
2030 	return pte;
2031 }
2032 #endif
2033 
2034 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2035 static inline int pte_devmap(pte_t pte)
2036 {
2037 	return 0;
2038 }
2039 #endif
2040 
2041 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2042 
2043 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2044 			       spinlock_t **ptl);
2045 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 				    spinlock_t **ptl)
2047 {
2048 	pte_t *ptep;
2049 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2050 	return ptep;
2051 }
2052 
2053 #ifdef __PAGETABLE_P4D_FOLDED
2054 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2055 						unsigned long address)
2056 {
2057 	return 0;
2058 }
2059 #else
2060 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2061 #endif
2062 
2063 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2064 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2065 						unsigned long address)
2066 {
2067 	return 0;
2068 }
2069 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2070 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2071 
2072 #else
2073 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2074 
2075 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2076 {
2077 	if (mm_pud_folded(mm))
2078 		return;
2079 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2080 }
2081 
2082 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2083 {
2084 	if (mm_pud_folded(mm))
2085 		return;
2086 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2087 }
2088 #endif
2089 
2090 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2091 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2092 						unsigned long address)
2093 {
2094 	return 0;
2095 }
2096 
2097 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2098 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2099 
2100 #else
2101 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2102 
2103 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2104 {
2105 	if (mm_pmd_folded(mm))
2106 		return;
2107 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2108 }
2109 
2110 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2111 {
2112 	if (mm_pmd_folded(mm))
2113 		return;
2114 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2115 }
2116 #endif
2117 
2118 #ifdef CONFIG_MMU
2119 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2120 {
2121 	atomic_long_set(&mm->pgtables_bytes, 0);
2122 }
2123 
2124 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2125 {
2126 	return atomic_long_read(&mm->pgtables_bytes);
2127 }
2128 
2129 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2130 {
2131 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2132 }
2133 
2134 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2135 {
2136 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2137 }
2138 #else
2139 
2140 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2141 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2142 {
2143 	return 0;
2144 }
2145 
2146 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2147 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2148 #endif
2149 
2150 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2151 int __pte_alloc_kernel(pmd_t *pmd);
2152 
2153 #if defined(CONFIG_MMU)
2154 
2155 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2156 		unsigned long address)
2157 {
2158 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2159 		NULL : p4d_offset(pgd, address);
2160 }
2161 
2162 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2163 		unsigned long address)
2164 {
2165 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2166 		NULL : pud_offset(p4d, address);
2167 }
2168 
2169 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2170 {
2171 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2172 		NULL: pmd_offset(pud, address);
2173 }
2174 #endif /* CONFIG_MMU */
2175 
2176 #if USE_SPLIT_PTE_PTLOCKS
2177 #if ALLOC_SPLIT_PTLOCKS
2178 void __init ptlock_cache_init(void);
2179 extern bool ptlock_alloc(struct page *page);
2180 extern void ptlock_free(struct page *page);
2181 
2182 static inline spinlock_t *ptlock_ptr(struct page *page)
2183 {
2184 	return page->ptl;
2185 }
2186 #else /* ALLOC_SPLIT_PTLOCKS */
2187 static inline void ptlock_cache_init(void)
2188 {
2189 }
2190 
2191 static inline bool ptlock_alloc(struct page *page)
2192 {
2193 	return true;
2194 }
2195 
2196 static inline void ptlock_free(struct page *page)
2197 {
2198 }
2199 
2200 static inline spinlock_t *ptlock_ptr(struct page *page)
2201 {
2202 	return &page->ptl;
2203 }
2204 #endif /* ALLOC_SPLIT_PTLOCKS */
2205 
2206 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2207 {
2208 	return ptlock_ptr(pmd_page(*pmd));
2209 }
2210 
2211 static inline bool ptlock_init(struct page *page)
2212 {
2213 	/*
2214 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2215 	 * with 0. Make sure nobody took it in use in between.
