1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 30 struct mempolicy; 31 struct anon_vma; 32 struct anon_vma_chain; 33 struct file_ra_state; 34 struct user_struct; 35 struct writeback_control; 36 struct bdi_writeback; 37 38 void init_mm_internals(void); 39 40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41 extern unsigned long max_mapnr; 42 43 static inline void set_max_mapnr(unsigned long limit) 44 { 45 max_mapnr = limit; 46 } 47 #else 48 static inline void set_max_mapnr(unsigned long limit) { } 49 #endif 50 51 extern unsigned long totalram_pages; 52 extern void * high_memory; 53 extern int page_cluster; 54 55 #ifdef CONFIG_SYSCTL 56 extern int sysctl_legacy_va_layout; 57 #else 58 #define sysctl_legacy_va_layout 0 59 #endif 60 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62 extern const int mmap_rnd_bits_min; 63 extern const int mmap_rnd_bits_max; 64 extern int mmap_rnd_bits __read_mostly; 65 #endif 66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67 extern const int mmap_rnd_compat_bits_min; 68 extern const int mmap_rnd_compat_bits_max; 69 extern int mmap_rnd_compat_bits __read_mostly; 70 #endif 71 72 #include <asm/page.h> 73 #include <asm/pgtable.h> 74 #include <asm/processor.h> 75 76 #ifndef __pa_symbol 77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78 #endif 79 80 #ifndef page_to_virt 81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82 #endif 83 84 #ifndef lm_alias 85 #define lm_alias(x) __va(__pa_symbol(x)) 86 #endif 87 88 /* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95 #ifndef mm_forbids_zeropage 96 #define mm_forbids_zeropage(X) (0) 97 #endif 98 99 /* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104 #ifndef mm_zero_struct_page 105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106 #endif 107 108 /* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124 #define MAPCOUNT_ELF_CORE_MARGIN (5) 125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127 extern int sysctl_max_map_count; 128 129 extern unsigned long sysctl_user_reserve_kbytes; 130 extern unsigned long sysctl_admin_reserve_kbytes; 131 132 extern int sysctl_overcommit_memory; 133 extern int sysctl_overcommit_ratio; 134 extern unsigned long sysctl_overcommit_kbytes; 135 136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143 /* to align the pointer to the (next) page boundary */ 144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149 /* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160 void vm_area_free(struct vm_area_struct *); 161 162 #ifndef CONFIG_MMU 163 extern struct rb_root nommu_region_tree; 164 extern struct rw_semaphore nommu_region_sem; 165 166 extern unsigned int kobjsize(const void *objp); 167 #endif 168 169 /* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173 #define VM_NONE 0x00000000 174 175 #define VM_READ 0x00000001 /* currently active flags */ 176 #define VM_WRITE 0x00000002 177 #define VM_EXEC 0x00000004 178 #define VM_SHARED 0x00000008 179 180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182 #define VM_MAYWRITE 0x00000020 183 #define VM_MAYEXEC 0x00000040 184 #define VM_MAYSHARE 0x00000080 185 186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192 #define VM_LOCKED 0x00002000 193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210 #ifdef CONFIG_MEM_SOFT_DIRTY 211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212 #else 213 # define VM_SOFTDIRTY 0 214 #endif 215 216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234 #ifdef CONFIG_ARCH_HAS_PKEYS 235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240 #ifdef CONFIG_PPC 241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242 #else 243 # define VM_PKEY_BIT4 0 244 #endif 245 #endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247 #if defined(CONFIG_X86) 248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249 #elif defined(CONFIG_PPC) 250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251 #elif defined(CONFIG_PARISC) 252 # define VM_GROWSUP VM_ARCH_1 253 #elif defined(CONFIG_IA64) 254 # define VM_GROWSUP VM_ARCH_1 255 #elif defined(CONFIG_SPARC64) 256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257 # define VM_ARCH_CLEAR VM_SPARC_ADI 258 #elif !defined(CONFIG_MMU) 259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260 #endif 261 262 #if defined(CONFIG_X86_INTEL_MPX) 263 /* MPX specific bounds table or bounds directory */ 264 # define VM_MPX VM_HIGH_ARCH_4 265 #else 266 # define VM_MPX VM_NONE 267 #endif 268 269 #ifndef VM_GROWSUP 270 # define VM_GROWSUP VM_NONE 271 #endif 272 273 /* Bits set in the VMA until the stack is in its final location */ 274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278 #endif 279 280 #ifdef CONFIG_STACK_GROWSUP 281 #define VM_STACK VM_GROWSUP 282 #else 283 #define VM_STACK VM_GROWSDOWN 284 #endif 285 286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288 /* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294 /* This mask defines which mm->def_flags a process can inherit its parent */ 295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297 /* This mask is used to clear all the VMA flags used by mlock */ 298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300 /* Arch-specific flags to clear when updating VM flags on protection change */ 301 #ifndef VM_ARCH_CLEAR 302 # define VM_ARCH_CLEAR VM_NONE 303 #endif 304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306 /* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310 extern pgprot_t protection_map[16]; 311 312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322 #define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333 /* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343 struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379 }; 380 381 /* page entry size for vm->huge_fault() */ 382 enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386 }; 387 388 /* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393 struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423 #ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445 #endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453 }; 454 455 struct mmu_gather; 456 struct inode; 457 458 #define page_private(page) ((page)->private) 459 #define set_page_private(page, v) ((page)->private = (v)) 460 461 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 462 static inline int pmd_devmap(pmd_t pmd) 463 { 464 return 0; 465 } 466 static inline int pud_devmap(pud_t pud) 467 { 468 return 0; 469 } 470 static inline int pgd_devmap(pgd_t pgd) 471 { 472 return 0; 473 } 474 #endif 475 476 /* 477 * FIXME: take this include out, include page-flags.h in 478 * files which need it (119 of them) 479 */ 480 #include <linux/page-flags.h> 481 #include <linux/huge_mm.h> 482 483 /* 484 * Methods to modify the page usage count. 485 * 486 * What counts for a page usage: 487 * - cache mapping (page->mapping) 488 * - private data (page->private) 489 * - page mapped in a task's page tables, each mapping 490 * is counted separately 491 * 492 * Also, many kernel routines increase the page count before a critical 493 * routine so they can be sure the page doesn't go away from under them. 494 */ 495 496 /* 497 * Drop a ref, return true if the refcount fell to zero (the page has no users) 498 */ 499 static inline int put_page_testzero(struct page *page) 500 { 501 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 502 return page_ref_dec_and_test(page); 503 } 504 505 /* 506 * Try to grab a ref unless the page has a refcount of zero, return false if 507 * that is the case. 508 * This can be called when MMU is off so it must not access 509 * any of the virtual mappings. 510 */ 511 static inline int get_page_unless_zero(struct page *page) 512 { 513 return page_ref_add_unless(page, 1, 0); 514 } 515 516 extern int page_is_ram(unsigned long pfn); 517 518 enum { 519 REGION_INTERSECTS, 520 REGION_DISJOINT, 521 REGION_MIXED, 522 }; 523 524 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 525 unsigned long desc); 526 527 /* Support for virtually mapped pages */ 528 struct page *vmalloc_to_page(const void *addr); 529 unsigned long vmalloc_to_pfn(const void *addr); 530 531 /* 532 * Determine if an address is within the vmalloc range 533 * 534 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 535 * is no special casing required. 536 */ 537 static inline bool is_vmalloc_addr(const void *x) 538 { 539 #ifdef CONFIG_MMU 540 unsigned long addr = (unsigned long)x; 541 542 return addr >= VMALLOC_START && addr < VMALLOC_END; 543 #else 544 return false; 545 #endif 546 } 547 #ifdef CONFIG_MMU 548 extern int is_vmalloc_or_module_addr(const void *x); 549 #else 550 static inline int is_vmalloc_or_module_addr(const void *x) 551 { 552 return 0; 553 } 554 #endif 555 556 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 557 static inline void *kvmalloc(size_t size, gfp_t flags) 558 { 559 return kvmalloc_node(size, flags, NUMA_NO_NODE); 560 } 561 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 562 { 563 return kvmalloc_node(size, flags | __GFP_ZERO, node); 564 } 565 static inline void *kvzalloc(size_t size, gfp_t flags) 566 { 567 return kvmalloc(size, flags | __GFP_ZERO); 568 } 569 570 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 571 { 572 size_t bytes; 573 574 if (unlikely(check_mul_overflow(n, size, &bytes))) 575 return NULL; 576 577 return kvmalloc(bytes, flags); 578 } 579 580 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 581 { 582 return kvmalloc_array(n, size, flags | __GFP_ZERO); 583 } 584 585 extern void kvfree(const void *addr); 586 587 static inline atomic_t *compound_mapcount_ptr(struct page *page) 588 { 589 return &page[1].compound_mapcount; 590 } 591 592 static inline int compound_mapcount(struct page *page) 593 { 594 VM_BUG_ON_PAGE(!PageCompound(page), page); 595 page = compound_head(page); 596 return atomic_read(compound_mapcount_ptr(page)) + 1; 597 } 598 599 /* 600 * The atomic page->_mapcount, starts from -1: so that transitions 601 * both from it and to it can be tracked, using atomic_inc_and_test 602 * and atomic_add_negative(-1). 