2216 	 *
2217 	 * It can happen if arch try to use slab for page table allocation:
2218 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2219 	 */
2220 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2221 	if (!ptlock_alloc(page))
2222 		return false;
2223 	spin_lock_init(ptlock_ptr(page));
2224 	return true;
2225 }
2226 
2227 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2228 /*
2229  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2230  */
2231 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2232 {
2233 	return &mm->page_table_lock;
2234 }
2235 static inline void ptlock_cache_init(void) {}
2236 static inline bool ptlock_init(struct page *page) { return true; }
2237 static inline void ptlock_free(struct page *page) {}
2238 #endif /* USE_SPLIT_PTE_PTLOCKS */
2239 
2240 static inline void pgtable_init(void)
2241 {
2242 	ptlock_cache_init();
2243 	pgtable_cache_init();
2244 }
2245 
2246 static inline bool pgtable_pte_page_ctor(struct page *page)
2247 {
2248 	if (!ptlock_init(page))
2249 		return false;
2250 	__SetPageTable(page);
2251 	inc_lruvec_page_state(page, NR_PAGETABLE);
2252 	return true;
2253 }
2254 
2255 static inline void pgtable_pte_page_dtor(struct page *page)
2256 {
2257 	ptlock_free(page);
2258 	__ClearPageTable(page);
2259 	dec_lruvec_page_state(page, NR_PAGETABLE);
2260 }
2261 
2262 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2263 ({							\
2264 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2265 	pte_t *__pte = pte_offset_map(pmd, address);	\
2266 	*(ptlp) = __ptl;				\
2267 	spin_lock(__ptl);				\
2268 	__pte;						\
2269 })
2270 
2271 #define pte_unmap_unlock(pte, ptl)	do {		\
2272 	spin_unlock(ptl);				\
2273 	pte_unmap(pte);					\
2274 } while (0)
2275 
2276 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2277 
2278 #define pte_alloc_map(mm, pmd, address)			\
2279 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2280 
2281 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2282 	(pte_alloc(mm, pmd) ?			\
2283 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2284 
2285 #define pte_alloc_kernel(pmd, address)			\
2286 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2287 		NULL: pte_offset_kernel(pmd, address))
2288 
2289 #if USE_SPLIT_PMD_PTLOCKS
2290 
2291 static struct page *pmd_to_page(pmd_t *pmd)
2292 {
2293 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2294 	return virt_to_page((void *)((unsigned long) pmd & mask));
2295 }
2296 
2297 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2298 {
2299 	return ptlock_ptr(pmd_to_page(pmd));
2300 }
2301 
2302 static inline bool pmd_ptlock_init(struct page *page)
2303 {
2304 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2305 	page->pmd_huge_pte = NULL;
2306 #endif
2307 	return ptlock_init(page);
2308 }
2309 
2310 static inline void pmd_ptlock_free(struct page *page)
2311 {
2312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2313 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2314 #endif
2315 	ptlock_free(page);
2316 }
2317 
2318 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2319 
2320 #else
2321 
2322 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2323 {
2324 	return &mm->page_table_lock;
2325 }
2326 
2327 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2328 static inline void pmd_ptlock_free(struct page *page) {}
2329 
2330 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2331 
2332 #endif
2333 
2334 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2335 {
2336 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2337 	spin_lock(ptl);
2338 	return ptl;
2339 }
2340 
2341 static inline bool pgtable_pmd_page_ctor(struct page *page)
2342 {
2343 	if (!pmd_ptlock_init(page))
2344 		return false;
2345 	__SetPageTable(page);
2346 	inc_lruvec_page_state(page, NR_PAGETABLE);
2347 	return true;
2348 }
2349 
2350 static inline void pgtable_pmd_page_dtor(struct page *page)
2351 {
2352 	pmd_ptlock_free(page);
2353 	__ClearPageTable(page);
2354 	dec_lruvec_page_state(page, NR_PAGETABLE);
2355 }
2356 
2357 /*
2358  * No scalability reason to split PUD locks yet, but follow the same pattern
2359  * as the PMD locks to make it easier if we decide to.  The VM should not be
2360  * considered ready to switch to split PUD locks yet; there may be places
2361  * which need to be converted from page_table_lock.
2362  */
2363 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2364 {
2365 	return &mm->page_table_lock;
2366 }
2367 
2368 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2369 {
2370 	spinlock_t *ptl = pud_lockptr(mm, pud);
2371 
2372 	spin_lock(ptl);
2373 	return ptl;
2374 }
2375 
2376 extern void __init pagecache_init(void);
2377 extern void __init free_area_init_memoryless_node(int nid);
2378 extern void free_initmem(void);
2379 
2380 /*
2381  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2382  * into the buddy system. The freed pages will be poisoned with pattern
2383  * "poison" if it's within range [0, UCHAR_MAX].
2384  * Return pages freed into the buddy system.
2385  */
2386 extern unsigned long free_reserved_area(void *start, void *end,
2387 					int poison, const char *s);
2388 
2389 extern void adjust_managed_page_count(struct page *page, long count);
2390 extern void mem_init_print_info(void);
2391 
2392 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2393 
2394 /* Free the reserved page into the buddy system, so it gets managed. */
2395 static inline void free_reserved_page(struct page *page)
2396 {
2397 	ClearPageReserved(page);
2398 	init_page_count(page);
2399 	__free_page(page);
2400 	adjust_managed_page_count(page, 1);
2401 }
2402 #define free_highmem_page(page) free_reserved_page(page)
2403 
2404 static inline void mark_page_reserved(struct page *page)
2405 {
2406 	SetPageReserved(page);
2407 	adjust_managed_page_count(page, -1);
2408 }
2409 
2410 /*
2411  * Default method to free all the __init memory into the buddy system.
2412  * The freed pages will be poisoned with pattern "poison" if it's within
2413  * range [0, UCHAR_MAX].
2414  * Return pages freed into the buddy system.
2415  */
2416 static inline unsigned long free_initmem_default(int poison)
2417 {
2418 	extern char __init_begin[], __init_end[];
2419 
2420 	return free_reserved_area(&__init_begin, &__init_end,
2421 				  poison, "unused kernel");
2422 }
2423 
2424 static inline unsigned long get_num_physpages(void)
2425 {
2426 	int nid;
2427 	unsigned long phys_pages = 0;
2428 
2429 	for_each_online_node(nid)
2430 		phys_pages += node_present_pages(nid);
2431 
2432 	return phys_pages;
2433 }
2434 
2435 /*
2436  * Using memblock node mappings, an architecture may initialise its
2437  * zones, allocate the backing mem_map and account for memory holes in an
2438  * architecture independent manner.
2439  *
2440  * An architecture is expected to register range of page frames backed by
2441  * physical memory with memblock_add[_node]() before calling
2442  * free_area_init() passing in the PFN each zone ends at. At a basic
2443  * usage, an architecture is expected to do something like
2444  *
2445  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2446  * 							 max_highmem_pfn};
2447  * for_each_valid_physical_page_range()
2448  * 	memblock_add_node(base, size, nid)
2449  * free_area_init(max_zone_pfns);
2450  */
2451 void free_area_init(unsigned long *max_zone_pfn);
2452 unsigned long node_map_pfn_alignment(void);
2453 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2454 						unsigned long end_pfn);
2455 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2456 						unsigned long end_pfn);
2457 extern void get_pfn_range_for_nid(unsigned int nid,
2458 			unsigned long *start_pfn, unsigned long *end_pfn);
2459 extern unsigned long find_min_pfn_with_active_regions(void);
2460 
2461 #ifndef CONFIG_NEED_MULTIPLE_NODES
2462 static inline int early_pfn_to_nid(unsigned long pfn)
2463 {
2464 	return 0;
2465 }
2466 #else
2467 /* please see mm/page_alloc.c */
2468 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2469 #endif
2470 
2471 extern void set_dma_reserve(unsigned long new_dma_reserve);
2472 extern void memmap_init_range(unsigned long, int, unsigned long,
2473 		unsigned long, unsigned long, enum meminit_context,
2474 		struct vmem_altmap *, int migratetype);
2475 extern void memmap_init_zone(struct zone *zone);
2476 extern void setup_per_zone_wmarks(void);
2477 extern int __meminit init_per_zone_wmark_min(void);
2478 extern void mem_init(void);
2479 extern void __init mmap_init(void);
2480 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2481 extern long si_mem_available(void);
2482 extern void si_meminfo(struct sysinfo * val);
2483 extern void si_meminfo_node(struct sysinfo *val, int nid);
2484 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2485 extern unsigned long arch_reserved_kernel_pages(void);
2486 #endif
2487 
2488 extern __printf(3, 4)
2489 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2490 
2491 extern void setup_per_cpu_pageset(void);
2492 
2493 /* page_alloc.c */
2494 extern int min_free_kbytes;
2495 extern int watermark_boost_factor;
2496 extern int watermark_scale_factor;
2497 extern bool arch_has_descending_max_zone_pfns(void);
2498 
2499 /* nommu.c */
2500 extern atomic_long_t mmap_pages_allocated;
2501 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2502 
2503 /* interval_tree.c */
2504 void vma_interval_tree_insert(struct vm_area_struct *node,
2505 			      struct rb_root_cached *root);
2506 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2507 				    struct vm_area_struct *prev,
2508 				    struct rb_root_cached *root);
2509 void vma_interval_tree_remove(struct vm_area_struct *node,
2510 			      struct rb_root_cached *root);
2511 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2512 				unsigned long start, unsigned long last);
2513 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2514 				unsigned long start, unsigned long last);
2515 
2516 #define vma_interval_tree_foreach(vma, root, start, last)		\
2517 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2518 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2519 
2520 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2521 				   struct rb_root_cached *root);
2522 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2523 				   struct rb_root_cached *root);
2524 struct anon_vma_chain *
2525 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2526 				  unsigned long start, unsigned long last);
2527 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2528 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2529 #ifdef CONFIG_DEBUG_VM_RB
2530 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2531 #endif
2532 
2533 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2534 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2535 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2536 