603 */ 604 static inline void page_mapcount_reset(struct page *page) 605 { 606 atomic_set(&(page)->_mapcount, -1); 607 } 608 609 int __page_mapcount(struct page *page); 610 611 static inline int page_mapcount(struct page *page) 612 { 613 VM_BUG_ON_PAGE(PageSlab(page), page); 614 615 if (unlikely(PageCompound(page))) 616 return __page_mapcount(page); 617 return atomic_read(&page->_mapcount) + 1; 618 } 619 620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 621 int total_mapcount(struct page *page); 622 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 623 #else 624 static inline int total_mapcount(struct page *page) 625 { 626 return page_mapcount(page); 627 } 628 static inline int page_trans_huge_mapcount(struct page *page, 629 int *total_mapcount) 630 { 631 int mapcount = page_mapcount(page); 632 if (total_mapcount) 633 *total_mapcount = mapcount; 634 return mapcount; 635 } 636 #endif 637 638 static inline struct page *virt_to_head_page(const void *x) 639 { 640 struct page *page = virt_to_page(x); 641 642 return compound_head(page); 643 } 644 645 void __put_page(struct page *page); 646 647 void put_pages_list(struct list_head *pages); 648 649 void split_page(struct page *page, unsigned int order); 650 651 /* 652 * Compound pages have a destructor function. Provide a 653 * prototype for that function and accessor functions. 654 * These are _only_ valid on the head of a compound page. 655 */ 656 typedef void compound_page_dtor(struct page *); 657 658 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 659 enum compound_dtor_id { 660 NULL_COMPOUND_DTOR, 661 COMPOUND_PAGE_DTOR, 662 #ifdef CONFIG_HUGETLB_PAGE 663 HUGETLB_PAGE_DTOR, 664 #endif 665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 666 TRANSHUGE_PAGE_DTOR, 667 #endif 668 NR_COMPOUND_DTORS, 669 }; 670 extern compound_page_dtor * const compound_page_dtors[]; 671 672 static inline void set_compound_page_dtor(struct page *page, 673 enum compound_dtor_id compound_dtor) 674 { 675 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 676 page[1].compound_dtor = compound_dtor; 677 } 678 679 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 680 { 681 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 682 return compound_page_dtors[page[1].compound_dtor]; 683 } 684 685 static inline unsigned int compound_order(struct page *page) 686 { 687 if (!PageHead(page)) 688 return 0; 689 return page[1].compound_order; 690 } 691 692 static inline void set_compound_order(struct page *page, unsigned int order) 693 { 694 page[1].compound_order = order; 695 } 696 697 void free_compound_page(struct page *page); 698 699 #ifdef CONFIG_MMU 700 /* 701 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 702 * servicing faults for write access. In the normal case, do always want 703 * pte_mkwrite. But get_user_pages can cause write faults for mappings 704 * that do not have writing enabled, when used by access_process_vm. 705 */ 706 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 707 { 708 if (likely(vma->vm_flags & VM_WRITE)) 709 pte = pte_mkwrite(pte); 710 return pte; 711 } 712 713 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 714 struct page *page); 715 int finish_fault(struct vm_fault *vmf); 716 int finish_mkwrite_fault(struct vm_fault *vmf); 717 #endif 718 719 /* 720 * Multiple processes may "see" the same page. E.g. for untouched 721 * mappings of /dev/null, all processes see the same page full of 722 * zeroes, and text pages of executables and shared libraries have 723 * only one copy in memory, at most, normally. 724 * 725 * For the non-reserved pages, page_count(page) denotes a reference count. 726 * page_count() == 0 means the page is free. page->lru is then used for 727 * freelist management in the buddy allocator. 728 * page_count() > 0 means the page has been allocated. 729 * 730 * Pages are allocated by the slab allocator in order to provide memory 731 * to kmalloc and kmem_cache_alloc. In this case, the management of the 732 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 733 * unless a particular usage is carefully commented. (the responsibility of 734 * freeing the kmalloc memory is the caller's, of course). 735 * 736 * A page may be used by anyone else who does a __get_free_page(). 737 * In this case, page_count still tracks the references, and should only 738 * be used through the normal accessor functions. The top bits of page->flags 739 * and page->virtual store page management information, but all other fields 740 * are unused and could be used privately, carefully. The management of this 741 * page is the responsibility of the one who allocated it, and those who have 742 * subsequently been given references to it. 743 * 744 * The other pages (we may call them "pagecache pages") are completely 745 * managed by the Linux memory manager: I/O, buffers, swapping etc. 746 * The following discussion applies only to them. 747 * 748 * A pagecache page contains an opaque `private' member, which belongs to the 749 * page's address_space. Usually, this is the address of a circular list of 750 * the page's disk buffers. PG_private must be set to tell the VM to call 751 * into the filesystem to release these pages. 752 * 753 * A page may belong to an inode's memory mapping. In this case, page->mapping 754 * is the pointer to the inode, and page->index is the file offset of the page, 755 * in units of PAGE_SIZE. 756 * 757 * If pagecache pages are not associated with an inode, they are said to be 758 * anonymous pages. These may become associated with the swapcache, and in that 759 * case PG_swapcache is set, and page->private is an offset into the swapcache. 760 * 761 * In either case (swapcache or inode backed), the pagecache itself holds one 762 * reference to the page. Setting PG_private should also increment the 763 * refcount. The each user mapping also has a reference to the page. 764 * 765 * The pagecache pages are stored in a per-mapping radix tree, which is 766 * rooted at mapping->i_pages, and indexed by offset. 767 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 768 * lists, we instead now tag pages as dirty/writeback in the radix tree. 769 * 770 * All pagecache pages may be subject to I/O: 771 * - inode pages may need to be read from disk, 772 * - inode pages which have been modified and are MAP_SHARED may need 773 * to be written back to the inode on disk, 774 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 775 * modified may need to be swapped out to swap space and (later) to be read 776 * back into memory. 777 */ 778 779 /* 780 * The zone field is never updated after free_area_init_core() 781 * sets it, so none of the operations on it need to be atomic. 782 */ 783 784 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 785 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 786 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 787 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 788 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 789 790 /* 791 * Define the bit shifts to access each section. For non-existent 792 * sections we define the shift as 0; that plus a 0 mask ensures 793 * the compiler will optimise away reference to them. 794 */ 795 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 796 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 797 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 798 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 799 800 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 801 #ifdef NODE_NOT_IN_PAGE_FLAGS 802 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 803 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 804 SECTIONS_PGOFF : ZONES_PGOFF) 805 #else 806 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 807 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 808 NODES_PGOFF : ZONES_PGOFF) 809 #endif 810 811 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 812 813 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 814 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 815 #endif 816 817 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 818 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 819 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 820 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 821 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 822 823 static inline enum zone_type page_zonenum(const struct page *page) 824 { 825 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 826 } 827 828 #ifdef CONFIG_ZONE_DEVICE 829 static inline bool is_zone_device_page(const struct page *page) 830 { 831 return page_zonenum(page) == ZONE_DEVICE; 832 } 833 #else 834 static inline bool is_zone_device_page(const struct page *page) 835 { 836 return false; 837 } 838 #endif 839 840 #ifdef CONFIG_DEV_PAGEMAP_OPS 841 void dev_pagemap_get_ops(void); 842 void dev_pagemap_put_ops(void); 843 void __put_devmap_managed_page(struct page *page); 844 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 845 static inline bool put_devmap_managed_page(struct page *page) 846 { 847 if (!static_branch_unlikely(&devmap_managed_key)) 848 return false; 849 if (!is_zone_device_page(page)) 850 return false; 851 switch (page->pgmap->type) { 852 case MEMORY_DEVICE_PRIVATE: 853 case MEMORY_DEVICE_PUBLIC: 854 case MEMORY_DEVICE_FS_DAX: 855 __put_devmap_managed_page(page); 856 return true; 857 default: 858 break; 859 } 860 return false; 861 } 862 863 static inline bool is_device_private_page(const struct page *page) 864 { 865 return is_zone_device_page(page) && 866 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 867 } 868 869 static inline bool is_device_public_page(const struct page *page) 870 { 871 return is_zone_device_page(page) && 872 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 873 } 874 875 #else /* CONFIG_DEV_PAGEMAP_OPS */ 876 static inline void dev_pagemap_get_ops(void) 877 { 878 } 879 880 static inline void dev_pagemap_put_ops(void) 881 { 882 } 883 884 static inline bool put_devmap_managed_page(struct page *page) 885 { 886 return false; 887 } 888 889 static inline bool is_device_private_page(const struct page *page) 890 { 891 return false; 892 } 893 894 static inline bool is_device_public_page(const struct page *page) 895 { 896 return false; 897 } 898 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 899 900 static inline void get_page(struct page *page) 901 { 902 page = compound_head(page); 903 /* 904 * Getting a normal page or the head of a compound page 905 * requires to already have an elevated page->_refcount. 