2537 /* mmap.c */
2538 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2539 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2540 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2541 	struct vm_area_struct *expand);
2542 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2543 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2544 {
2545 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2546 }
2547 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2548 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2549 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2550 	struct mempolicy *, struct vm_userfaultfd_ctx);
2551 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2552 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2553 	unsigned long addr, int new_below);
2554 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2555 	unsigned long addr, int new_below);
2556 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2557 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2558 	struct rb_node **, struct rb_node *);
2559 extern void unlink_file_vma(struct vm_area_struct *);
2560 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2561 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2562 	bool *need_rmap_locks);
2563 extern void exit_mmap(struct mm_struct *);
2564 
2565 static inline int check_data_rlimit(unsigned long rlim,
2566 				    unsigned long new,
2567 				    unsigned long start,
2568 				    unsigned long end_data,
2569 				    unsigned long start_data)
2570 {
2571 	if (rlim < RLIM_INFINITY) {
2572 		if (((new - start) + (end_data - start_data)) > rlim)
2573 			return -ENOSPC;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 extern int mm_take_all_locks(struct mm_struct *mm);
2580 extern void mm_drop_all_locks(struct mm_struct *mm);
2581 
2582 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2583 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2584 extern struct file *get_task_exe_file(struct task_struct *task);
2585 
2586 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2587 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2588 
2589 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2590 				   const struct vm_special_mapping *sm);
2591 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2592 				   unsigned long addr, unsigned long len,
2593 				   unsigned long flags,
2594 				   const struct vm_special_mapping *spec);
2595 /* This is an obsolete alternative to _install_special_mapping. */
2596 extern int install_special_mapping(struct mm_struct *mm,
2597 				   unsigned long addr, unsigned long len,
2598 				   unsigned long flags, struct page **pages);
2599 
2600 unsigned long randomize_stack_top(unsigned long stack_top);
2601 
2602 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2603 
2604 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2605 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2606 	struct list_head *uf);
2607 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2608 	unsigned long len, unsigned long prot, unsigned long flags,
2609 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2610 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2611 		       struct list_head *uf, bool downgrade);
2612 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2613 		     struct list_head *uf);
2614 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2615 
2616 #ifdef CONFIG_MMU
2617 extern int __mm_populate(unsigned long addr, unsigned long len,
2618 			 int ignore_errors);
2619 static inline void mm_populate(unsigned long addr, unsigned long len)
2620 {
2621 	/* Ignore errors */
2622 	(void) __mm_populate(addr, len, 1);
2623 }
2624 #else
2625 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2626 #endif
2627 
2628 /* These take the mm semaphore themselves */
2629 extern int __must_check vm_brk(unsigned long, unsigned long);
2630 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2631 extern int vm_munmap(unsigned long, size_t);
2632 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2633         unsigned long, unsigned long,
2634         unsigned long, unsigned long);
2635 
2636 struct vm_unmapped_area_info {
2637 #define VM_UNMAPPED_AREA_TOPDOWN 1
2638 	unsigned long flags;
2639 	unsigned long length;
2640 	unsigned long low_limit;
2641 	unsigned long high_limit;
2642 	unsigned long align_mask;
2643 	unsigned long align_offset;
2644 };
2645 
2646 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2647 
2648 /* truncate.c */
2649 extern void truncate_inode_pages(struct address_space *, loff_t);
2650 extern void truncate_inode_pages_range(struct address_space *,
2651 				       loff_t lstart, loff_t lend);
2652 extern void truncate_inode_pages_final(struct address_space *);
2653 
2654 /* generic vm_area_ops exported for stackable file systems */
2655 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2656 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2657 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2658 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2659 
2660 /* mm/page-writeback.c */
2661 int __must_check write_one_page(struct page *page);
2662 void task_dirty_inc(struct task_struct *tsk);
2663 
2664 extern unsigned long stack_guard_gap;
2665 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2666 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2667 
2668 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2669 extern int expand_downwards(struct vm_area_struct *vma,
2670 		unsigned long address);
2671 #if VM_GROWSUP
2672 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2673 #else
2674   #define expand_upwards(vma, address) (0)
2675 #endif
2676 
2677 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2678 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2679 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2680 					     struct vm_area_struct **pprev);
2681 
2682 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2683    NULL if none.  Assume start_addr < end_addr. */
2684 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2685 {
2686 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2687 
2688 	if (vma && end_addr <= vma->vm_start)
2689 		vma = NULL;
2690 	return vma;
2691 }
2692 
2693 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2694 {
2695 	unsigned long vm_start = vma->vm_start;
2696 
2697 	if (vma->vm_flags & VM_GROWSDOWN) {
2698 		vm_start -= stack_guard_gap;
2699 		if (vm_start > vma->vm_start)
2700 			vm_start = 0;
2701 	}
2702 	return vm_start;
2703 }
2704 
2705 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2706 {
2707 	unsigned long vm_end = vma->vm_end;
2708 
2709 	if (vma->vm_flags & VM_GROWSUP) {
2710 		vm_end += stack_guard_gap;
2711 		if (vm_end < vma->vm_end)
2712 			vm_end = -PAGE_SIZE;
2713 	}
2714 	return vm_end;
2715 }
2716 
2717 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2718 {
2719 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2720 }
2721 
2722 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2723 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2724 				unsigned long vm_start, unsigned long vm_end)
2725 {
2726 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2727 
2728 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2729 		vma = NULL;
2730 
2731 	return vma;
2732 }
2733 
2734 static inline bool range_in_vma(struct vm_area_struct *vma,
2735 				unsigned long start, unsigned long end)
2736 {
2737 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2738 }
2739 
2740 #ifdef CONFIG_MMU
2741 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2742 void vma_set_page_prot(struct vm_area_struct *vma);
2743 #else
2744 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2745 {
2746 	return __pgprot(0);
2747 }
2748 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2749 {
2750 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2751 }
2752 #endif
2753 
2754 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2755 
2756 #ifdef CONFIG_NUMA_BALANCING
2757 unsigned long change_prot_numa(struct vm_area_struct *vma,
2758 			unsigned long start, unsigned long end);
2759 #endif
2760 
2761 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2762 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2763 			unsigned long pfn, unsigned long size, pgprot_t);
2764 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2765 		unsigned long pfn, unsigned long size, pgprot_t prot);
2766 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2767 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2768 			struct page **pages, unsigned long *num);
2769 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2770 				unsigned long num);
2771 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2772 				unsigned long num);
2773 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2774 			unsigned long pfn);
2775 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2776 			unsigned long pfn, pgprot_t pgprot);
2777 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2778 			pfn_t pfn);
2779 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2780 			pfn_t pfn, pgprot_t pgprot);
2781 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2782 		unsigned long addr, pfn_t pfn);
2783 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2784 
2785 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2786 				unsigned long addr, struct page *page)
2787 {
2788 	int err = vm_insert_page(vma, addr, page);
2789 
2790 	if (err == -ENOMEM)
2791 		return VM_FAULT_OOM;
2792 	if (err < 0 && err != -EBUSY)
2793 		return VM_FAULT_SIGBUS;
2794 
2795 	return VM_FAULT_NOPAGE;
2796 }
2797 
2798 #ifndef io_remap_pfn_range
2799 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2800 				     unsigned long addr, unsigned long pfn,
2801 				     unsigned long size, pgprot_t prot)
2802 {
2803 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2804 }
2805 #endif
2806 
2807 static inline vm_fault_t vmf_error(int err)
2808 {
2809 	if (err == -ENOMEM)
2810 		return VM_FAULT_OOM;
2811 	return VM_FAULT_SIGBUS;
2812 }
2813 
2814 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2815 			 unsigned int foll_flags);
2816 
2817 #define FOLL_WRITE	0x01	/* check pte is writable */
2818 #define FOLL_TOUCH	0x02	/* mark page accessed */
2819 #define FOLL_GET	0x04	/* do get_page on page */
2820 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2821 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2822 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2823 				 * and return without waiting upon it */
2824 #define FOLL_POPULATE	0x40	/* fault in page */
2825 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2826 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2827 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2828 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2829 #define FOLL_MLOCK	0x1000	/* lock present pages */
2830 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2831 #define FOLL_COW	0x4000	/* internal GUP flag */
2832 #define FOLL_ANON	0x8000	/* don't do file mappings */
2833 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2834 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2835 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2836 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2837 
2838 /*
2839  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2840  * other. Here is what they mean, and how to use them:
2841  *
2842  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2843  * period _often_ under userspace control.  This is in contrast to
2844  * iov_iter_get_pages(), whose usages are transient.