906 */ 907 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 908 page_ref_inc(page); 909 } 910 911 static inline void put_page(struct page *page) 912 { 913 page = compound_head(page); 914 915 /* 916 * For devmap managed pages we need to catch refcount transition from 917 * 2 to 1, when refcount reach one it means the page is free and we 918 * need to inform the device driver through callback. See 919 * include/linux/memremap.h and HMM for details. 920 */ 921 if (put_devmap_managed_page(page)) 922 return; 923 924 if (put_page_testzero(page)) 925 __put_page(page); 926 } 927 928 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 929 #define SECTION_IN_PAGE_FLAGS 930 #endif 931 932 /* 933 * The identification function is mainly used by the buddy allocator for 934 * determining if two pages could be buddies. We are not really identifying 935 * the zone since we could be using the section number id if we do not have 936 * node id available in page flags. 937 * We only guarantee that it will return the same value for two combinable 938 * pages in a zone. 939 */ 940 static inline int page_zone_id(struct page *page) 941 { 942 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 943 } 944 945 static inline int zone_to_nid(struct zone *zone) 946 { 947 #ifdef CONFIG_NUMA 948 return zone->node; 949 #else 950 return 0; 951 #endif 952 } 953 954 #ifdef NODE_NOT_IN_PAGE_FLAGS 955 extern int page_to_nid(const struct page *page); 956 #else 957 static inline int page_to_nid(const struct page *page) 958 { 959 struct page *p = (struct page *)page; 960 961 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 962 } 963 #endif 964 965 #ifdef CONFIG_NUMA_BALANCING 966 static inline int cpu_pid_to_cpupid(int cpu, int pid) 967 { 968 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 969 } 970 971 static inline int cpupid_to_pid(int cpupid) 972 { 973 return cpupid & LAST__PID_MASK; 974 } 975 976 static inline int cpupid_to_cpu(int cpupid) 977 { 978 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 979 } 980 981 static inline int cpupid_to_nid(int cpupid) 982 { 983 return cpu_to_node(cpupid_to_cpu(cpupid)); 984 } 985 986 static inline bool cpupid_pid_unset(int cpupid) 987 { 988 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 989 } 990 991 static inline bool cpupid_cpu_unset(int cpupid) 992 { 993 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 994 } 995 996 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 997 { 998 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 999 } 1000 1001 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1002 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1003 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1004 { 1005 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1006 } 1007 1008 static inline int page_cpupid_last(struct page *page) 1009 { 1010 return page->_last_cpupid; 1011 } 1012 static inline void page_cpupid_reset_last(struct page *page) 1013 { 1014 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1015 } 1016 #else 1017 static inline int page_cpupid_last(struct page *page) 1018 { 1019 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1020 } 1021 1022 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1023 1024 static inline void page_cpupid_reset_last(struct page *page) 1025 { 1026 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1027 } 1028 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1029 #else /* !CONFIG_NUMA_BALANCING */ 1030 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1031 { 1032 return page_to_nid(page); /* XXX */ 1033 } 1034 1035 static inline int page_cpupid_last(struct page *page) 1036 { 1037 return page_to_nid(page); /* XXX */ 1038 } 1039 1040 static inline int cpupid_to_nid(int cpupid) 1041 { 1042 return -1; 1043 } 1044 1045 static inline int cpupid_to_pid(int cpupid) 1046 { 1047 return -1; 1048 } 1049 1050 static inline int cpupid_to_cpu(int cpupid) 1051 { 1052 return -1; 1053 } 1054 1055 static inline int cpu_pid_to_cpupid(int nid, int pid) 1056 { 1057 return -1; 1058 } 1059 1060 static inline bool cpupid_pid_unset(int cpupid) 1061 { 1062 return 1; 1063 } 1064 1065 static inline void page_cpupid_reset_last(struct page *page) 1066 { 1067 } 1068 1069 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1070 { 1071 return false; 1072 } 1073 #endif /* CONFIG_NUMA_BALANCING */ 1074 1075 static inline struct zone *page_zone(const struct page *page) 1076 { 1077 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1078 } 1079 1080 static inline pg_data_t *page_pgdat(const struct page *page) 1081 { 1082 return NODE_DATA(page_to_nid(page)); 1083 } 1084 1085 #ifdef SECTION_IN_PAGE_FLAGS 1086 static inline void set_page_section(struct page *page, unsigned long section) 1087 { 1088 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1089 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1090 } 1091 1092 static inline unsigned long page_to_section(const struct page *page) 1093 { 1094 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1095 } 1096 #endif 1097 1098 static inline void set_page_zone(struct page *page, enum zone_type zone) 1099 { 1100 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1101 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1102 } 1103 1104 static inline void set_page_node(struct page *page, unsigned long node) 1105 { 1106 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1107 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1108 } 1109 1110 static inline void set_page_links(struct page *page, enum zone_type zone, 1111 unsigned long node, unsigned long pfn) 1112 { 1113 set_page_zone(page, zone); 1114 set_page_node(page, node); 1115 #ifdef SECTION_IN_PAGE_FLAGS 1116 set_page_section(page, pfn_to_section_nr(pfn)); 1117 #endif 1118 } 1119 1120 #ifdef CONFIG_MEMCG 1121 static inline struct mem_cgroup *page_memcg(struct page *page) 1122 { 1123 return page->mem_cgroup; 1124 } 1125 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1126 { 1127 WARN_ON_ONCE(!rcu_read_lock_held()); 1128 return READ_ONCE(page->mem_cgroup); 1129 } 1130 #else 1131 static inline struct mem_cgroup *page_memcg(struct page *page) 1132 { 1133 return NULL; 1134 } 1135 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1136 { 1137 WARN_ON_ONCE(!rcu_read_lock_held()); 1138 return NULL; 1139 } 1140 #endif 1141 1142 /* 1143 * Some inline functions in vmstat.h depend on page_zone() 1144 */ 1145 #include <linux/vmstat.h> 1146 1147 static __always_inline void *lowmem_page_address(const struct page *page) 1148 { 1149 return page_to_virt(page); 1150 } 1151 1152 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1153 #define HASHED_PAGE_VIRTUAL 1154 #endif 1155 1156 #if defined(WANT_PAGE_VIRTUAL) 1157 static inline void *page_address(const struct page *page) 1158 { 1159 return page->virtual; 1160 } 1161 static inline void set_page_address(struct page *page, void *address) 1162 { 1163 page->virtual = address; 1164 } 1165 #define page_address_init() do { } while(0) 1166 #endif 1167 1168 #if defined(HASHED_PAGE_VIRTUAL) 1169 void *page_address(const struct page *page); 1170 void set_page_address(struct page *page, void *virtual); 1171 void page_address_init(void); 1172 #endif 1173 1174 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1175 #define page_address(page) lowmem_page_address(page) 1176 #define set_page_address(page, address) do { } while(0) 1177 #define page_address_init() do { } while(0) 1178 #endif 1179 1180 extern void *page_rmapping(struct page *page); 1181 extern struct anon_vma *page_anon_vma(struct page *page); 1182 extern struct address_space *page_mapping(struct page *page); 1183 1184 extern struct address_space *__page_file_mapping(struct page *); 1185 1186 static inline 1187 struct address_space *page_file_mapping(struct page *page) 1188 { 1189 if (unlikely(PageSwapCache(page))) 1190 return __page_file_mapping(page); 1191 1192 return page->mapping; 1193 } 1194 1195 extern pgoff_t __page_file_index(struct page *page); 1196 1197 /* 1198 * Return the pagecache index of the passed page. Regular pagecache pages 1199 * use ->index whereas swapcache pages use swp_offset(->private) 1200 */ 1201 static inline pgoff_t page_index(struct page *page) 1202 { 1203 if (unlikely(PageSwapCache(page))) 1204 return __page_file_index(page); 1205 return page->index; 1206 } 1207 1208 bool page_mapped(struct page *page); 1209 struct address_space *page_mapping(struct page *page); 1210 struct address_space *page_mapping_file(struct page *page); 1211 1212 /* 1213 * Return true only if the page has been allocated with 1214 * ALLOC_NO_WATERMARKS and the low watermark was not 1215 * met implying that the system is under some pressure. 1216 */ 1217 static inline bool page_is_pfmemalloc(struct page *page) 1218 { 1219 /* 1220 * Page index cannot be this large so this must be 1221 * a pfmemalloc page. 1222 */ 1223 return page->index == -1UL; 1224 } 1225 1226 /* 1227 * Only to be called by the page allocator on a freshly allocated 1228 * page. 1229 */ 1230 static inline void set_page_pfmemalloc(struct page *page) 1231 { 1232 page->index = -1UL; 1233 } 1234 1235 static inline void clear_page_pfmemalloc(struct page *page) 1236 { 1237 page->index = 0; 1238 } 1239 1240 /* 1241 * Different kinds of faults, as returned by handle_mm_fault(). 1242 * Used to decide whether a process gets delivered SIGBUS or 1243 * just gets major/minor fault counters bumped up. 1244 */ 1245 1246 #define VM_FAULT_OOM 0x0001 1247 #define VM_FAULT_SIGBUS 0x0002 1248 #define VM_FAULT_MAJOR 0x0004 1249 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1250 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1251 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1252 #define VM_FAULT_SIGSEGV 0x0040 1253 1254 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1255 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1256 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1257 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1258 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1259 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1260 * and needs fsync() to complete (for 1261 * synchronous page faults in DAX) */ 1262 1263 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1264 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1265 VM_FAULT_FALLBACK) 1266 1267 #define VM_FAULT_RESULT_TRACE \ 1268 { VM_FAULT_OOM, "OOM" }, \ 1269 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1270 { VM_FAULT_MAJOR, "MAJOR" }, \ 1271 { VM_FAULT_WRITE, "WRITE" }, \ 1272 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1273 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1274 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1275 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1276 { VM_FAULT_LOCKED, "LOCKED" }, \ 1277 { VM_FAULT_RETRY, "RETRY" }, \ 1278 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1279 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1280 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1281 1282 /* Encode hstate index for a hwpoisoned large page */ 1283 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1284 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1285 1286 /* 1287 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1288 */ 1289 extern void pagefault_out_of_memory(void); 1290 1291 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1292 1293 /* 1294 * Flags passed to show_mem() and show_free_areas() to suppress output in 1295 * various contexts. 1296 */ 1297 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1298 1299 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1300 1301 extern bool can_do_mlock(void); 1302 extern int user_shm_lock(size_t, struct user_struct *); 1303 extern void user_shm_unlock(size_t, struct user_struct *); 1304 1305 /* 1306 * Parameter block passed down to zap_pte_range in exceptional cases. 1307 */ 1308 struct zap_details { 1309 struct address_space *check_mapping; /* Check page->mapping if set */ 1310 pgoff_t first_index; /* Lowest page->index to unmap */ 1311 pgoff_t last_index; /* Highest page->index to unmap */ 1312 }; 1313 1314 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1315 pte_t pte, bool with_public_device); 1316 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1317 1318 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1319 pmd_t pmd); 1320 1321 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1322 unsigned long size); 1323 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1324 unsigned long size); 1325 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1326 unsigned long start, unsigned long end); 1327 1328 /** 1329 * mm_walk - callbacks for walk_page_range 1330 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1331 * this handler should only handle pud_trans_huge() puds. 1332 * the pmd_entry or pte_entry callbacks will be used for 1333 * regular PUDs. 1334 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1335 * this handler is required to be able to handle 1336 * pmd_trans_huge() pmds. They may simply choose to 1337 * split_huge_page() instead of handling it explicitly. 1338 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1339 * @pte_hole: if set, called for each hole at all levels 1340 * @hugetlb_entry: if set, called for each hugetlb entry 1341 * @test_walk: caller specific callback function to determine whether 1342 * we walk over the current vma or not. Returning 0 1343 * value means "do page table walk over the current vma," 1344 * and a negative one means "abort current page table walk 1345 * right now." 1 means "skip the current vma." 1346 * @mm: mm_struct representing the target process of page table walk 1347 * @vma: vma currently walked (NULL if walking outside vmas) 1348 * @private: private data for callbacks' usage 1349 * 1350 * (see the comment on walk_page_range() for more details) 1351 */ 1352 struct mm_walk { 1353 int (*pud_entry)(pud_t *pud, unsigned long addr, 1354 unsigned long next, struct mm_walk *walk); 1355 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1356 unsigned long next, struct mm_walk *walk); 1357 int (*pte_entry)(pte_t *pte, unsigned long addr, 1358 unsigned long next, struct mm_walk *walk); 1359 int (*pte_hole)(unsigned long addr, unsigned long next, 1360 struct mm_walk *walk); 1361 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1362 unsigned long addr, unsigned long next, 1363 struct mm_walk *walk); 1364 int (*test_walk)(unsigned long addr, unsigned long next, 1365 struct mm_walk *walk); 1366 struct mm_struct *mm; 1367 struct vm_area_struct *vma; 1368 void *private; 1369 }; 1370 1371 int walk_page_range(unsigned long addr, unsigned long end, 1372 struct mm_walk *walk); 1373 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1374 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1375 unsigned long end, unsigned long floor, unsigned long ceiling); 1376 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1377 struct vm_area_struct *vma); 1378 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1379 unsigned long *start, unsigned long *end, 1380 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1381 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long *pfn); 1383 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1384 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1385 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1386 void *buf, int len, int write); 1387 1388 extern void truncate_pagecache(struct inode *inode, loff_t new); 1389 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1390 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1391 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1392 int truncate_inode_page(struct address_space *mapping, struct page *page); 1393 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1394 int invalidate_inode_page(struct page *page); 1395 1396 #ifdef CONFIG_MMU 1397 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1398 unsigned int flags); 1399 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1400 unsigned long address, unsigned int fault_flags, 1401 bool *unlocked); 1402 void unmap_mapping_pages(struct address_space *mapping, 1403 pgoff_t start, pgoff_t nr, bool even_cows); 1404 void unmap_mapping_range(struct address_space *mapping, 1405 loff_t const holebegin, loff_t const holelen, int even_cows); 1406 #else 1407 static inline int handle_mm_fault(struct vm_area_struct *vma, 1408 unsigned long address, unsigned int flags) 1409 { 1410 /* should never happen if there's no MMU */ 1411 BUG(); 1412 return VM_FAULT_SIGBUS; 1413 } 1414 static inline int fixup_user_fault(struct task_struct *tsk, 1415 struct mm_struct *mm, unsigned long address, 1416 unsigned int fault_flags, bool *unlocked) 1417 { 1418 /* should never happen if there's no MMU */ 1419 BUG(); 1420 return -EFAULT; 1421 } 1422 static inline void unmap_mapping_pages(struct address_space *mapping, 1423 pgoff_t start, pgoff_t nr, bool even_cows) { } 1424 static inline void unmap_mapping_range(struct address_space *mapping, 1425 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1426 #endif 1427 1428 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1429 loff_t const holebegin, loff_t const holelen) 1430 { 1431 unmap_mapping_range(mapping, holebegin, holelen, 0); 1432 } 1433 1434 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1435 void *buf, int len, unsigned int gup_flags); 1436 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1437 void *buf, int len, unsigned int gup_flags); 1438 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1439 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1440 1441 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1442 unsigned long start, unsigned long nr_pages, 1443 unsigned int gup_flags, struct page **pages, 1444 struct vm_area_struct **vmas, int *locked); 1445 long get_user_pages(unsigned long start, unsigned long nr_pages, 1446 unsigned int gup_flags, struct page **pages, 1447 struct vm_area_struct **vmas); 1448 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1449 unsigned int gup_flags, struct page **pages, int *locked); 1450 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1451 struct page **pages, unsigned int gup_flags); 1452 #ifdef CONFIG_FS_DAX 1453 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1454 unsigned int gup_flags, struct page **pages, 1455 struct vm_area_struct **vmas); 1456 #else 1457 static inline long get_user_pages_longterm(unsigned long start, 1458 unsigned long nr_pages, unsigned int gup_flags, 1459 struct page **pages, struct vm_area_struct **vmas) 1460 { 1461 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1462 } 1463 #endif /* CONFIG_FS_DAX */ 1464 1465 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1466 struct page **pages); 1467 1468 /* Container for pinned pfns / pages */ 1469 struct frame_vector { 1470 unsigned int nr_allocated; /* Number of frames we have space for */ 1471 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1472 bool got_ref; /* Did we pin pages by getting page ref? */ 1473 bool is_pfns; /* Does array contain pages or pfns? */ 1474 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1475 * pfns_vector_pages() or pfns_vector_pfns() 1476 * for access */ 1477 }; 1478 1479 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1480 void frame_vector_destroy(struct frame_vector *vec); 1481 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1482 unsigned int gup_flags, struct frame_vector *vec); 1483 void put_vaddr_frames(struct frame_vector *vec); 1484 int frame_vector_to_pages(struct frame_vector *vec); 1485 void frame_vector_to_pfns(struct frame_vector *vec); 1486 1487 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1488 { 1489 return vec->nr_frames; 1490 } 1491 1492 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1493 { 1494 if (vec->is_pfns) { 1495 int err = frame_vector_to_pages(vec); 1496 1497 if (err) 1498 return ERR_PTR(err); 1499 } 1500 return (struct page **)(vec->ptrs); 1501 } 1502 1503 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1504 { 1505 if (!vec->is_pfns) 1506 frame_vector_to_pfns(vec); 1507 return (unsigned long *)(vec->ptrs); 1508 } 1509 1510 struct kvec; 1511 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1512 struct page **pages); 1513 int get_kernel_page(unsigned long start, int write, struct page **pages); 1514 struct page *get_dump_page(unsigned long addr); 1515 1516 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1517 extern void do_invalidatepage(struct page *page, unsigned int offset, 1518 unsigned int length); 1519 1520 void __set_page_dirty(struct page *, struct address_space *, int warn); 1521 int __set_page_dirty_nobuffers(struct page *page); 1522 int __set_page_dirty_no_writeback(struct page *page); 1523 int redirty_page_for_writepage(struct writeback_control *wbc, 1524 struct page *page); 1525 void account_page_dirtied(struct page *page, struct address_space *mapping); 1526 void account_page_cleaned(struct page *page, struct address_space *mapping, 1527 struct bdi_writeback *wb); 1528 int set_page_dirty(struct page *page); 1529 int set_page_dirty_lock(struct page *page); 1530 void __cancel_dirty_page(struct page *page); 1531 static inline void cancel_dirty_page(struct page *page) 1532 { 1533 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1534 if (PageDirty(page)) 1535 __cancel_dirty_page(page); 1536 } 1537 int clear_page_dirty_for_io(struct page *page); 1538 1539 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1540 1541 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1542 { 1543 return !vma->vm_ops; 1544 } 1545 1546 #ifdef CONFIG_SHMEM 1547 /* 1548 * The vma_is_shmem is not inline because it is used only by slow 1549 * paths in userfault. 