2845  *
2846  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2847  * lifetime enforced by the filesystem and we need guarantees that longterm
2848  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2849  * the filesystem.  Ideas for this coordination include revoking the longterm
2850  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2851  * added after the problem with filesystems was found FS DAX VMAs are
2852  * specifically failed.  Filesystem pages are still subject to bugs and use of
2853  * FOLL_LONGTERM should be avoided on those pages.
2854  *
2855  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2856  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2857  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2858  * is due to an incompatibility with the FS DAX check and
2859  * FAULT_FLAG_ALLOW_RETRY.
2860  *
2861  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2862  * that region.  And so, CMA attempts to migrate the page before pinning, when
2863  * FOLL_LONGTERM is specified.
2864  *
2865  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2866  * but an additional pin counting system) will be invoked. This is intended for
2867  * anything that gets a page reference and then touches page data (for example,
2868  * Direct IO). This lets the filesystem know that some non-file-system entity is
2869  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2870  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2871  * a call to unpin_user_page().
2872  *
2873  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2874  * and separate refcounting mechanisms, however, and that means that each has
2875  * its own acquire and release mechanisms:
2876  *
2877  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2878  *
2879  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2880  *
2881  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2882  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2883  * calls applied to them, and that's perfectly OK. This is a constraint on the
2884  * callers, not on the pages.)
2885  *
2886  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2887  * directly by the caller. That's in order to help avoid mismatches when
2888  * releasing pages: get_user_pages*() pages must be released via put_page(),
2889  * while pin_user_pages*() pages must be released via unpin_user_page().
2890  *
2891  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2892  */
2893 
2894 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2895 {
2896 	if (vm_fault & VM_FAULT_OOM)
2897 		return -ENOMEM;
2898 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2899 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2900 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2901 		return -EFAULT;
2902 	return 0;
2903 }
2904 
2905 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2906 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2907 			       unsigned long size, pte_fn_t fn, void *data);
2908 extern int apply_to_existing_page_range(struct mm_struct *mm,
2909 				   unsigned long address, unsigned long size,
2910 				   pte_fn_t fn, void *data);
2911 
2912 extern void init_mem_debugging_and_hardening(void);
2913 #ifdef CONFIG_PAGE_POISONING
2914 extern void __kernel_poison_pages(struct page *page, int numpages);
2915 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2916 extern bool _page_poisoning_enabled_early;
2917 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2918 static inline bool page_poisoning_enabled(void)
2919 {
2920 	return _page_poisoning_enabled_early;
2921 }
2922 /*
2923  * For use in fast paths after init_mem_debugging() has run, or when a
2924  * false negative result is not harmful when called too early.
2925  */
2926 static inline bool page_poisoning_enabled_static(void)
2927 {
2928 	return static_branch_unlikely(&_page_poisoning_enabled);
2929 }
2930 static inline void kernel_poison_pages(struct page *page, int numpages)
2931 {
2932 	if (page_poisoning_enabled_static())
2933 		__kernel_poison_pages(page, numpages);
2934 }
2935 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2936 {
2937 	if (page_poisoning_enabled_static())
2938 		__kernel_unpoison_pages(page, numpages);
2939 }
2940 #else
2941 static inline bool page_poisoning_enabled(void) { return false; }
2942 static inline bool page_poisoning_enabled_static(void) { return false; }
2943 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2944 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2945 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2946 #endif
2947 
2948 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2949 static inline bool want_init_on_alloc(gfp_t flags)
2950 {
2951 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2952 				&init_on_alloc))
2953 		return true;
2954 	return flags & __GFP_ZERO;
2955 }
2956 
2957 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2958 static inline bool want_init_on_free(void)
2959 {
2960 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2961 				   &init_on_free);
2962 }
2963 
2964 extern bool _debug_pagealloc_enabled_early;
2965 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2966 
2967 static inline bool debug_pagealloc_enabled(void)
2968 {
2969 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2970 		_debug_pagealloc_enabled_early;
2971 }
2972 
2973 /*
2974  * For use in fast paths after init_debug_pagealloc() has run, or when a
2975  * false negative result is not harmful when called too early.