1550 */ 1551 bool vma_is_shmem(struct vm_area_struct *vma); 1552 #else 1553 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1554 #endif 1555 1556 int vma_is_stack_for_current(struct vm_area_struct *vma); 1557 1558 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1559 unsigned long old_addr, struct vm_area_struct *new_vma, 1560 unsigned long new_addr, unsigned long len, 1561 bool need_rmap_locks); 1562 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1563 unsigned long end, pgprot_t newprot, 1564 int dirty_accountable, int prot_numa); 1565 extern int mprotect_fixup(struct vm_area_struct *vma, 1566 struct vm_area_struct **pprev, unsigned long start, 1567 unsigned long end, unsigned long newflags); 1568 1569 /* 1570 * doesn't attempt to fault and will return short. 1571 */ 1572 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1573 struct page **pages); 1574 /* 1575 * per-process(per-mm_struct) statistics. 1576 */ 1577 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1578 { 1579 long val = atomic_long_read(&mm->rss_stat.count[member]); 1580 1581 #ifdef SPLIT_RSS_COUNTING 1582 /* 1583 * counter is updated in asynchronous manner and may go to minus. 1584 * But it's never be expected number for users. 1585 */ 1586 if (val < 0) 1587 val = 0; 1588 #endif 1589 return (unsigned long)val; 1590 } 1591 1592 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1593 { 1594 atomic_long_add(value, &mm->rss_stat.count[member]); 1595 } 1596 1597 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1598 { 1599 atomic_long_inc(&mm->rss_stat.count[member]); 1600 } 1601 1602 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1603 { 1604 atomic_long_dec(&mm->rss_stat.count[member]); 1605 } 1606 1607 /* Optimized variant when page is already known not to be PageAnon */ 1608 static inline int mm_counter_file(struct page *page) 1609 { 1610 if (PageSwapBacked(page)) 1611 return MM_SHMEMPAGES; 1612 return MM_FILEPAGES; 1613 } 1614 1615 static inline int mm_counter(struct page *page) 1616 { 1617 if (PageAnon(page)) 1618 return MM_ANONPAGES; 1619 return mm_counter_file(page); 1620 } 1621 1622 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1623 { 1624 return get_mm_counter(mm, MM_FILEPAGES) + 1625 get_mm_counter(mm, MM_ANONPAGES) + 1626 get_mm_counter(mm, MM_SHMEMPAGES); 1627 } 1628 1629 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1630 { 1631 return max(mm->hiwater_rss, get_mm_rss(mm)); 1632 } 1633 1634 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1635 { 1636 return max(mm->hiwater_vm, mm->total_vm); 1637 } 1638 1639 static inline void update_hiwater_rss(struct mm_struct *mm) 1640 { 1641 unsigned long _rss = get_mm_rss(mm); 1642 1643 if ((mm)->hiwater_rss < _rss) 1644 (mm)->hiwater_rss = _rss; 1645 } 1646 1647 static inline void update_hiwater_vm(struct mm_struct *mm) 1648 { 1649 if (mm->hiwater_vm < mm->total_vm) 1650 mm->hiwater_vm = mm->total_vm; 1651 } 1652 1653 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1654 { 1655 mm->hiwater_rss = get_mm_rss(mm); 1656 } 1657 1658 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1659 struct mm_struct *mm) 1660 { 1661 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1662 1663 if (*maxrss < hiwater_rss) 1664 *maxrss = hiwater_rss; 1665 } 1666 1667 #if defined(SPLIT_RSS_COUNTING) 1668 void sync_mm_rss(struct mm_struct *mm); 1669 #else 1670 static inline void sync_mm_rss(struct mm_struct *mm) 1671 { 1672 } 1673 #endif 1674 1675 #ifndef __HAVE_ARCH_PTE_DEVMAP 1676 static inline int pte_devmap(pte_t pte) 1677 { 1678 return 0; 1679 } 1680 #endif 1681 1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1683 1684 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1685 spinlock_t **ptl); 1686 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1687 spinlock_t **ptl) 1688 { 1689 pte_t *ptep; 1690 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1691 return ptep; 1692 } 1693 1694 #ifdef __PAGETABLE_P4D_FOLDED 1695 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1696 unsigned long address) 1697 { 1698 return 0; 1699 } 1700 #else 1701 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1702 #endif 1703 1704 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1705 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1706 unsigned long address) 1707 { 1708 return 0; 1709 } 1710 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1711 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1712 1713 #else 1714 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1715 1716 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1717 { 1718 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1719 } 1720 1721 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1722 { 1723 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1724 } 1725 #endif 1726 1727 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1728 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1729 unsigned long address) 1730 { 1731 return 0; 1732 } 1733 1734 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1735 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1736 1737 #else 1738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1739 1740 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1741 { 1742 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1743 } 1744 1745 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1746 { 1747 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1748 } 1749 #endif 1750 1751 #ifdef CONFIG_MMU 1752 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1753 { 1754 atomic_long_set(&mm->pgtables_bytes, 0); 1755 } 1756 1757 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1758 { 1759 return atomic_long_read(&mm->pgtables_bytes); 1760 } 1761 1762 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1763 { 1764 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1765 } 1766 1767 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1768 { 1769 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1770 } 1771 #else 1772 1773 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1774 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1775 { 1776 return 0; 1777 } 1778 1779 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1780 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1781 #endif 1782 1783 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1784 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1785 1786 /* 1787 * The following ifdef needed to get the 4level-fixup.h header to work. 1788 * Remove it when 4level-fixup.h has been removed. 1789 */ 1790 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1791 1792 #ifndef __ARCH_HAS_5LEVEL_HACK 1793 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1794 unsigned long address) 1795 { 1796 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1797 NULL : p4d_offset(pgd, address); 1798 } 1799 1800 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1801 unsigned long address) 1802 { 1803 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1804 NULL : pud_offset(p4d, address); 1805 } 1806 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1807 1808 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1809 { 1810 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1811 NULL: pmd_offset(pud, address); 1812 } 1813 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1814 1815 #if USE_SPLIT_PTE_PTLOCKS 1816 #if ALLOC_SPLIT_PTLOCKS 1817 void __init ptlock_cache_init(void); 1818 extern bool ptlock_alloc(struct page *page); 1819 extern void ptlock_free(struct page *page); 1820 1821 static inline spinlock_t *ptlock_ptr(struct page *page) 1822 { 1823 return page->ptl; 1824 } 1825 #else /* ALLOC_SPLIT_PTLOCKS */ 1826 static inline void ptlock_cache_init(void) 1827 { 1828 } 1829 1830 static inline bool ptlock_alloc(struct page *page) 1831 { 1832 return true; 1833 } 1834 1835 static inline void ptlock_free(struct page *page) 1836 { 1837 } 1838 1839 static inline spinlock_t *ptlock_ptr(struct page *page) 1840 { 1841 return &page->ptl; 1842 } 1843 #endif /* ALLOC_SPLIT_PTLOCKS */ 1844 1845 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1846 { 1847 return ptlock_ptr(pmd_page(*pmd)); 1848 } 1849 1850 static inline bool ptlock_init(struct page *page) 1851 { 1852 /* 1853 * prep_new_page() initialize page->private (and therefore page->ptl) 1854 * with 0. Make sure nobody took it in use in between. 1855 * 1856 * It can happen if arch try to use slab for page table allocation: 1857 * slab code uses page->slab_cache, which share storage with page->ptl. 1858 */ 1859 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1860 if (!ptlock_alloc(page)) 1861 return false; 1862 spin_lock_init(ptlock_ptr(page)); 1863 return true; 1864 } 1865 1866 /* Reset page->mapping so free_pages_check won't complain. */ 1867 static inline void pte_lock_deinit(struct page *page) 1868 { 1869 page->mapping = NULL; 1870 ptlock_free(page); 1871 } 1872 1873 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1874 /* 1875 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1876 */ 1877 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1878 { 1879 return &mm->page_table_lock; 1880 } 1881 static inline void ptlock_cache_init(void) {} 1882 static inline bool ptlock_init(struct page *page) { return true; } 1883 static inline void pte_lock_deinit(struct page *page) {} 1884 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1885 1886 static inline void pgtable_init(void) 1887 { 1888 ptlock_cache_init(); 1889 pgtable_cache_init(); 1890 } 1891 1892 static inline bool pgtable_page_ctor(struct page *page) 1893 { 1894 if (!ptlock_init(page)) 1895 return false; 1896 __SetPageTable(page); 1897 inc_zone_page_state(page, NR_PAGETABLE); 1898 return true; 1899 } 1900 1901 static inline void pgtable_page_dtor(struct page *page) 1902 { 1903 pte_lock_deinit(page); 1904 __ClearPageTable(page); 1905 dec_zone_page_state(page, NR_PAGETABLE); 1906 } 1907 1908 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1909 ({ \ 1910 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1911 pte_t *__pte = pte_offset_map(pmd, address); \ 1912 *(ptlp) = __ptl; \ 1913 spin_lock(__ptl); \ 1914 __pte; \ 1915 }) 1916 1917 #define pte_unmap_unlock(pte, ptl) do { \ 1918 spin_unlock(ptl); \ 1919 pte_unmap(pte); \ 1920 } while (0) 1921 1922 #define pte_alloc(mm, pmd, address) \ 1923 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1924 1925 #define pte_alloc_map(mm, pmd, address) \ 1926 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1927 1928 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1929 (pte_alloc(mm, pmd, address) ? \ 1930 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1931 1932 #define pte_alloc_kernel(pmd, address) \ 1933 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1934 NULL: pte_offset_kernel(pmd, address)) 1935 1936 #if USE_SPLIT_PMD_PTLOCKS 1937 1938 static struct page *pmd_to_page(pmd_t *pmd) 1939 { 1940 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1941 return virt_to_page((void *)((unsigned long) pmd & mask)); 1942 } 1943 1944 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1945 { 1946 return ptlock_ptr(pmd_to_page(pmd)); 1947 } 1948 1949 static inline bool pgtable_pmd_page_ctor(struct page *page) 1950 { 1951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1952 page->pmd_huge_pte = NULL; 1953 #endif 1954 return ptlock_init(page); 1955 } 1956 1957 static inline void pgtable_pmd_page_dtor(struct page *page) 1958 { 1959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1960 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1961 #endif 1962 ptlock_free(page); 1963 } 1964 1965 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1966 1967 #else 1968 1969 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1970 { 1971 return &mm->page_table_lock; 1972 } 1973 1974 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1975 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1976 1977 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1978 1979 #endif 1980 1981 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1982 { 1983 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1984 spin_lock(ptl); 1985 return ptl; 1986 } 1987 1988 /* 1989 * No scalability reason to split PUD locks yet, but follow the same pattern 1990 * as the PMD locks to make it easier if we decide to. The VM should not be 1991 * considered ready to switch to split PUD locks yet; there may be places 1992 * which need to be converted from page_table_lock. 1993 */ 1994 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1995 { 1996 return &mm->page_table_lock; 1997 } 1998 1999 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2000 { 2001 spinlock_t *ptl = pud_lockptr(mm, pud); 2002 2003 spin_lock(ptl); 2004 return ptl; 2005 } 2006 2007 extern void __init pagecache_init(void); 2008 extern void free_area_init(unsigned long * zones_size); 2009 extern void free_area_init_node(int nid, unsigned long * zones_size, 2010 unsigned long zone_start_pfn, unsigned long *zholes_size); 2011 extern void free_initmem(void); 2012 2013 /* 2014 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2015 * into the buddy system. The freed pages will be poisoned with pattern 2016 * "poison" if it's within range [0, UCHAR_MAX]. 2017 * Return pages freed into the buddy system. 2018 */ 2019 extern unsigned long free_reserved_area(void *start, void *end, 2020 int poison, char *s); 2021 2022 #ifdef CONFIG_HIGHMEM 2023 /* 2024 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2025 * and totalram_pages. 2026 */ 2027 extern void free_highmem_page(struct page *page); 2028 #endif 2029 2030 extern void adjust_managed_page_count(struct page *page, long count); 2031 extern void mem_init_print_info(const char *str); 2032 2033 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2034 2035 /* Free the reserved page into the buddy system, so it gets managed. */ 2036 static inline void __free_reserved_page(struct page *page) 2037 { 2038 ClearPageReserved(page); 2039 init_page_count(page); 2040 __free_page(page); 2041 } 2042 2043 static inline void free_reserved_page(struct page *page) 2044 { 2045 __free_reserved_page(page); 2046 adjust_managed_page_count(page, 1); 2047 } 2048 2049 static inline void mark_page_reserved(struct page *page) 2050 { 2051 SetPageReserved(page); 2052 adjust_managed_page_count(page, -1); 2053 } 2054 2055 /* 2056 * Default method to free all the __init memory into the buddy system. 2057 * The freed pages will be poisoned with pattern "poison" if it's within 2058 * range [0, UCHAR_MAX]. 2059 * Return pages freed into the buddy system. 2060 */ 2061 static inline unsigned long free_initmem_default(int poison) 2062 { 2063 extern char __init_begin[], __init_end[]; 2064 2065 return free_reserved_area(&__init_begin, &__init_end, 2066 poison, "unused kernel"); 2067 } 2068 2069 static inline unsigned long get_num_physpages(void) 2070 { 2071 int nid; 2072 unsigned long phys_pages = 0; 2073 2074 for_each_online_node(nid) 2075 phys_pages += node_present_pages(nid); 2076 2077 return phys_pages; 2078 } 2079 2080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2081 /* 2082 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2083 * zones, allocate the backing mem_map and account for memory holes in a more 2084 * architecture independent manner. This is a substitute for creating the 2085 * zone_sizes[] and zholes_size[] arrays and passing them to 2086 * free_area_init_node() 2087 * 2088 * An architecture is expected to register range of page frames backed by 2089 * physical memory with memblock_add[_node]() before calling 2090 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2091 * usage, an architecture is expected to do something like 2092 * 2093 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2094 * max_highmem_pfn}; 2095 * for_each_valid_physical_page_range() 2096 * memblock_add_node(base, size, nid) 2097 * free_area_init_nodes(max_zone_pfns); 2098 * 2099 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2100 * registered physical page range. Similarly 2101 * sparse_memory_present_with_active_regions() calls memory_present() for 2102 * each range when SPARSEMEM is enabled. 2103 * 2104 * See mm/page_alloc.c for more information on each function exposed by 2105 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2106 */ 2107 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2108 unsigned long node_map_pfn_alignment(void); 2109 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2110 unsigned long end_pfn); 2111 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2112 unsigned long end_pfn); 2113 extern void get_pfn_range_for_nid(unsigned int nid, 2114 unsigned long *start_pfn, unsigned long *end_pfn); 2115 extern unsigned long find_min_pfn_with_active_regions(void); 2116 extern void free_bootmem_with_active_regions(int nid, 2117 unsigned long max_low_pfn); 2118 extern void sparse_memory_present_with_active_regions(int nid); 2119 2120 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2121 2122 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2123 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2124 static inline int __early_pfn_to_nid(unsigned long pfn, 2125 struct mminit_pfnnid_cache *state) 2126 { 2127 return 0; 2128 } 2129 #else 2130 /* please see mm/page_alloc.c */ 2131 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2132 /* there is a per-arch backend function. */ 2133 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2134 struct mminit_pfnnid_cache *state); 2135 #endif 2136 2137 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) 2138 void zero_resv_unavail(void); 2139 #else 2140 static inline void zero_resv_unavail(void) {} 2141 #endif 2142 2143 extern void set_dma_reserve(unsigned long new_dma_reserve); 2144 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2145 enum memmap_context, struct vmem_altmap *); 2146 extern void setup_per_zone_wmarks(void); 2147 extern int __meminit init_per_zone_wmark_min(void); 2148 extern void mem_init(void); 2149 extern void __init mmap_init(void); 2150 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2151 extern long si_mem_available(void); 2152 extern void si_meminfo(struct sysinfo * val); 2153 extern void si_meminfo_node(struct sysinfo *val, int nid); 2154 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2155 extern unsigned long arch_reserved_kernel_pages(void); 2156 #endif 2157 2158 extern __printf(3, 4) 2159 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2160 2161 extern void setup_per_cpu_pageset(void); 2162 2163 extern void zone_pcp_update(struct zone *zone); 2164 extern void zone_pcp_reset(struct zone *zone); 2165 2166 /* page_alloc.c */ 2167 extern int min_free_kbytes; 2168 extern int watermark_scale_factor; 2169 2170 /* nommu.c */ 2171 extern atomic_long_t mmap_pages_allocated; 2172 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2173 2174 /* interval_tree.c */ 2175 void vma_interval_tree_insert(struct vm_area_struct *node, 2176 struct rb_root_cached *root); 2177 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2178 struct vm_area_struct *prev, 2179 struct rb_root_cached *root); 2180 void vma_interval_tree_remove(struct vm_area_struct *node, 2181 struct rb_root_cached *root); 2182 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2183 unsigned long start, unsigned long last); 2184 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2185 unsigned long start, unsigned long last); 2186 2187 #define vma_interval_tree_foreach(vma, root, start, last) \ 2188 