2976  */
2977 static inline bool debug_pagealloc_enabled_static(void)
2978 {
2979 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2980 		return false;
2981 
2982 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2983 }
2984 
2985 #ifdef CONFIG_DEBUG_PAGEALLOC
2986 /*
2987  * To support DEBUG_PAGEALLOC architecture must ensure that
2988  * __kernel_map_pages() never fails
2989  */
2990 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2991 
2992 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2993 {
2994 	if (debug_pagealloc_enabled_static())
2995 		__kernel_map_pages(page, numpages, 1);
2996 }
2997 
2998 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2999 {
3000 	if (debug_pagealloc_enabled_static())
3001 		__kernel_map_pages(page, numpages, 0);
3002 }
3003 #else	/* CONFIG_DEBUG_PAGEALLOC */
3004 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3005 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3006 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3007 
3008 #ifdef __HAVE_ARCH_GATE_AREA
3009 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3010 extern int in_gate_area_no_mm(unsigned long addr);
3011 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3012 #else
3013 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3014 {
3015 	return NULL;
3016 }
3017 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3018 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3019 {
3020 	return 0;
3021 }
3022 #endif	/* __HAVE_ARCH_GATE_AREA */
3023 
3024 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3025 
3026 #ifdef CONFIG_SYSCTL
3027 extern int sysctl_drop_caches;
3028 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3029 		loff_t *);
3030 #endif
3031 
3032 void drop_slab(void);
3033 void drop_slab_node(int nid);
3034 
3035 #ifndef CONFIG_MMU
3036 #define randomize_va_space 0
3037 #else
3038 extern int randomize_va_space;
3039 #endif
3040 
3041 const char * arch_vma_name(struct vm_area_struct *vma);
3042 #ifdef CONFIG_MMU
3043 void print_vma_addr(char *prefix, unsigned long rip);
3044 #else
3045 static inline void print_vma_addr(char *prefix, unsigned long rip)
3046 {
3047 }
3048 #endif
3049 
3050 void *sparse_buffer_alloc(unsigned long size);
3051 struct page * __populate_section_memmap(unsigned long pfn,
3052 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3053 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3054 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3055 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3056 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3057 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3058 			    struct vmem_altmap *altmap);
3059 void *vmemmap_alloc_block(unsigned long size, int node);
3060 struct vmem_altmap;
3061 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3062 			      struct vmem_altmap *altmap);
3063 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3064 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3065 			       int node, struct vmem_altmap *altmap);
3066 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3067 		struct vmem_altmap *altmap);
3068 void vmemmap_populate_print_last(void);
3069 #ifdef CONFIG_MEMORY_HOTPLUG
3070 void vmemmap_free(unsigned long start, unsigned long end,
3071 		struct vmem_altmap *altmap);
3072 #endif
3073 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3074 				  unsigned long nr_pages);
3075 
3076 enum mf_flags {
3077 	MF_COUNT_INCREASED = 1 << 0,
3078 	MF_ACTION_REQUIRED = 1 << 1,
3079 	MF_MUST_KILL = 1 << 2,
3080 	MF_SOFT_OFFLINE = 1 << 3,
3081 };
3082 extern int memory_failure(unsigned long pfn, int flags);
3083 extern void memory_failure_queue(unsigned long pfn, int flags);
3084 extern void memory_failure_queue_kick(int cpu);
3085 extern int unpoison_memory(unsigned long pfn);
3086 extern int sysctl_memory_failure_early_kill;
3087 extern int sysctl_memory_failure_recovery;
3088 extern void shake_page(struct page *p, int access);
3089 extern atomic_long_t num_poisoned_pages __read_mostly;
3090 extern int soft_offline_page(unsigned long pfn, int flags);
3091 
3092 
3093 /*
3094  * Error handlers for various types of pages.