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2189 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2190 2191 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2192 struct rb_root_cached *root); 2193 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2194 struct rb_root_cached *root); 2195 struct anon_vma_chain * 2196 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2197 unsigned long start, unsigned long last); 2198 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2199 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2200 #ifdef CONFIG_DEBUG_VM_RB 2201 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2202 #endif 2203 2204 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2205 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2206 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2207 2208 /* mmap.c */ 2209 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2210 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2211 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2212 struct vm_area_struct *expand); 2213 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2214 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2215 { 2216 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2217 } 2218 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2219 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2220 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2221 struct mempolicy *, struct vm_userfaultfd_ctx); 2222 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2223 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2224 unsigned long addr, int new_below); 2225 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2226 unsigned long addr, int new_below); 2227 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2228 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2229 struct rb_node **, struct rb_node *); 2230 extern void unlink_file_vma(struct vm_area_struct *); 2231 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2232 unsigned long addr, unsigned long len, pgoff_t pgoff, 2233 bool *need_rmap_locks); 2234 extern void exit_mmap(struct mm_struct *); 2235 2236 static inline int check_data_rlimit(unsigned long rlim, 2237 unsigned long new, 2238 unsigned long start, 2239 unsigned long end_data, 2240 unsigned long start_data) 2241 { 2242 if (rlim < RLIM_INFINITY) { 2243 if (((new - start) + (end_data - start_data)) > rlim) 2244 return -ENOSPC; 2245 } 2246 2247 return 0; 2248 } 2249 2250 extern int mm_take_all_locks(struct mm_struct *mm); 2251 extern void mm_drop_all_locks(struct mm_struct *mm); 2252 2253 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2254 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2255 extern struct file *get_task_exe_file(struct task_struct *task); 2256 2257 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2258 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2259 2260 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2261 const struct vm_special_mapping *sm); 2262 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2263 unsigned long addr, unsigned long len, 2264 unsigned long flags, 2265 const struct vm_special_mapping *spec); 2266 /* This is an obsolete alternative to _install_special_mapping. */ 2267 extern int install_special_mapping(struct mm_struct *mm, 2268 unsigned long addr, unsigned long len, 2269 unsigned long flags, struct page **pages); 2270 2271 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2272 2273 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2274 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2275 struct list_head *uf); 2276 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2277 unsigned long len, unsigned long prot, unsigned long flags, 2278 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2279 struct list_head *uf); 2280 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2281 struct list_head *uf); 2282 2283 static inline unsigned long 2284 do_mmap_pgoff(struct file *file, unsigned long addr, 2285 unsigned long len, unsigned long prot, unsigned long flags, 2286 unsigned long pgoff, unsigned long *populate, 2287 struct list_head *uf) 2288 { 2289 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2290 } 2291 2292 #ifdef CONFIG_MMU 2293 extern int __mm_populate(unsigned long addr, unsigned long len, 2294 int ignore_errors); 2295 static inline void mm_populate(unsigned long addr, unsigned long len) 2296 { 2297 /* Ignore errors */ 2298 (void) __mm_populate(addr, len, 1); 2299 } 2300 #else 2301 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2302 #endif 2303 2304 /* These take the mm semaphore themselves */ 2305 extern int __must_check vm_brk(unsigned long, unsigned long); 2306 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2307 extern int vm_munmap(unsigned long, size_t); 2308 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2309 unsigned long, unsigned long, 2310 unsigned long, unsigned long); 2311 2312 struct vm_unmapped_area_info { 2313 #define VM_UNMAPPED_AREA_TOPDOWN 1 2314 unsigned long flags; 2315 unsigned long length; 2316 unsigned long low_limit; 2317 unsigned long high_limit; 2318 unsigned long align_mask; 2319 unsigned long align_offset; 2320 }; 2321 2322 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2323 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2324 2325 /* 2326 * Search for an unmapped address range. 2327 * 2328 * We are looking for a range that: 2329 * - does not intersect with any VMA; 2330 * - is contained within the [low_limit, high_limit) interval; 2331 * - is at least the desired size. 2332 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2333 */ 2334 static inline unsigned long 2335 vm_unmapped_area(struct vm_unmapped_area_info *info) 2336 { 2337 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2338 return unmapped_area_topdown(info); 2339 else 2340 return unmapped_area(info); 2341 } 2342 2343 /* truncate.c */ 2344 extern void truncate_inode_pages(struct address_space *, loff_t); 2345 extern void truncate_inode_pages_range(struct address_space *, 2346 loff_t lstart, loff_t lend); 2347 extern void truncate_inode_pages_final(struct address_space *); 2348 2349 /* generic vm_area_ops exported for stackable file systems */ 2350 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2351 extern void filemap_map_pages(struct vm_fault *vmf, 2352 pgoff_t start_pgoff, pgoff_t end_pgoff); 2353 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2354 2355 /* mm/page-writeback.c */ 2356 int __must_check write_one_page(struct page *page); 2357 void task_dirty_inc(struct task_struct *tsk); 2358 2359 /* readahead.c */ 2360 #define VM_MAX_READAHEAD 128 /* kbytes */ 2361 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2362 2363 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2364 pgoff_t offset, unsigned long nr_to_read); 2365 2366 void page_cache_sync_readahead(struct address_space *mapping, 2367 struct file_ra_state *ra, 2368 struct file *filp, 2369 pgoff_t offset, 2370 unsigned long size); 2371 2372 void page_cache_async_readahead(struct address_space *mapping, 2373 struct file_ra_state *ra, 2374 struct file *filp, 2375 struct page *pg, 2376 pgoff_t offset, 2377 unsigned long size); 2378 2379 extern unsigned long stack_guard_gap; 2380 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2381 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2382 2383 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2384 extern int expand_downwards(struct vm_area_struct *vma, 2385 unsigned long address); 2386 #if VM_GROWSUP 2387 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2388 #else 2389 #define expand_upwards(vma, address) (0) 2390 #endif 2391 2392 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2393 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2394 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2395 struct vm_area_struct **pprev); 2396 2397 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2398 NULL if none. Assume start_addr < end_addr. */ 2399 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2400 { 2401 struct vm_area_struct * vma = find_vma(mm,start_addr); 2402 2403 if (vma && end_addr <= vma->vm_start) 2404 vma = NULL; 2405 return vma; 2406 } 2407 2408 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2409 { 2410 unsigned long vm_start = vma->vm_start; 2411 2412 if (vma->vm_flags & VM_GROWSDOWN) { 2413 vm_start -= stack_guard_gap; 2414 if (vm_start > vma->vm_start) 2415 vm_start = 0; 2416 } 2417 return vm_start; 2418 } 2419 2420 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2421 { 2422 unsigned long vm_end = vma->vm_end; 2423 2424 if (vma->vm_flags & VM_GROWSUP) { 2425 vm_end += stack_guard_gap; 2426 if (vm_end < vma->vm_end) 2427 vm_end = -PAGE_SIZE; 2428 } 2429 return vm_end; 2430 } 2431 2432 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2433 { 2434 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2435 } 2436 2437 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2438 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2439 unsigned long vm_start, unsigned long vm_end) 2440 { 2441 struct vm_area_struct *vma = find_vma(mm, vm_start); 2442 2443 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2444 vma = NULL; 2445 2446 return vma; 2447 } 2448 2449 #ifdef CONFIG_MMU 2450 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2451 void vma_set_page_prot(struct vm_area_struct *vma); 2452 #else 2453 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2454 { 2455 return __pgprot(0); 2456 } 2457 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2458 { 2459 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2460 } 2461 #endif 2462 2463 #ifdef CONFIG_NUMA_BALANCING 2464 unsigned long change_prot_numa(struct vm_area_struct *vma, 2465 unsigned long start, unsigned long end); 2466 #endif 2467 2468 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2469 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2470 unsigned long pfn, unsigned long size, pgprot_t); 2471 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2472 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2473 unsigned long pfn); 2474 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2475 unsigned long pfn, pgprot_t pgprot); 2476 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2477 pfn_t pfn); 2478 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2479 unsigned long addr, pfn_t pfn); 2480 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2481 2482 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2483 unsigned long addr, struct page *page) 2484 { 2485 int err = vm_insert_page(vma, addr, page); 2486 2487 if (err == -ENOMEM) 2488 return VM_FAULT_OOM; 2489 if (err < 0 && err != -EBUSY) 2490 return VM_FAULT_SIGBUS; 2491 2492 return VM_FAULT_NOPAGE; 2493 } 2494 2495 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, 2496 unsigned long addr, pfn_t pfn) 2497 { 2498 int err = vm_insert_mixed(vma, addr, pfn); 2499 2500 if (err == -ENOMEM) 2501 return VM_FAULT_OOM; 2502 if (err < 0 && err != -EBUSY) 2503 return VM_FAULT_SIGBUS; 2504 2505 return VM_FAULT_NOPAGE; 2506 } 2507 2508 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, 2509 unsigned long addr, unsigned long pfn) 2510 { 2511 int err = vm_insert_pfn(vma, addr, pfn); 2512 2513 if (err == -ENOMEM) 2514 return VM_FAULT_OOM; 2515 if (err < 0 && err != -EBUSY) 2516 return VM_FAULT_SIGBUS; 2517 2518 return VM_FAULT_NOPAGE; 2519 } 2520 2521 static inline vm_fault_t vmf_error(int err) 2522 { 2523 if (err == -ENOMEM) 2524 return VM_FAULT_OOM; 2525 return VM_FAULT_SIGBUS; 2526 } 2527 2528 struct page *follow_page_mask(struct vm_area_struct *vma, 2529 unsigned long address, unsigned int foll_flags, 2530 unsigned int *page_mask); 2531 2532 static inline struct page *follow_page(struct vm_area_struct *vma, 2533 unsigned long address, unsigned int foll_flags) 2534 { 2535 unsigned int unused_page_mask; 2536 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2537 } 2538 2539 #define FOLL_WRITE 0x01 /* check pte is writable */ 2540 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2541 #define FOLL_GET 0x04 /* do get_page on page */ 2542 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2543 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2544 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2545 * and return without waiting upon it */ 2546 #define FOLL_POPULATE 0x40 /* fault in page */ 2547 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2548 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2549 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2550 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2551 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2552 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2553 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2554 #define FOLL_COW 0x4000 /* internal GUP flag */ 2555 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2556 2557 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2558 { 2559 if (vm_fault & VM_FAULT_OOM) 2560 return -ENOMEM; 2561 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2562 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2563 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2564 return -EFAULT; 2565 return 0; 2566 } 2567 2568 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2569 void *data); 2570 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2571 unsigned long size, pte_fn_t fn, void *data); 2572 2573 2574 #ifdef CONFIG_PAGE_POISONING 2575 extern bool page_poisoning_enabled(void); 2576 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2577 #else 2578 static inline bool page_poisoning_enabled(void) { return false; } 2579 static inline void kernel_poison_pages(struct page *page, int numpages, 2580 int enable) { } 2581 #endif 2582 2583 #ifdef CONFIG_DEBUG_PAGEALLOC 2584 extern bool _debug_pagealloc_enabled; 2585 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2586 2587 static inline bool debug_pagealloc_enabled(void) 2588 { 2589 return _debug_pagealloc_enabled; 2590 } 2591 2592 static inline void 2593 kernel_map_pages(struct page *page, int numpages, int enable) 2594 { 2595 if (!debug_pagealloc_enabled()) 2596 return; 2597 2598 __kernel_map_pages(page, numpages, enable); 2599 } 2600 #ifdef CONFIG_HIBERNATION 2601 extern bool kernel_page_present(struct page *page); 2602 #endif /* CONFIG_HIBERNATION */ 2603 #else /* CONFIG_DEBUG_PAGEALLOC */ 2604 static inline void 2605 kernel_map_pages(struct page *page, int numpages, int enable) {} 2606 #ifdef CONFIG_HIBERNATION 2607 static inline bool kernel_page_present(struct page *page) { return true; } 2608 #endif /* CONFIG_HIBERNATION */ 2609 static inline bool debug_pagealloc_enabled(void) 2610 { 2611 return false; 2612 } 2613 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2614 2615 #ifdef __HAVE_ARCH_GATE_AREA 2616 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2617 extern int in_gate_area_no_mm(unsigned long addr); 2618 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2619 #else 2620 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2621 { 2622 return NULL; 2623 } 2624 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2625 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2626 { 2627 return 0; 2628 } 2629 #endif /* __HAVE_ARCH_GATE_AREA */ 2630 2631 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2632 2633 #ifdef CONFIG_SYSCTL 2634 extern int sysctl_drop_caches; 2635 int drop_caches_sysctl_handler(struct ctl_table *, int, 2636 void __user *, size_t *, loff_t *); 2637 #endif 2638 2639 void drop_slab(void); 2640 void drop_slab_node(int nid); 2641 2642 #ifndef CONFIG_MMU 2643 #define randomize_va_space 0 2644 #else 2645 extern int randomize_va_space; 2646 #endif 2647 2648 const char * arch_vma_name(struct vm_area_struct *vma); 2649 void print_vma_addr(char *prefix, unsigned long rip); 2650 2651 void sparse_mem_maps_populate_node(struct page **map_map, 2652 unsigned long pnum_begin, 2653 unsigned long pnum_end, 2654 unsigned long map_count, 2655 int nodeid); 2656 2657 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2658 struct vmem_altmap *altmap); 2659 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2660 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2661 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2662 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2663 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2664 void *vmemmap_alloc_block(unsigned long size, int node); 2665 struct vmem_altmap; 2666 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2667 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2668 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2669 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2670 int node); 2671 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2672 struct vmem_altmap *altmap); 2673 void vmemmap_populate_print_last(void); 2674 #ifdef CONFIG_MEMORY_HOTPLUG 2675 void vmemmap_free(unsigned long start, unsigned long end, 2676 struct vmem_altmap *altmap); 2677 #endif 2678 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2679 unsigned long nr_pages); 2680 2681 enum mf_flags { 2682 MF_COUNT_INCREASED = 1 << 0, 2683 MF_ACTION_REQUIRED = 1 << 1, 2684 MF_MUST_KILL = 1 << 2, 2685 MF_SOFT_OFFLINE = 1 << 3, 2686 }; 2687 extern int memory_failure(unsigned long pfn, int flags); 2688 extern void memory_failure_queue(unsigned long pfn, int flags); 2689 extern int unpoison_memory(unsigned long pfn); 2690 extern int get_hwpoison_page(struct page *page); 2691 #define put_hwpoison_page(page) put_page(page) 2692 extern int sysctl_memory_failure_early_kill; 2693 extern int sysctl_memory_failure_recovery; 2694 extern void shake_page(struct page *p, int access); 2695 extern atomic_long_t num_poisoned_pages __read_mostly; 2696 extern int soft_offline_page(struct page *page, int flags); 2697 2698 2699 /* 2700 * Error handlers for various types of pages. 2701 */ 2702 enum mf_result { 2703 MF_IGNORED, /* Error: cannot be handled */ 2704 MF_FAILED, /* Error: handling failed */ 2705 MF_DELAYED, /* Will be handled later */ 2706 MF_RECOVERED, /* Successfully recovered */ 2707 }; 2708 2709 enum mf_action_page_type { 2710 MF_MSG_KERNEL, 2711 MF_MSG_KERNEL_HIGH_ORDER, 2712 MF_MSG_SLAB, 2713 MF_MSG_DIFFERENT_COMPOUND, 2714 MF_MSG_POISONED_HUGE, 2715 MF_MSG_HUGE, 2716 MF_MSG_FREE_HUGE, 2717 MF_MSG_NON_PMD_HUGE, 2718 MF_MSG_UNMAP_FAILED, 2719 MF_MSG_DIRTY_SWAPCACHE, 2720 MF_MSG_CLEAN_SWAPCACHE, 2721 MF_MSG_DIRTY_MLOCKED_LRU, 2722 MF_MSG_CLEAN_MLOCKED_LRU, 2723 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2724 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2725 MF_MSG_DIRTY_LRU, 2726 MF_MSG_CLEAN_LRU, 2727 MF_MSG_TRUNCATED_LRU, 2728 MF_MSG_BUDDY, 2729 MF_MSG_BUDDY_2ND, 2730 MF_MSG_UNKNOWN, 2731 }; 2732 2733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2734 extern void clear_huge_page(struct page *page, 2735 unsigned long addr_hint, 2736 unsigned int pages_per_huge_page); 2737 extern void copy_user_huge_page(struct page *dst, struct page *src, 2738 unsigned long addr, struct vm_area_struct *vma, 2739 unsigned int pages_per_huge_page); 2740 extern long copy_huge_page_from_user(struct page *dst_page, 2741 const void __user *usr_src, 2742 unsigned int pages_per_huge_page, 2743 bool allow_pagefault); 2744 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2745 2746 extern struct page_ext_operations debug_guardpage_ops; 2747 2748 #ifdef CONFIG_DEBUG_PAGEALLOC 2749 extern unsigned int _debug_guardpage_minorder; 2750 extern bool _debug_guardpage_enabled; 2751 2752 static inline unsigned int debug_guardpage_minorder(void) 2753 { 2754 return _debug_guardpage_minorder; 2755 } 2756 2757 static inline bool debug_guardpage_enabled(void) 2758 { 2759 return _debug_guardpage_enabled; 2760 } 2761 2762 static inline bool page_is_guard(struct page *page) 2763 { 2764 struct page_ext *page_ext; 2765 2766 if (!debug_guardpage_enabled()) 2767 return false; 2768 2769 page_ext = lookup_page_ext(page); 2770 if (unlikely(!page_ext)) 2771 return false; 2772 2773 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2774 } 2775 #else 2776 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2777 static inline bool debug_guardpage_enabled(void) { return false; } 2778 static inline bool page_is_guard(struct page *page) { return false; } 2779 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2780 2781 #if MAX_NUMNODES > 1 2782 void __init setup_nr_node_ids(void); 2783 #else 2784 static inline void setup_nr_node_ids(void) {} 2785 #endif 2786 2787 #endif /* __KERNEL__ */ 2788 #endif /* _LINUX_MM_H */ 2789