3095  */
3096 enum mf_result {
3097 	MF_IGNORED,	/* Error: cannot be handled */
3098 	MF_FAILED,	/* Error: handling failed */
3099 	MF_DELAYED,	/* Will be handled later */
3100 	MF_RECOVERED,	/* Successfully recovered */
3101 };
3102 
3103 enum mf_action_page_type {
3104 	MF_MSG_KERNEL,
3105 	MF_MSG_KERNEL_HIGH_ORDER,
3106 	MF_MSG_SLAB,
3107 	MF_MSG_DIFFERENT_COMPOUND,
3108 	MF_MSG_POISONED_HUGE,
3109 	MF_MSG_HUGE,
3110 	MF_MSG_FREE_HUGE,
3111 	MF_MSG_NON_PMD_HUGE,
3112 	MF_MSG_UNMAP_FAILED,
3113 	MF_MSG_DIRTY_SWAPCACHE,
3114 	MF_MSG_CLEAN_SWAPCACHE,
3115 	MF_MSG_DIRTY_MLOCKED_LRU,
3116 	MF_MSG_CLEAN_MLOCKED_LRU,
3117 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3118 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3119 	MF_MSG_DIRTY_LRU,
3120 	MF_MSG_CLEAN_LRU,
3121 	MF_MSG_TRUNCATED_LRU,
3122 	MF_MSG_BUDDY,
3123 	MF_MSG_BUDDY_2ND,
3124 	MF_MSG_DAX,
3125 	MF_MSG_UNSPLIT_THP,
3126 	MF_MSG_UNKNOWN,
3127 };
3128 
3129 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3130 extern void clear_huge_page(struct page *page,
3131 			    unsigned long addr_hint,
3132 			    unsigned int pages_per_huge_page);
3133 extern void copy_user_huge_page(struct page *dst, struct page *src,
3134 				unsigned long addr_hint,
3135 				struct vm_area_struct *vma,
3136 				unsigned int pages_per_huge_page);
3137 extern long copy_huge_page_from_user(struct page *dst_page,
3138 				const void __user *usr_src,
3139 				unsigned int pages_per_huge_page,
3140 				bool allow_pagefault);
3141 
3142 /**
3143  * vma_is_special_huge - Are transhuge page-table entries considered special?
3144  * @vma: Pointer to the struct vm_area_struct to consider
3145  *
3146  * Whether transhuge page-table entries are considered "special" following
3147  * the definition in vm_normal_page().
3148  *
3149  * Return: true if transhuge page-table entries should be considered special,
3150  * false otherwise.
3151  */
3152 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3153 {
3154 	return vma_is_dax(vma) || (vma->vm_file &&
3155 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3156 }
3157 
3158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3159 
3160 #ifdef CONFIG_DEBUG_PAGEALLOC
3161 extern unsigned int _debug_guardpage_minorder;
3162 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3163 
3164 static inline unsigned int debug_guardpage_minorder(void)
3165 {
3166 	return _debug_guardpage_minorder;
3167 }
3168 
3169 static inline bool debug_guardpage_enabled(void)
3170 {
3171 	return static_branch_unlikely(&_debug_guardpage_enabled);
3172 }
3173 
3174 static inline bool page_is_guard(struct page *page)
3175 {
3176 	if (!debug_guardpage_enabled())
3177 		return false;
3178 
3179 	return PageGuard(page);
3180 }
3181 #else
3182 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3183 static inline bool debug_guardpage_enabled(void) { return false; }
3184 static inline bool page_is_guard(struct page *page) { return false; }
3185 #endif /* CONFIG_DEBUG_PAGEALLOC */
3186 
3187 #if MAX_NUMNODES > 1
3188 void __init setup_nr_node_ids(void);
3189 #else
3190 static inline void setup_nr_node_ids(void) {}
3191 #endif
3192 
3193 extern int memcmp_pages(struct page *page1, struct page *page2);
3194 
3195 static inline int pages_identical(struct page *page1, struct page *page2)
3196 {
3197 	return !memcmp_pages(page1, page2);
3198 }
3199 
3200 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3201 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3202 						pgoff_t first_index, pgoff_t nr,
3203 						pgoff_t bitmap_pgoff,
3204 						unsigned long *bitmap,
3205 						pgoff_t *start,
3206 						pgoff_t *end);
3207 
3208 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3209 				      pgoff_t first_index, pgoff_t nr);
3210 #endif
3211 
3212 extern int sysctl_nr_trim_pages;
3213 
3214 #ifdef CONFIG_PRINTK
3215 void mem_dump_obj(void *object);
3216 #else
3217 static inline void mem_dump_obj(void *object) {}
3218 #endif
3219 
3220 /**
3221  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3222  * @seals: the seals to check
3223  * @vma: the vma to operate on
3224  *
3225  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3226  * the vma flags.  Return 0 if check pass, or <0 for errors.
3227  */
3228 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3229 {
3230 	if (seals & F_SEAL_FUTURE_WRITE) {
3231 		/*
3232 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3233 		 * "future write" seal active.
3234 		 */
3235 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3236 			return -EPERM;
3237 
3238 		/*
3239 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3240 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3241 		 * revert protections on such mappings. Do this only for shared
3242 		 * mappings. For private mappings, don't need to mask
3243 		 * VM_MAYWRITE as we still want them to be COW-writable.
3244 		 */
3245 		if (vma->vm_flags & VM_SHARED)
3246 			vma->vm_flags &= ~(VM_MAYWRITE);
3247 	}
3248 
3249 	return 0;
3250 }
3251 
3252 #endif /* __KERNEL__ */
3253 #endif /* _LINUX_MM_H */
3254